Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Interpretation
2.3. Methods
2.3.1. Soil Erodibility K Value Prediction
2.3.2. Spatial Autocorrelation Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Basic Soil Properties of the Watershed
3.2. Soil Erodibility Characteristics of the Watershed
3.3. Spatial Correlation of Soil Properties in the Watershed
4. Discussion
4.1. Relationship between the K Value and Basic Soil Properties
4.2. Relationship between the K Value and Land Use Information
4.3. Relationship between the K Value and Watershed Topography
5. Conclusions
- (1)
- The mechanical composition of soils in the Changyan watershed was dominated by silt and clay particles (63.94~85.21%), and the organic matter content was generally increased with decreased altitude. The soil erodibility, mechanical composition, and organic matter content all showed positive spatial autocorrelation in which clay content was the most significant followed by the sand content, the organic matter content, the K value, and the silt content.
- (2)
- The soil erodibility K values in the study area showed a block-like structure of spatial distribution. They were generally greater in the southwest and smaller in the northeast of the watershed. The spatial variability of soil K values for the five soil types in the watershed was relatively small with coefficients of variation ranging from 0.92 to 9.79%.
- (3)
- The soil erodibility K values were spatially related to soil types, land use, and topography. The mean K values of soil for different soil types were ordered as follows: calcareous soil > paddy soil > yellow-brown soil > purple soil > Fluvo-auic soil. The K values were negatively correlated with soil sand content, but positively correlated with soil silt and clay content. Forest soils had the strongest resistance to soil erosion, while cultivated soils had the weakest. Soil erodibility K values enhanced with increasing slope but showed a decreasing trend with increasing altitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Liu, L.Y.; Yan, P.; Cao, P. A Review of Soil Erodibility Studies. Arid. Land Geogr. 2006, 29, 124–131. [Google Scholar]
- Huang, Y.H.; Lu, C.L.; Fu, Q.; Shi, Y.Z.; Xu, J.J. Research on Soil Loss Forecasting in Southeast Fujian. J. Soil Water Conserv. 1993, 7, 13–18. [Google Scholar]
- Trimble, S.W.; Crosson, P. LAND USE: U.S. Soil Erosion Rates--Myth and Reality. Science 2000, 289, 248–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.L.; Peng, W.Y.; Yang, H.L. Soil erodibility values and their estimation in China. Acta Pedol. Sin. 2007, 44, 7–13. [Google Scholar]
- Mendona, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Mannering, J.V. Relation of Soil Properties to its Erodibility1. Soil Sci. Soc. Am. J. 1969, 33, 131. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhang, K.L.; Jiao, J.Y. Soil erodibility and its application in erosion forecasting. J. Nat. Resour. 1999, 14, 345–350. [Google Scholar]
- Cao, X.H.; Long, H.Y.; Lei, Q.L.; Zhang, R.L. Assessment and analysis of the top soil erodibility K value in Hebei Province. Soils. 2015, 47, 1192–1198. [Google Scholar]
- Peng, G.; Deng, J.C.; Chai, X.K.; Mu, X.M.; Zhao, G.J.; Shao, H.B.; Sun, W.Y. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar]
- Jiang, Q.H.; Zhou, P.; Liao, C.; Liu, Y.; Liu, F. Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of central China. Sci. Total Environ. 2020, 749, 141609. [Google Scholar] [CrossRef]
- Zhang, K.L.; Lian, L.; Zhang, Z.D. Reliability of soil erodibility estimation in areas outside the US: A comparison of erodibility for main agricultural soils in the US and China. Environ. Earth Sci. 2016, 75, 252. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H.; Li, N.N.; Zhang, B.J.; Yang, H.Y. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena. 2019, 174, 24–35. [Google Scholar] [CrossRef]
- Zhang, W.T.; Yu, D.S.; Shi, X.Z.; Zhang, X.Y.; Wang, H.J.; Gu, Z.J. Uncertainty study on prediction of erodibility K values of subtropical soils in China. Acta Pedol. Sin. 2009, 46, 185–191. [Google Scholar]
- Godoi, F.R.; Rodrigues, D.B.; Borrelli, P.; Oliveira, P.T.S. High-resolution soil erodibility map of Brazil. Sci. Total Environ. 2021, 781, 146673. [Google Scholar] [CrossRef]
- Madenoglu, S.; Atalay, F.; Erpul, G. Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses. Soil Tillage Res. 2020, 204, 104731. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Remond, R.; Ruiz-Sinoga, J.D. Validation of RUSLE K factor using aggregate stability in contrasted mediterranean eco-geomorphological landscapes (southern Spain). Environ. Res. 2020, 183, 109160. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.H.; Zeng, G.; Hu, Q. The spatial relationship between regional development potential and resource & environment carrying capacity. Resour. Sci. 2009, 31, 1328–1334. [Google Scholar]
- Xie, H.L. Regional eco-risk analysis based on landscape structure and spatial statistics. Acta Ecol. Sin. 2008, 28, 5020–5026. [Google Scholar]
- Overmars, K.D.; De Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.M.; Zhao, C.Y.; Chang, Y.P.; Liu, Y.T.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Zhao, D.X.; Zhao, X.Y.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR Spectral Library to Predict Clay in Australian Cotton Growing Soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [Google Scholar] [CrossRef]
- Zhao, D.X.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Ma, G.Y.; Li, J.W.; Fang, Q.Q.; Jiang, H. Soil erosion and available nutrient losses from two typical soils under simulated rainfall conditions. Chin. J. Ecol. 2015, 34, 2267–2273. [Google Scholar]
- Zhang, K.L.; Cai, Y.M.; Liu, B.Y.; Peng, W.Y. Study on the dynamic change pattern of soil erodibility. Acta Geogr. Sin. 2001, 56, 673. [Google Scholar]
- Wang, H.; Zhang, G.H.; Li, N.N.; Zhang, B.J.; Yang, H.Y. Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma 2018, 325, 18–27. [Google Scholar] [CrossRef]
- Panos, P.; Katrin, M.; Cristiano, B.; Pasqualle, B.; Christine, A. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479, 189–200. [Google Scholar]
- Cai, X.; Zhan, H.G.; Shi, J.B.; Zhang, Y.; Wang, Q.X.; Zhang, X.; Zhao, J.H.; Li, Y.C. Study on the characteristics of soil erosion in the transmission project of South and Central E Zhong. Trans. Chin. Soc. Agric. Eng. 2019, 50, 57–60. [Google Scholar]
- Department of Water Resources of Hubei Province. 2020 Hubei Bulletin of Soil and Water Conservation. Available online: http://slt.hubei.gov.cn/bsfw/cxfw/stbcgb/202110/t20211020_3818824.shtml (accessed on 20 October 2021).
- Qian, L. Monitoring and Evaluation of Soil and Water Conservation in Hydropower Stations in the Mountainous Region of Southwest China. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2013. [Google Scholar]
- Xu, W.S.; Li, J.F. Research on sustainable land use in the rocky desertification mountainous areas of southwest Hubei. Sci. Technol. Inf. 2011, 252, 112–113. [Google Scholar]
- Zhang, J.L. Valuation of Forest Ecosystem Services in Enshi and Its Spatial and Temporal Variability Analysis. Master’s Thesis, Hubei Minzu University, Wuhan, China, 2017. [Google Scholar]
- Wu, D.K.; Dai, Y.Q.; Li, S.L.; Han, M. Evaluation of comprehensive benefits of 6 management models for returning farmland to forest in Southwest China. J. Southwest For. Univ. 2011, 31, 34–38. [Google Scholar]
- Cooperative Research Group on Chinese Soil Taxonomy. Chinese Soil Taxonomy; Science Press: Beijing, China; New York, NY, USA, 2001. [Google Scholar]
- Soil Physics Research Laboratory, Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil Physical Property Determination Method; Science Press: Beijing, China, 1978; pp. 134–137. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 28–29. [Google Scholar]
- Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC: A new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1983, 38, 381–383. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. [Google Scholar]
- Wei, H.; Zhao, W.W.; Wang, J. A Review of Soil Erodibility Studies. Chin. J. Appl. Ecol. 2017, 28, 2749–2759. [Google Scholar]
- Hana, H.K.; Viliam, N.; Jirka, S. The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma 2016, 281, 39–48. [Google Scholar]
- Panagopoulos, T.; De Jesus, J.; Blumberg, D.; Ben, A. Spatial Variability of Durum Wheat Yield as Related to Soil Parameters in an Organic Field. Commun. Soil Sci. Plant Anal. 2014, 45, 2018–2031. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy. 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Zhang, J.C.; Li, H.D.; Lin, J.; Li, Y.J.; Jiang, J.; Tao, B.X.; Zhang, D.M. Spatial variation of soil erodibility K values based on small watershed scale. Acta Ecol. Sin. 2008, 28, 2199–2206. [Google Scholar]
- Wang, G.F.; Zhang, W.P.; Bi, R.T.; Zhang, Q.; Ren, J.; Qiao, L.; Shen, R.Y.; Wang, P.H. Estimation and spatial variability characteristics of deep soil organic matter in farmland at the county scale. Trans. Chin. Soc. Agric. Eng. 2019, 35, 122–131. [Google Scholar]
- Huang, X.Q.; Zhao, Y.J.; Xin, Z.B.; Qin, Y.B.; Yi, Y. Influence of typical land use types on soil physicochemical properties and erodibility in Beijing Mountainous. Res. Soil Water Conserv. 2015, 22, 5–10. [Google Scholar]
- Triantafyllidis, V.; Zotos, A.; Kosma, C.; Kokkotos, E. Environmental Implications from Long-term citrus cultivation and wide use of Cu fungicides in mediterranean soils. Water Air Soil Pollut. 2020, 231, 218. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. Citrus Decline: Soil fertility and plant nutrition. J. Plant Nutr. 2009, 32, 197–245. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Xue, S.; Liu, G.B.; Zhang, C. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. J. Arid. Land. 2014, 6, 550–560. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, X.P.; Lei, S. Soil erodibility analysis of different land use types in the Qingmuguan karst trough valley watershed. Carsol. Sin. 2020, 39, 836–844. [Google Scholar]
- Zhang, H.Y.; Wang, K.Q.; Song, Y.L. Soil erosion resistance of different land use types in the Jianshan River Basin, Central Yunnan. J. Soil Water Conserv. 2019, 33, 50–57. [Google Scholar]
- Li, P.; Li, Z.B.; Zheng, Y. Influence of land utilization types on soil erodibility in dry-hot valley in Jinsha River. Res. Soil Water Conserv. 2011, 18, 16–19. [Google Scholar]
- Zhang, Y.Q. Analysis on the vertical differentiation & affected factors of soil erodibility K value in mountain soils of Wuyi Mountain. Subtrop. Soil Water Conserv. 2012, 24, 19–22. [Google Scholar]
Sampling Points | Slope Direction | Slope (°) | Altitud e(m) | Land-Use Type | Type of Soil | pH |
---|---|---|---|---|---|---|
C1 | W290 | 45 | 423 | Orchard—Citrus reticulata | Paddy soil | 6.69 |
C2 | W265 | 35 | 417 | Forest—Osmanthus fragrans | Purple soil | 8.18 |
C3 | N340 | 47 | 452 | Orchard—Citrus reticulata | Yellow-brown loam | 6.25 |
C4 | N350 | 24 | 483 | Forest—Pinus massoniana | Yellow-brown loam | 5.74 |
C5 | W282 | 39 | 373 | Forest—Pinus massoniana | Yellow-brown loam | 5.77 |
C6 | W293 | 41 | 427 | Cultivate land—Cucurbita moschata | Fluvo-auic soil | 8.34 |
C7 | NW310 | 29 | 392 | Orchard—Citrus reticulata | Paddy soil | 8.42 |
C8 | SE124 | 35 | 405 | Forest—Osmanthus fragrans | Purple soil | 8.2 |
C9 | SE145 | 24 | 389 | Orchard—Citrus reticulata | Calcareous soil | 6.72 |
C10 | SE131 | 35 | 456 | Orchard—Citrus reticulata | Calcareous soil | 6.37 |
C11 | SE116 | 21 | 503 | Orchard—Citrus reticulata | Yellow-brown loam | 6.43 |
C12 | E104 | 25 | 608 | Orchard—Citrus reticulata | Paddy soil | 8.44 |
C13 | W269 | 10 | 416 | Orchard—Citrus reticulata | Yellow-brown loam | 5.74 |
C14 | W289 | 13 | 465 | Cultivated—Zea mays | Yellow-brown loam | 6.27 |
C15 | W292 | 43 | 556 | Forest—Cunninghamia lanceolata | Yellow-brown loam | 7.42 |
C16 | W293 | 26 | 594 | Forest—Pinus massoniana | Yellow-brown loam | 5 |
C17 | NE33 | 25 | 860 | Forest—Pinus massoniana | Yellow-brown loam | 4.88 |
C18 | SW233 | 43 | 829 | Forest—Pinus massoniana | Yellow-brown loam | 4.6 |
C19 | W244 | 37 | 789 | Forest—Pinus massoniana | Purple soil | 6.37 |
C20 | W264 | 35 | 683 | Cultivated land—Ipomoea batatas | Fluvo-auic soil | 7.24 |
C21 | SW235 | 32 | 657 | Cultivated land—Zea mays | Purple soil | 7.46 |
C22 | SW223 | 28 | 644 | Orchard—Citrus reticulata | Yellow-brown loam | 4.97 |
C23 | S160 | 20 | 545 | Forest—Cunninghamia lanceolata | Yellow-brown loam | 6.61 |
C24 | SE121 | 26 | 533 | Forest—Cunninghamia lanceolata | Yellow-brown loam | 6.7 |
C25 | SE116 | 30 | 480 | Orchard—Citrus reticulata | Yellow-brown loam | 5.75 |
C26 | SE115 | 17 | 415 | Orchard—Citrus reticulata | Paddy soil | 7.67 |
C27 | S165 | 11 | 387 | Grassland—Pteridophyta | Paddy soil | 8.09 |
C28 | N350 | 28 | 411 | Forest—Cinnamomum camphora | Yellow-brown loam | 8.02 |
C29 | N290 | 27 | 420 | Orchard—Citrus reticulata | Yellow-brown loam | 7.37 |
C30 | N14 | 25 | 476 | Orchard—Citrus reticulata | Yellow-brown loam | 7.01 |
C31 | E107 | 33 | 592 | Forest—Osmanthus fragrans | Yellow-brown loam | 7.18 |
C32 | SE133 | 32 | 549 | Orchard—Citrus reticulata | Yellow-brown loam | 7.26 |
C33 | SE133 | 27 | 521 | Forest—Cinnamomum camphora | Yellow-brown loam | 7.2 |
C34 | E76 | 36 | 486 | Orchard—Citrus reticulata | Yellow-brown loam | 7.16 |
C35 | SE145 | 20 | 593 | Forest—Berberis thunbergii ‘Atropurpurea’ | Yellow-brown loam | 6.53 |
C36 | SE116 | 22 | 605 | Forest—Cinnamomum camphora | Yellow-brown loam | 6.48 |
C37 | SE129 | 26 | 587 | Orchard—Citrus reticulata | Paddy soil | 6.79 |
C38 | SE141 | 29 | 579 | Orchard—Citrus reticulata | Purple soil | 7.06 |
C39 | SW209 | 20 | 582 | Forest—Pinus massoniana | Purple soil | 7.05 |
C40 | W257 | 19 | 623 | Grassland—Pteridophyta | Yellow-brown loam | 7.27 |
C41 | E109 | 20 | 609 | Cultivated—Oryza sativa | Paddy soil | 6.71 |
C42 | W263 | 17 | 587 | Forest—Cinnamomum camphora | Yellow-brown loam | 6.7 |
C43 | W274 | 20 | 624 | Orchard—Citrus reticulata | Yellow-brown loam | 6.74 |
C44 | W281 | 18 | 587 | Forest—Pinus massoniana | Yellow-brown loam | 6.44 |
C45 | W279 | 20 | 588 | Forest—Cinnamomum camphora | Purple soil | 5.49 |
C46 | E72 | 28 | 424 | Forest—Cinnamomum camphora | Yellow-brown loam | 7.08 |
Sampling Points | Max | Min | Median | Mean | SD | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|---|
46 | 0.052 | 0.039 | 0.047 | 0.046 | 0.009 | −0.919 | −0.186 | 18.60 |
Soil Properties | Moran’s I | Z Score | p-Value |
---|---|---|---|
K (t·hm2·h/(hm2·MJ·mm)) | 0.07 | 1.88 | 0.040595 |
Sand (%) | 0.16 | 3.74 | 0.000186 |
Silt (%) | 0.05 | 1.71 | 0.032018 |
Clay (%) | 0.20 | 4.46 | 0.000008 |
SOM (g/kg) | 0.08 | 2.19 | 0.028671 |
Type of Soil | Area (km2) | Mean | Min | Max | SD | CV (%) |
---|---|---|---|---|---|---|
Yellow-brown loam | 5.10 | 0.0453 a | 0.0390 | 0.0521 | 0.0042 | 9.30 |
Paddy soil | 1.52 | 0.0458 b | 0.0405 | 0.0514 | 0.0045 | 9.79 |
Purple soil | 1.32 | 0.0450 c | 0.0427 | 0.0511 | 0.0034 | 7.55 |
Calcareous soil | 0.42 | 0.0498 d | 0.0490 | 0.0507 | 0.0005 | 0.92 |
Fluvo-auic soil | 0.23 | 0.0440 e | 0.0425 | 0.0456 | 0.0008 | 1.86 |
Land-Use Type | Max | Min | Median | Mean ± SD | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|
Cultivated land | 0.0522 | 0.0467 | 0.0504 | 0.050 ± 0.002 a | −0.41 | −1.98 | 4.16 |
Orchard | 0.0507 | 0.0405 | 0.0438 | 0.045 ± 0.003 b | 0.61 | −0.72 | 6.54 |
Forest | 0.0455 | 0.0390 | 0.0422 | 0.042 ± 0.002 c | −0.08 | −0.67 | 4.15 |
Grassland | 0.0516 | 0.0408 | 0.0451 | 0.046 ± 0.004 d | 0.36 | −1.84 | 9.05 |
Altitude (m) | Max | Min | Median | Mean ± SD | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|
413–420 | 0.0521 | 0.0419 | 0.0511 | 0.0498 ± 0.003 a | −2.14 | 4.95 | 6.46 |
420–486 | 0.0497 | 0.0452 | 0.047 | 0.0472 ± 0.001 b | 0.60 | 0.87 | 2.5 |
486–579 | 0.0488 | 0.0423 | 0.0472 | 0.0467 ± 0.002 c | −1.81 | 4.09 | 4.13 |
579–623 | 0.0504 | 0.0419 | 0.0462 | 0.0463 ± 0.002 d | −0.34 | 0.11 | 5.25 |
623–919 | 0.0514 | 0.039 | 0.0459 | 0.0461 ± 0.004 e | −0.54 | 0.42 | 8.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Lin, L.; Ding, S.; Tian, Z.; Zhu, X.; Wu, K.; Zhao, Y. Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China. Land 2022, 11, 134. https://doi.org/10.3390/land11010134
Huang X, Lin L, Ding S, Tian Z, Zhu X, Wu K, Zhao Y. Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China. Land. 2022; 11(1):134. https://doi.org/10.3390/land11010134
Chicago/Turabian StyleHuang, Xiaofang, Lirong Lin, Shuwen Ding, Zhengchao Tian, Xinyuan Zhu, Keren Wu, and Yuanzhe Zhao. 2022. "Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China" Land 11, no. 1: 134. https://doi.org/10.3390/land11010134
APA StyleHuang, X., Lin, L., Ding, S., Tian, Z., Zhu, X., Wu, K., & Zhao, Y. (2022). Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China. Land, 11(1), 134. https://doi.org/10.3390/land11010134