Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope of Study
2.2. Data Source for PM 10 and Built Environment
2.3. K-Means Clustering for Land-Use Clarification around AQMS
2.4. Model Specification
3. Results and Discussion
3.1. General Characteristics of PM10 Distribution
3.2. Differences in the PM10 Level According to Land-Use Clarification
3.3. The Relationship between PM10 and Land-Use Type Using Log-Linear Regression Models
3.3.1. The Correlation between Average Daily PM10 Concentration and Land-Use Type
3.3.2. Correlation between Variability of Daily PM10 Concentration and Land-Use Type
4. Conclusions
4.1. Need to Reduce Exposure to PM or Adaptive Land-Use Planning
4.2. Need to Make PM Reduction Guideline Considering Microclimate Characteristics
4.3. Necessity of a Plan to Reduce Exposure to PM in Consideration of Season and Time
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Post-hoc Analysis Results for Monthly PM10 Concentration Difference
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | −10.032 | ||||||||||
0.000 * | |||||||||||
3 | 3.395 | 13.373 | |||||||||
0.045 * | 0.000 * | ||||||||||
4 | −10.727 | −0.411 | −14.163 | ||||||||
0.000 * | 1.000 | 0.000 * | |||||||||
5 | 10.834 | 20.731 | 7.425 | 21.738 | |||||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | ||||||||
6 | 15.534 | 25.134 | 12.207 | 26.227 | 4.984 | ||||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||||||
7 | 40.149 | 49.266 | 36.856 | 51.032 | 29.809 | 24.269 | |||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | ||||||
8 | 53.444 | 62.367 | 50.137 | 64.547 | 43.119 | 37.206 | 12.689 | ||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||||
9 | 54.882 | 63.699 | 51.611 | 65.876 | 44.675 | 38.796 | 14.536 | 2.004 | |||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 1.000 | ||||
10 | 35.157 | 44.472 | 31.818 | 46.137 | 24.649 | 19.154 | −5.411 | −18.320 | −20.127 | ||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||
11 | −5.870 | 4.375 | −9.308 | 4.921 | −16.868 | −21.476 | −46.343 | −59.847 | −61.227 | −41.380 | |
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | ||
12 | 9.693 | 19.737 | 6.237 | 20.737 | −1.299 | −6.319 | −31.480 | −45.001 | −46.551 | −26.274 | 15.799 |
0.000 * | 0.000 * | 0.000 * | 0.000 * | 1.000 | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Appendix B. Post-hoc Analysis Results for Monthly PM10 Variance Difference
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | −8.889 | ||||||||||
0.000 * | |||||||||||
3 | −7.830 | 1.256 | |||||||||
0.000 * | 1.000 | ||||||||||
4 | −19.696 | −10.323 | −11.880 | ||||||||
0.000 * | 0.000 * | 0.000 * | |||||||||
5 | −4.681 | 4.417 | 3.232 | 15.231 | |||||||
0.000 * | 0.000 * | 0.081 | 0.000 * | ||||||||
6 | 9.608 | 18.207 | 17.389 | 29.161 | 14.357 | ||||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||||||
7 | 27.306 | 35.569 | 35.190 | 47.087 | 32.304 | 17.462 | |||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | ||||||
8 | 40.639 | 48.701 | 48.672 | 60.771 | 45.880 | 30.524 | 12.914 | ||||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||||
9 | 40.654 | 48.647 | 48.605 | 60.581 | 45.836 | 30.643 | 13.207 | 0.429 | |||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 1.000 | ||||
10 | 24.815 | 33.213 | 32.777 | 44.798 | 29.841 | 14.890 | −2.776 | −15.871 | −16.136 | ||
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.364 | 0.000 * | 0.000 * | |||
11 | −8.870 | 0.292 | −0.996 | 10.952 | −4.257 | −18.473 | −36.388 | −49.972 | −49.889 | −33.976 | |
0.000 * | 1.000 | 1.000 | 0.000 * | 0.001 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | ||
12 | 4.367 | 13.367 | 12.407 | 24.583 | 9.224 | −5.521 | −23.632 | −37.264 | −37.305 | −21.044 | 13.502 |
0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Appendix C. Post-hoc Analysis Results for Checking the Difference by Clusters
Pop | BLD_FA | Resi_A | Busi_A | Comm_A | Indus_A | Green_A | Entropy | Road_A | ||
---|---|---|---|---|---|---|---|---|---|---|
C1 | c1 | |||||||||
c2 | 3.648 | 2.856 | ||||||||
0.0056 *** | 0.0902 * | |||||||||
c3 | 5.628 | 4.185 | 3.422 | |||||||
0.0000 *** | 0.0006 *** | 0.0130 ** | ||||||||
c4 | −3.247 | |||||||||
0.0245 * | ||||||||||
c5 | −3.309 | −3.342 | ||||||||
0.0197 ** | 0.0175 * | |||||||||
c6 | 4.830 | |||||||||
0.0000 *** | ||||||||||
c7 | −3.906 | −4.755 | 4.602 | 3.218 | ||||||
0.0020 *** | 0.0000 * | 0.0001 *** | 0.0271 ** | |||||||
C2 | c1 | −3.648 | −2.856 | |||||||
0.0056 *** | 0.0902* | |||||||||
c2 | ||||||||||
c3 | −3.543 | −5.468 | 4.923 | 4.917 | ||||||
0.0083 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | |||||||
c4 | −6.137 | −5.591 | −4.416 | 4.139 | −4.927 | |||||
0.0000 *** | 0.0000 *** | 0.0002 *** | 0.0007 * | 0.0000 *** | ||||||
c5 | −3.612 | −4.837 | −3.854 | −4.639 | −2.882 | 6.216 | ||||
0.0064 *** | 0.0000 *** | 0.0024 *** | 0.0001 *** | 0.083 * | 0.0000 *** | |||||
c6 | 4.328 | |||||||||
0.0003 *** | ||||||||||
c7 | −4.331 | −4.852 | −5.626 | 3.910 | 3.948 | |||||
0.0003 *** | 0.0000 *** | 0.0000 *** | 0.0019 *** | 0.0017 *** | ||||||
C3 | c1 | −5.628 | −4.185 | −3.422 | ||||||
0.0000 *** | 0.0006 *** | 0.0130 ** | ||||||||
c2 | 3.543 | 5.468 | −4.923 | −4.917 | ||||||
0.0083 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | |||||||
c3 | ||||||||||
c4 | −4.707 | −7.092 | −4.120 | −5.667 | ||||||
0.0001 *** | 0.0000 *** | 0.0008 *** | 0.0000 *** | |||||||
c5 | −6.402 | −6.101 | −5.362 | −6.516 | 3.956 | −6.715 | −5.725 | |||
0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0016 *** | 0.0000 *** | 0.0000 *** | ||||
c6 | −3.045 | 4.030 | 5.200 | −5.305 | ||||||
0.0488 ** | 0.0012 *** | 0.0000 *** | 0.0000 *** | |||||||
c7 | −6.971 | −7.752 | −3.738 | 5.609 | -3.597 | |||||
0.0000 *** | 0.0000 *** | 0.0039 *** | 0.0000 *** | 0.0068 *** | ||||||
C4 | c1 | 3.247 | ||||||||
0.0245 ** | ||||||||||
c2 | 6.137 | 5.591 | 4.416 | −4.139 | 4.927 | |||||
0.0000 *** | 0.0000 *** | 0.0002 *** | 0.0007 *** | 0.0000 *** | ||||||
c3 | 4.707 | 7.092 | 4.120 | 5.667 | ||||||
0.0001 *** | 0.0000 *** | 0.0008 *** | 0.0000 *** | |||||||
c4 | ||||||||||
c5 | −3.912 | −4.161 | ||||||||
0.0019 *** | 0.0007 *** | |||||||||
c6 | 7.045 | 3.712 | 6.404 | 3.977 | 5.148 | |||||
0.0000 *** | 0.0043 *** | 0.0000 *** | 0.0015 *** | 0.0000 *** | ||||||
c7 | −4.615 | −5.916 | 3.415 | 4.653 | 4.365 | 3.006 | 3.108 | |||
0.0001 *** | 0.0000 *** | 0.0134 ** | 0.0001 *** | 0.0003 *** | 0.0556 * | 0.0395 ** | ||||
C5 | c1 | 3.309 | 3.342 | |||||||
0.0197 ** | 0.0175 ** | |||||||||
c2 | 3.612 | 4.837 | 3.854 | 4.639 | 2.882 | −6.216 | ||||
0.0064 *** | 0.0000 *** | 0.0024 *** | 0.0001 *** | 0.083 * | 0.0000 *** | |||||
c3 | 6.402 | 6.101 | 5.362 | 6.516 | −3.956 | 6.715 | 5.725 | |||
0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0016 *** | 0.0000 *** | 0.0000 *** | ||||
c4 | 3.912 | 4.161 | ||||||||
0.0019 *** | 0.0007 *** | |||||||||
c5 | ||||||||||
c6 | 4.059 | 6.154 | 4.415 | 4.503 | 5.889 | 5.420 | ||||
0.0010 *** | 0.0000 *** | 0.0002 *** | 0.0001 *** | 0.0000 *** | 0.0000 *** | |||||
c7 | 4.148 | 3.450 | 6.372 | |||||||
0.0007 *** | 0.0118 ** | 0.0000 *** | ||||||||
C6 | c1 | −4.830 | ||||||||
0.0000 *** | ||||||||||
c2 | −4.328 | |||||||||
0.0003 *** | ||||||||||
c3 | 3.045 | −4.030 | −5.200 | 5.305 | ||||||
0.0488 ** | 0.0012 *** | 0.0000 *** | 0.0000 *** | |||||||
c4 | −4.030 | −3.712 | −6.404 | −3.977 | −5.148 | |||||
0.0012 *** | 0.0043 *** | 0.0000 *** | 0.0015 *** | 0.0000 *** | ||||||
c5 | −4.059 | −6.154 | −4.415 | −4.503 | −5.889 | −5.420 | ||||
0.0010 *** | 0.0000 *** | 0.0002 *** | 0.0001 *** | 0.0000 *** | 0.0000 *** | |||||
c6 | ||||||||||
c7 | −4.855 | −5.970 | −6.517 | 4.426 | ||||||
0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0002 *** | |||||||
C7 | c1 | 3.906 | 4.755 | −4.602 | 3.218 | |||||
0.0020 *** | 0.0000 *** | 0.0001 *** | 0.0271 ** | |||||||
c2 | 4.331 | 4.852 | 5.626 | −3.910 | −3.948 | |||||
0.0003 *** | 0.0000 *** | 0.0000 *** | 0.0019 *** | 0.0017 *** | ||||||
c3 | 7.752 | 3.738 | −5.609 | 3.597 | ||||||
0.0000 *** | 0.0039 *** | 0.0000 *** | 0.0068 *** | |||||||
c4 | 5.916 | −3.415 | −4.653 | −4.365 | −3.108 | |||||
0.0000 *** | 0.0134 ** | 0.0001 *** | 0.0003 *** | 0.0395 ** | ||||||
c5 | −4.148 | −3.450 | −6.372 | |||||||
0.0007 *** | 0.0118 ** | 0.0000 *** | ||||||||
c6 | 4.855 | 5.970 | 6.517 | −4.426 | ||||||
0.0000 *** | 0.0000 *** | 0.0000 *** | 0.0002 *** | |||||||
c7 | ||||||||||
Appendix D. Post-hoc Analysis Results of Daily PM10 Concentration by Clusters
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
C2 | <0.001 *** | |||||
C3 | 1 | <0.001 *** | ||||
C4 | 1 | <0.001 *** | 1 | |||
C5 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
C6 | <0.001 *** | 1 | <0.001 *** | <0.001 *** | <0.001 *** | |
C7 | 0.0045 | <0.001 *** | <0.001 *** | <0.001 *** | 1 | <0.001 *** |
Appendix E. Post-hoc Analysis Results of Daily PM10 Variability by Clusters
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
C2 | <0.001 *** | |||||
C3 | 0.0873 * | <0.001 *** | ||||
C4 | 1 | <0.001 *** | 0.1653 | |||
C5 | 0.0446 ** | <0.001 *** | <0.001 *** | <0.001 *** | ||
C6 | <0.001 *** | 1 | <0.001 *** | <0.001 *** | <0.001 *** | |
C7 | <0.001 *** | 0.003 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.3004 |
Appendix F. Population and the Number of Employees by Industry in South Korea
National | Seoul | Busan | Daegu | Incheon | Gwangju | Daejeon | Ulsan | |
---|---|---|---|---|---|---|---|---|
The Population | 51,829,136 | 9,586,195 | 3,349,016 | 2,410,700 | 2,945,454 | 1,477,573 | 1,488,435 | 1,135,423 |
Total Number of Employees | 22,723,272 | 5,226,997 | 1,465,433 | 967,934 | 1,092,494 | 631,876 | 633,418 | 533,187 |
Agriculture, forestry, and fishing | 0.19% | 0.01% | 0.24% | 0.04% | 0.02% | 0.05% | 0.06% | 0.03% |
Mining and quarrying | 0.07% | 0.00% | 0.01% | 0.00% | 0.05% | 0.01% | 0.00% | 0.06% |
Manufacturing | 18.15% | 5.08% | 14.65% | 18.01% | 22.37% | 13.59% | 10.02% | 33.23% |
Electricity, gas, steam, and air conditioning supply | 0.30% | 0.12% | 0.27% | 0.27% | 0.37% | 0.26% | 0.29% | 0.43% |
Water supply; sewage, waste management, materials recovery | 0.50% | 0.18% | 0.47% | 0.43% | 0.65% | 0.35% | 0.53% | 0.43% |
Construction | 6.62% | 6.94% | 7.03% | 6.35% | 5.20% | 9.33% | 7.05% | 7.21% |
Wholesale and retail trade | 14.48% | 17.21% | 16.02% | 16.01% | 13.54% | 14.91% | 14.55% | 10.71% |
Transportation and storage | 5.09% | 5.05% | 7.51% | 4.96% | 7.61% | 4.80% | 4.80% | 4.46% |
Accommodation and food service activities | 10.50% | 9.45% | 11.27% | 10.53% | 10.51% | 10.24% | 10.47% | 10.01% |
Information and communication | 2.67% | 6.89% | 1.16% | 1.32% | 0.93% | 1.53% | 2.37% | 0.74% |
Financial and insurance activities | 3.15% | 5.09% | 3.48% | 3.56% | 2.34% | 3.62% | 3.45% | 2.67% |
Real estate activities | 2.37% | 3.18% | 2.44% | 2.54% | 2.17% | 2.89% | 2.38% | 1.69% |
Professional, scientific, and technical activities | 4.98% | 9.28% | 3.31% | 2.94% | 2.89% | 3.26% | 7.60% | 3.14% |
Business facilities management and business support services; rental and leasing activities | 5.25% | 9.04% | 5.80% | 4.73% | 4.73% | 5.00% | 6.23% | 3.43% |
Public administration and defence; compulsory social security | 3.38% | 2.71% | 3.15% | 3.15% | 3.48% | 3.05% | 4.26% | 2.72% |
Education | 7.36% | 6.72% | 6.98% | 8.40% | 7.01% | 8.53% | 9.05% | 6.70% |
Human health and social work activities | 8.95% | 7.66% | 10.23% | 10.40% | 10.00% | 11.65% | 10.50% | 7.20% |
Arts, sports, and recreation-related services | 2.02% | 1.77% | 1.71% | 1.89% | 2.06% | 2.19% | 1.91% | 1.65% |
Membership organizations, repair, and other personal services | 3.99% | 3.63% | 4.29% | 4.46% | 4.07% | 4.73% | 4.47% | 3.49% |
References
- World Health Organization Regional Office for Europe. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project: Technical Report; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- World Health Organization Regional Office for Europe. Health Risks of Air Pollution in Europe—HRAPIE Project; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- OECD. The Economic Consequences of Outdoor Air Pollution; OECD Publishing: Paris, France, 2016. [Google Scholar]
- World Health Organization. Global Health Observatory. Available online: https://www.who.int/data/gho/data/themes/theme-details/GHO/air-pollution (accessed on 16 September 2021).
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Eeftens, M.; Tsai, M.-Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; de Hoogh, K.; et al. Spatial Variation of PM2.5, PM10, PM2.5 Absorbance and PM Coarse Concentrations between and within 20 European Study Areas and the Relationship with NO2—Results of the ESCAPE Project. Atmos. Environ. 2012, 62, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Williams, P.I.; Morgan, W.T.; Martin, C.L.; Flynn, M.J.; Lee, J.; Nemitz, E.; Phillips, G.J.; Gallagher, M.W.; Coe, H. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmos. Chem. Phys. 2010, 10, 647–668. [Google Scholar] [CrossRef] [Green Version]
- Lanz, V.; Alfarra, M.; Baltensperger, U.; Buchmann, B.; Hueglin, C.; Prevot, A. Source apportionment of submicron organic aerosols at an urban site by factor analytical modeling of aerosol mass spectra. Atmos. Chem. Phys. 2007, 7, 1503–1522. [Google Scholar] [CrossRef] [Green Version]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef]
- Massoli, P.; Fortner, E.C.; Canagaratna, M.R.; Williams, L.R.; Zhang, Q.; Sun, Y.; Schwab, J.J.; Trimborn, A.; Onasch, T.B.; Demerjian, K.L.; et al. Pollution Gradients and Chemical Characterization of Particulate Matter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Sci. Technol. 2012, 46, 1201–1218. [Google Scholar] [CrossRef]
- Bayer-Oglesby, L.; Schindler, C.; Arx, M.; Braun-Fahrländer, C.; Keidel, D.; Rapp, R.; Künzli, N.; Braendli, O.; Burdet, L.; Liu, L.-J.; et al. Living near Main Streets and Respiratory Symptoms in Adults the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults. Am. J. Epidemiol. 2007, 164, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Alam, M.S.; McNabola, A. Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: Estimation of PM10 concentrations on a daily basis. J. Air Waste Manag. Assoc. 2015, 65, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Kim, E.; Park, H.; Park, E.A.; Hong, Y.-C.; Ha, M.; Kim, H.-C.; Ha, E.-H. Particulate matter and early childhood body weight. Environ. Int. 2016, 94, 591–599. [Google Scholar] [CrossRef]
- Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201–206. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Miri, M.; Ghassoun, Y.; Dovlatabadi, A.; Ebrahimnejad, A.; Löwner, M.-O. Estimate annual and seasonal PM1, PM2.5 and PM10 concentrations using land use regression model. Ecotoxicol. Environ. Saf. 2019, 174, 137–145. [Google Scholar] [CrossRef]
- Wrenn, D.H.; Sam, A.G. Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change. Reg. Sci. Urban Econ. 2014, 44, 60–74. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Briggs, D.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Reeuwijk, H.; Smallbone, K.; Veen, A. Mapping Urban Air Pollution Using GIS: A Regression-Based Approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Dons, E.; Van Poppel, M.; Kochan, B.; Wets, G.; Int Panis, L. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmos. Environ. 2013, 74, 237–246. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, C.; Gulliver, J.; Wills, J.; Elliott, P.; Kingham, S.; Smallbone, K. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 2000, 253, 151–167. [Google Scholar] [CrossRef]
- Gulliver, J.; Briggs, D.J. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ. Res. 2005, 97, 10–25. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in Montréal, Canada, with a land-use regression model. J. Air Waste Manag. Assoc. 2005, 55, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hystad, P.; Setton, E.; Cervantes-Larios, A.; Poplawski, K.; Deschenes, S.; Martin, R.; Van Donkelaar, A.; Atari, O.; Demers, P.A. Canada Wide Land-use Regression Models Created from Fixed Site Monitors and Validated with Independent City-specific Measurements. Epidemiology 2011, 22, S214. [Google Scholar] [CrossRef]
- Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. National satellite-based land-use regression: NO2 in the United States. Environ. Sci. Technol. 2011, 45, 4407–4414. [Google Scholar] [CrossRef]
- Ross, Z.; English, P.B.; Scalf, R.; Gunier, R.; Smorodinsky, S.; Wall, S.; Jerrett, M. Nitrogen dioxide prediction in Southern California using land use regression modeling: Potential for environmental health analyses. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 106–114. [Google Scholar] [CrossRef]
- Amini, H.; Taghavi-Shahri, S.M.; Henderson, S.B.; Naddafi, K.; Nabizadeh, R.; Yunesian, M. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci. Total. Environ. 2014, 488, 343–353. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Tsuda, T.; Doi, H. Application of land use regression to regulatory air quality data in Japan. Sci. Total. Environ. 2009, 407, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Land Use Impacts on Particulate Matter Levels in Seoul, South Korea: Comparing High and Low Seasons. Land 2020, 9, 142. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Stedman, J.R.; Vincent, K.J.; Campbell, G.W.; Goodwin, J.W.L.; Downing, C.E.H. New high resolution maps of estimated background ambient NOx and NO2 concentrations in the U.K. Atmos. Environ. 1997, 31, 3591–3602. [Google Scholar] [CrossRef]
- Arain, M.A.; Blair, R.; Finkelstein, N.; Brook, J.R.; Sahsuvaroglu, T.; Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 2007, 41, 3453–3464. [Google Scholar] [CrossRef]
- Blanchard, C.L.; Tanenbaum, S.; Hidy, G.M. Spatial and temporal variability of air pollution in Birmingham, Alabama. Atmos. Environ. 2014, 89, 382–391. [Google Scholar] [CrossRef]
- AirKorea. Available online: https://www.airkorea.or.kr (accessed on 16 September 2021).
- “Asian Dust” Wikipedia. Available online: https://en.wikipedia.org/wiki/Asian_Dust (accessed on 16 September 2021).
- “Siberian High” Wikipedia. Available online: https://en.wikipedia.org/wiki/Siberian_High (accessed on 16 September 2021).
- “North Pacific High” Wikipedia. Available online: https://en.wikipedia.org/wiki/North_Pacific_High (accessed on 16 September 2021).
- Lee, S.; Ho, C.-H.; Lee, Y.G.; Choi, H.-J.; Song, C.-K. Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period 16–20 October 2008. Atmos. Environ. 2013, 77, 430–439. [Google Scholar] [CrossRef]
- Joint Research Project for Long–Range Transboundary Air Pollutants in Northeast Asia. In Summary Report of the 4th Stage (2013–2017) LTP Project; Research Report to National Institute of Environmental Research: Incheon, Korea, 2019.
- Park, S.; Kim, M.; Im, J. Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data. Korean J. Remote Sens. 2021, 37, 321–335. [Google Scholar]
- Ryu, H.-W.; Jang, D.-H. A Study on the Conformity Assessment of GWR Model through Analyzing the Correlation between Fine Particles(PM10) Concentration and Land-cover. J. Assoc. Korean Photo Geogr. 2019, 29, 73–84. [Google Scholar] [CrossRef]
- Krynicka, J.; Drzeniecka-Osiadacz, A. Analysis of Variability in PM 10 Concentration in the Wrocław Agglomeration. Pol. J. Environ. Stud. 2013, 22, 1091–1099. [Google Scholar]
- Honderich, T. The Oxford Companion to Philosophy; Oxford University Press: Oxford, UK, 2005; p. 703. [Google Scholar]
- Babbie, E. The Practice of Social Research, 12th ed.; Cengage Learning: Boston, MA, USA, 2009; p. 625. [Google Scholar]
- Gu, P.; Li, H.Z.; Ye, Q.; Robinson, E.S.; Apte, J.S.; Robinson, A.L.; Presto, A.A. Intracity Variability of Particulate Matter Exposure Is Driven by Carbonaceous Sources and Correlated with Land-Use Variables. Environ. Sci. Technol. 2018, 52, 11545–11554. [Google Scholar] [CrossRef] [PubMed]
- KOSIS. Available online: https://kostat.go.kr/ (accessed on 16 September 2021).
- KMA. Available online: https://www.weather.go.kr/ (accessed on 16 September 2021).
- R Core Team: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. Mol. Sci. 2013, 1, 90–95. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley/Los Angeles, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- D’Agostino, R.B. Goodness-of-Fit-Techniques; CRC Press: New York, NY, USA, 1986; Volume 68. [Google Scholar]
- Thode, H.C. Testing for Normality; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Royston, P. A pocket-calculator algorithm for the shapiro-francia test for non-normality: An application to medicine. Stat. Med. 1993, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Hollander, M.; Wolfe, D. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Ewing, R.H.; Clemente, O.; Neckerman, K.M.; Purciel-Hill, M.; Quinn, J.W.; Rundle, A. Measuring Urban Design: Metrics for Livable Places; Springer: Berlin/Heidelberg, Germany, 2013; Volume 200. [Google Scholar]
- Hamidi, S.; Ewing, R.; Preuss, I.; Dodds, A. Measuring sprawl and its impacts: An update. J. Plan. Educ. Res. 2015, 35, 35–50. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, K.-H. The Effects of Compact City Planning Strategies on Commuting Distance of Differenct Income Levels: Focused on Seoul, Korea. J. Urban. Des. Insitute Korea 2011, 12, 55–70. [Google Scholar]
- Kim, H.; Ahn, K.-H.; Kwon, Y.-S. The Effects of Residential Environmental Factors on Personal Walking Probability—Focused on Seoul. J. Urban. Des. Insitute Korea 2014, 15, 5–18. [Google Scholar]
- Southworth, M. Walkable suburbs?: An evaluation of neotraditional communities at the urban edge. J. Am. Plan. Assoc. 1997, 63, 28–44. [Google Scholar] [CrossRef]
- Gelman, A.; Hill, J.; Vehtari, A. Regression and Other Stories; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Gujarati, D.N.; Porter, D.C.; Gunasekar, S. Basic Econometrics; Tata McGraw-Hill Education: Boston/NewYork, NY, USA, 2012. [Google Scholar]
- CNU. Charter of the new urbanism. Bull. Sci. Technol. Soc. 2000, 20, 339–341. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Shiell, A. In search of causality: A systematic review of the relationship between the built environment and physical activity among adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
Variables | Source | |
---|---|---|
Density | Population | KOSIS(2017) |
Building Floor area | Road Name Address development system(2018) from Ministry of the Interior and Safety | |
Single Land use | Residential building area | |
Business building area | ||
Commercial building area | ||
Industrial building area | ||
Parks and green area | ||
Mixed land use | Entropy index | |
Road | Road area |
Variables | Measurement | Unit | Source | ||
---|---|---|---|---|---|
Dependent Variables | Daily PM10 concentration | Average concentration of PM10 measured every hour | µg/m3 | Korean AQMS data from AirKorea | |
Daily PM10 variation | Variation of PM10 concentration measured every hour | - | |||
Independent Variables | Land-use features | Business area | Predicted Type by K-means Clustering Analysis | dummy | National Spatial Information Portal from Ministry of Land, Infrastructure and Transport/Road Name Address development system from Ministry of the Interior and Safety |
Industrial area | |||||
Commercial area | |||||
Mixed area | |||||
Residential with Low density | |||||
Residential with High density | |||||
Green area (reference) | |||||
Seasonal features | Spring | March, April, May | dummy | Korean AQMS data from AirKorea | |
Summer | June, July, August | ||||
fall | September, October, November | ||||
Winter (reference) | December, January, February | ||||
Macro or Microclimate features | Temperature | Average of hourly recorded values per day | °C | Korean AWS data from KMA | |
Precipitation | mm | ||||
Windspeed | m/s | ||||
PM2.5 from overseas | µg/m3 | Korean AQMS data from AirKorea | |||
Control Variables | Regional features | Seoul (reference) | dummy | Road Name Address development system from Ministry of the Interior and Safety | |
Incheon | |||||
Daejeon | |||||
Daegu | |||||
Gwangju | |||||
Ulsan | |||||
Busan |
Overall | C1 | C2 | C3 | C4 | C5 | C6 | C7 | Normality and Kruskal–Wallis Test | |
---|---|---|---|---|---|---|---|---|---|
Population | 17.706 | 8.611 | 11.991 | 1.588 | 10.343 | 23.710 | 12.814 | 27.315 | (A.D.) A = 0.70768, p-value = 0.06333/ (S.F.) W = 0.97615, p-value = 0.01769/ (K.W.) chi-squared = 83.727, p-value ≤ 0.0001 |
Building Floor Area | 0.2204 | 0.2045 | 0.1049 | 0.2368 | 0.3244 | 0.2562 | 0.1140 | 0.2617 | (A.D.) A = 1.7413, p-value ≤ 0.001/ (K.W.) chi-squared = 85.631, p-value ≤ 0.0001 |
Residential Area | 0.0983 | 0.0391 | 0.0515 | 0.0086 | 0.0456 | 0.1258 | 0.0606 | 0.1836 | (A.D.) A = 0.94099, p-value = 0.01671/ (K.W.) chi-squared = 42.732, p-value ≤ 0.0001 |
Business Area | 0.0248 | 0.0828 | 0.0204 | 0.0066 | 0.0386 | 0.0311 | 0.0144 | 0.0160 | (A.D.) A = 3.8835, p-value ≤ 0.0001/ (K.W.) chi-squared = 66.993, p-value ≤ 0.0001 |
Commercial Area | 0.0596 | 0.0548 | 0.0255 | 0.0075 | 0.1829 | 0.0785 | 0.0265 | 0.0452 | (A.D.) A = 4.8815, p-value ≤ 0.0001/ (K.W.) chi-squared = 95.102, p-value ≤ 0.0001 |
Industrial Area | 0.0377 | 0.0277 | 0.0076 | 0.2140 | 0.0573 | 0.0209 | 0.0126 | 0.0168 | (A.D.) A = 26.082, p-value ≤ 0.0001/ (K.W.) chi-squared = 58.329, p-value ≤ 0.0001 |
Park and Green Area | 0.0476 | 0.0359 | 0.2448 | 0.0193 | 0.0301 | 0.0127 | 0.0414 | 0.0443 | (A.D.) A = 15.919, p-value ≤ 0.0001/ (K.W.) chi-squared = 42.732, p-value ≤ 0.0001 |
Entropy Index | 0.3926 | 0.4587 | 0.4478 | 0.0606 | 0.4197 | 0.4621 | 0.4377 | 0.3383 | (A.D.) A = 8.5061, p-value ≤ 0.0001/ (K.W.) chi-squared = 76.419, p-value ≤ 0.0001 |
Road Area | 0.1670 | 0.2061 | 0.1212 | 0.0942 | 0.2212 | 0.1986 | 0.1301 | 0.1705 | (A.D.) A = 0.5647, p-value = 0.1412/ (S.F.) W = 0.9842, p-value = 0.1027/ (K.W.) chi-squared = 74.632, p-value ≤ 0.0001 |
Cluster Type | Average of Daily PM10 | Variance of Daily PM10 | n | |
---|---|---|---|---|
C1 | Business Areas | 43.6 | 253.1 | 2190 |
C2 | Parks and Green Areas | 38.9 | 206.7 | 4324 |
C3 | Industrial Areas | 44.4 | 280.4 | 3834 |
C4 | Commercial Areas | 43.6 | 258.0 | 4380 |
C5 | Mixed areas | 41.5 | 240.7 | 15,029 |
C6 | Residential Areas with Low density | 38.8 | 206.4 | 8057 |
C7 | Residential Areas with High density | 41.9 | 244.2 | 10,220 |
Variables | min | mean | max | sd | n | |
---|---|---|---|---|---|---|
Dependent variables | Average of Daily PM10 | 3.042 | 41.449 | 41.449 | 23.370 | 46,370 |
Variation of Daily PM10 | 0.042 | 237.9 | 25,549 | 799.0 | 46,366 | |
Land-use features | Business area | 0.000 | 0.046 | 1.000 | 0.209 | 2190 |
Industrial area | 0.000 | 0.080 | 1.000 | 0.271 | 3834 | |
Commercial area | 0.000 | 0.091 | 1.000 | 0.288 | 4380 | |
Mixed area | 0.000 | 0.313 | 1.000 | 0.464 | 15,029 | |
Residential with Low density | 0.000 | 0.168 | 1.000 | 0.374 | 8057 | |
Residential with High density | 0.000 | 0.213 | 1.000 | 0.409 | 10,220 | |
Green area (reference) | 0.000 | 0.090 | 1.000 | 0.286 | 4324 | |
Seasonal features | Spring | 0.000 | 0.249 | 1.000 | 0.432 | 11,948 |
Summer | 0.000 | 0.252 | 1.000 | 0.434 | 12,099 | |
Fall | 0.000 | 0.254 | 1.000 | 0.435 | 12,188 | |
Winter | 0.000 | 0.246 | 1.000 | 0.430 | 11,799 | |
Macro or Microclimate features | Temperature | −16.60 | 13.53 | 34.40 | 10.50 | 47,650 |
Precipitation | 0.000 | 3.679 | 249.5 | 13.075 | 47,908 | |
Wind speed | 0.000 | 1.874 | 14.900 | 1.112 | 47,627 | |
PM2.5 from overseas | 3.292 | 17.293 | 108.3 | 11.844 | 48,034 | |
Regional features | Seoul (reference) | 0.000 | 0.298 | 1.000 | 0.457 | 14,296 |
Incheon | 0.000 | 0.151 | 1.000 | 0.358 | 7244 | |
Daejeon | 0.000 | 0.078 | 1.000 | 0.268 | 3736 | |
Daegu | 0.000 | 0.112 | 1.000 | 0.315 | 5357 | |
Gwangju | 0.000 | 0.068 | 1.000 | 0.252 | 3285 | |
Ulsan | 0.000 | 0.127 | 1.000 | 0.333 | 6098 | |
Busan | 0.000 | 0.167 | 1.000 | 0.373 | 8018 | |
Full sample | 48,034 |
Variables | Estimate | Std. Error | t-Value | Pr (>|t|) |
---|---|---|---|---|
Cluster Type (reference: Parks and Green areas) | ||||
Business areas | 0.138 | 0.012 | 11.522 | <0.001 *** |
Industrial areas | 0.133 | 0.010 | 12.748 | <0.001 *** |
Commercial areas | 0.115 | 0.010 | 11.398 | <0.001 *** |
Mixed areas | 0.045 | 0.008 | 5.685 | <0.001 *** |
Low-density residential areas | 0.000 | 0.009 | 0.038 | 0.97 |
High-density residential areas | 0.057 | 0.008 | 6.742 | <0.001 *** |
Season dummy (reference: winter) | ||||
Spring | 0.087 | 0.008 | 10.594 | <0.001 *** |
Summer | −0.171 | 0.012 | −14.101 | <0.001 *** |
Fall | −0.141 | 0.009 | −16.531 | <0.001 *** |
Microclimate features | ||||
Temperature | −0.005 | 0.000 | −11.375 | <0.001 *** |
Rain (mm) | −0.010 | 0.000 | −59.849 | <0.001 *** |
Wind | −0.138 | 0.002 | −61.598 | <0.001 *** |
PM2.5 from overseas | 0.018 | 0.000 | 95.848 | <0.001 *** |
Region dummy (reference: Seoul) | ||||
Incheon | −0.014 | 0.007 | −2.015 | 0.043 ** |
Daejeon | 0.008 | 0.009 | 0.871 | 0.383 |
Daegu | 0.061 | 0.008 | 7.977 | <0.001 *** |
Gwangju | 0.001 | 0.009 | 0.158 | 0.874 |
Ulsan | 0.18 | 0.008 | 23.215 | <0.001 *** |
Busan | 0.156 | 0.007 | 23.351 | <0.001 *** |
Intercept | 3.556 | 0.010 | 343.178 | <0.001 *** |
Variables | Estimate | Std. Error | t-Value | Pr (>|t|) |
---|---|---|---|---|
Cluster Type (reference: Parks and Green areas) | ||||
Business areas | 0.236 | 0.029 | 8.014 | <0.001 *** |
Industrial areas | 0.348 | 0.026 | 13.558 | <0.001 *** |
Commercial areas | 0.241 | 0.025 | 9.74 | <0.001 *** |
Mixed areas | 0.126 | 0.019 | 6.468 | <0.001 *** |
Low-density residential areas | 0.016 | 0.022 | 0.718 | 0.473 |
High-density residential areas | 0.062 | 0.021 | 2.952 | 0.003 ** |
Season dummy (reference: winter) | ||||
Spring | 0.405 | 0.020 | 20.17 | <0.001 *** |
Summer | −0.272 | 0.030 | −9.106 | <0.001 *** |
Fall | −0.162 | 0.021 | −7.74 | <0.001 *** |
Microclimate features | ||||
Temperature | −0.009 | 0.001 | −8.873 | <0.001 *** |
Rain (mm) | −0.003 | 0.000 | −7.461 | <0.001 *** |
Wind | −0.178 | 0.005 | −32.457 | <0.001 *** |
PM2.5 from overseas | 0.035 | 0.000 | 75.589 | <0.001 *** |
Region dummy (reference: Seoul) | ||||
Incheon | −0.129 | 0.017 | −7.446 | <0.001 *** |
Daejeon | −0.137 | 0.021 | −6.42 | <0.001 *** |
Daegu | 0.140 | 0.019 | 7.452 | <0.001 *** |
Gwangju | −0.140 | 0.022 | −6.401 | <0.001 *** |
Ulsan | 0.214 | 0.020 | 10.876 | <0.001 *** |
Busan | 0.063 | 0.016 | 3.847 | <0.001 *** |
Intercept | 4.243 | 0.025 | 166.509 | <0.001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Hong, S. Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea. Land 2022, 11, 23. https://doi.org/10.3390/land11010023
Kim H, Hong S. Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea. Land. 2022; 11(1):23. https://doi.org/10.3390/land11010023
Chicago/Turabian StyleKim, Heechul, and Sungjo Hong. 2022. "Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea" Land 11, no. 1: 23. https://doi.org/10.3390/land11010023
APA StyleKim, H., & Hong, S. (2022). Relationship between Land-Use Type and Daily Concentration and Variability of PM10 in Metropolitan Cities: Evidence from South Korea. Land, 11(1), 23. https://doi.org/10.3390/land11010023