An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021
Abstract
:1. Introduction
2. Remote Sensing in Peatland Research
2.1. Temporal and Spatial Pattern of Using RS in Peatland Studies
- Satellite remote sensing (long-range)—the detail level and data availability depend on the selected Earth observation system. In generally available systems, the spatial resolution varies between 10 and 100 m. Their cyclicality also distinguishes the most popular satellite remote sensing systems (Landsat and Sentinel) because every land area on the Earth’s surface is monitored at regular intervals (3–16 days);
- Medium-range (Airborne) and close-range remote sensing (UAV— unmanned aerial vehicle, such as a drone). The intensive development and accessibility of unmanned aerial vehicles (UAV) allows for their widespread use in monitoring the natural environment. These images feature a very high spatial resolution (1–10 cm) and enable a high repeatability;
2.2. RS Analytical Methods Used in Peatland Research
3. Discussion
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making; International Peat Society: Jyväskylä, Finland; International Mire Conservation Group: Greifswald, Germany, 2002; ISBN 978-951-97744-8-0. [Google Scholar]
- Minasny, B.; Berglund, Ö.; Connolly, J.; Hedley, C.; de Vries, F.; Gimona, A.; Kempen, B.; Kidd, D.; Lilja, H.; Malone, B.; et al. Digital Mapping of Peatlands—A Critical Review. Earth-Sci. Rev. 2019, 196, 102870. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Ghajarnia, N.; Destouni, G.; Thorslund, J.; Kalantari, Z.; Åhlén, I.; Anaya-Acevedo, J.A.; Blanco-Libreros, J.F.; Borja, S.; Chalov, S.; Chalova, A.; et al. Data for Wetlandscapes and Their Changes around the World. Earth Syst. Sci. Data 2020, 12, 1083–1100. [Google Scholar] [CrossRef]
- Loveland, T.R.; Brown, J.; Ohlen, D.; Reed, B.; Zhu, Z.; Yang, L.; Howard, S.; Hall, F.G.; Collatz, G.J.; Meeson, B.W.; et al. ISLSCP II IGBP DISCover and SiB Land Cover, 1992–1993; ORNL DAAC: Oak Ridge, TN, USA, 2009. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterisation of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Hansen, M.C.; Sohlberg, R.; Defries, R.S.; Townshend, J.R.G. Global Land Cover Classification at 1 Km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. Mapping Salt-Marsh Vegetation by Multispectral and Hyperspectral Remote Sensing. Remote Sens. Environ. 2006, 105, 54–67. [Google Scholar] [CrossRef]
- Yoshino, K.; Kawaguchi, S.; Kanda, F.; Kushida, K.; Tsai, F. Very High Resolution Plant Community Mapping at High Moor, Kushiro Wetland. Photogramm. Eng. Remote Sens. 2014, 80, 895–905. [Google Scholar] [CrossRef]
- Rampi, L.P.; Knight, J.F.; Pelletier, K.C. Wetland Mapping in the Upper Midwest United States. Photogramm. Eng. Remote Sens. 2014, 80, 439–448. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Rundquist, D.C.; Narumalani, S.; Narayanan, R.M. A Review of Wetlands Remote Sensing and Defining New Considerations. Remote Sens. Rev. 2001, 20, 207–226. [Google Scholar] [CrossRef]
- Dronova, I. Object-Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef] [Green Version]
- Rydin, H.; Jeglum, J.K.; Bennett, K.D. The Biology of Peatlands, 2nd ed.; Biology of habitats; Oxford University Press: Oxford, UK, 2013; ISBN 978-0-19-960299-5. [Google Scholar]
- Neta, T.; Cheng, Q.; Bello, R.L.; Hu, B. Lichens and Mosses Moisture Content Assessment through High-Spectral Resolution Remote Sensing Technology: A Case Study of the Hudson Bay Lowlands, Canada. Hydrol. Process. 2010, 24, 2617–2628. [Google Scholar] [CrossRef]
- Frick, A.; Steffenhagen, P.; Zerbe, S.; Timmermann, T.; Schulz, K. Monitoring of the Vegetation Composition in Rewetted Peatland with Iterative Decision Tree Classification of Satellite Imagery. Photogramm. Fernerkund. Geoinf. 2011, 3, 109–122. [Google Scholar] [CrossRef]
- O’Connor, F.M.; Boucher, O.; Gedney, N.; Jones, C.D.; Folberth, G.A.; Coppell, R.; Friedlingstein, P.; Collins, W.J.; Chappellaz, J.; Ridley, J.; et al. Possible Role of Wetlands, Permafrost, and Methane Hydrates in the Methane Cycle under Future Climate Change: A Review. Rev. Geophys. 2010, 48, RG4005. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Soffer, R.; Ifimov, G.; Leblanc, G.; Schaaf, E.S.; Lucanus, O. Evaluation of Phenospectral Dynamics with Sentinel-2A Using a Bottom-up Approach in a Northern Ombrotrophic Peatland. Remote Sens. Environ. 2018, 216, 544–560. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Endres, S.; Powell, R.; Battaglia, M.J.; Benscoter, B.; Turetsky, M.; Kasischke, E.S.; Banda, E. Mapping Boreal Peatland Ecosystem Types from Multitemporal Radar and Optical Satellite Imagery. Can. J. For. Res. 2017, 47, 545–559. [Google Scholar] [CrossRef]
- McPartland, M.Y.; Kane, E.S.; Falkowski, M.J.; Kolka, R.; Turetsky, M.R.; Palik, B.; Montgomery, R.A. The Response of Boreal Peatland Community Composition and NDVI to Hydrologic Change, Warming, and Elevated Carbon Dioxide. Glob. Chang. Biol. 2019, 25, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.; Holden, N.M.; Connolly, J.; Seaquist, J.W.; Ward, S.M. Detecting Recent Disturbance on Montane Blanket Bogs in the Wicklow Mountains, Ireland Using the MODIS Enhanced Vegetation Index. Int. J. Remote Sens. 2011, 32, 2377–2393. [Google Scholar] [CrossRef]
- Kalacska, M.; Arroyo-Mora, J.P.; Soffer, R.J.; Roulet, N.T.; Moore, T.R.; Humphreys, E.; Leblanc, G.; Lucanus, O.; Inamdar, D. Estimating Peatland Water Table Depth and Net Ecosystem Exchange: A Comparison between Satellite and Airborne Imagery. Remote Sens. 2018, 10, 687. [Google Scholar] [CrossRef] [Green Version]
- Torabi Haghighi, A.; Menberu, M.W.; Darabi, H.; Akanegbu, J.; Kløve, B. Use of Remote Sensing to Analyse Peatland Changes after Drainage for Peat Extraction. Land Degrad. Dev. 2018, 29, 3479–3488. [Google Scholar] [CrossRef]
- Lees, K.J.; Artz, R.R.E.; Chandler, D.; Aspinall, T.; Boulton, C.A.; Buxton, J.; Cowie, N.R.; Lenton, T.M. Using Remote Sensing to Assess Peatland Resilience by Estimating Soil Surface Moisture and Drought Recovery. Sci. Total Environ. 2021, 761, 143312. [Google Scholar] [CrossRef]
- Harris, A.; Dash, J. A New Approach for Estimating Northern Peatland Gross Primary Productivity Using a Satellite-Sensor-Derived Chlorophyll Index. J. Geophys. Res. Biogeosci. 2011, 116, G04002. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.D.; Kimball, J.S.; Parmentier, F.J.W.; Sachs, T.; Rinne, J.; Zona, D.; Oechel, W.; Tagesson, T.; Jackowicz-Korczyński, M.; Aurela, M. A Satellite Data Driven Biophysical Modeling Approach for Estimating Northern Peatland and Tundra CO2 and CH4 Fluxes. Biogeosciences 2014, 11, 1961–1980. [Google Scholar] [CrossRef] [Green Version]
- Junttila, S.; Kelly, J.; Kljun, N.; Aurela, M.; Klemedtsson, L.; Lohila, A.; Nilsson, M.B.; Rinne, J.; Tuittila, E.-S.; Vestin, P.; et al. Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sens. 2021, 13, 818. [Google Scholar] [CrossRef]
- Prošek, J.; Šímová, P. UAV for Mapping Shrubland Vegetation: Does Fusion of Spectral and Vertical Information Derived from a Single Sensor Increase the Classification Accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. [Google Scholar] [CrossRef]
- Middleton, M.; Närhi, P.; Arkimaa, H.; Hyvönen, E.; Kuosmanen, V.; Treitz, P.; Sutinen, R. Ordination and Hyperspectral Remote Sensing Approach to Classify Peatland Biotopes along Soil Moisture and Fertility Gradients. Remote Sens. Environ. 2012, 124, 596–609. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef] [Green Version]
- Räsänen, A.; Juutinen, S.; Kalacska, M.; Aurela, M.; Heikkinen, P.; Mäenpää, K.; Rimali, A.; Virtanen, T. Peatland Leaf-Area Index and Biomass Estimation with Ultra-High Resolution Remote Sensing. GISci. Remote Sens. 2020, 57, 943–964. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Tuittila, E.-S.; Aurela, M.; Virtanen, T. Comparing Ultra-High Spatial Resolution Remote-Sensing Methods in Mapping Peatland Vegetation. J. Veg. Sci. 2019, 30, 1016–1026. [Google Scholar] [CrossRef]
- Torbick, N.; Persson, A.; Olefeldt, D.; Frolking, S.; Salas, W.; Hagen, S.; Crill, P.; Li, C. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire. Remote Sens. 2012, 4, 1974–1994. [Google Scholar] [CrossRef] [Green Version]
- Merchant, M.A.; Adams, J.R.; Berg, A.A.; Baltzer, J.L.; Quinton, W.L.; Chasmer, L.E. Contributions of C-Band SAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1467–1482. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.J.; Boyd, D.S.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sens. 2018, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Karlson, M.; Gålfalk, M.; Crill, P.; Bousquet, P.; Saunois, M.; Bastviken, D. Delineating Northern Peatlands Using Sentinel-1 Time Series and Terrain Indices from Local and Regional Digital Elevation Models. Remote Sens. Environ. 2019, 231, 111252. [Google Scholar] [CrossRef]
- Bechtold, M.; De Lannoy, G.J.M.; Reichle, R.H.; Roose, D.; Balliston, N.; Burdun, I.; Devito, K.; Kurbatova, J.; Strack, M.; Zarov, E.A. Improved Groundwater Table and L-Band Brightness Temperature Estimates for Northern Hemisphere Peatlands Using New Model Physics and SMOS Observations in a Global Data Assimilation Framework. Remote Sens. Environ. 2020, 246, 111805. [Google Scholar] [CrossRef]
- Lees, K.J.; Khomik, M.; Quaife, T.; Clark, J.M.; Hill, T.; Klein, D.; Ritson, J.; Artz, R.R.E. Assessing the Reliability of Peatland GPP Measurements by Remote Sensing: From Plot to Landscape Scale. Sci. Total Environ. 2021, 766, 142613. [Google Scholar] [CrossRef]
- Akumu, C.E.; McLaughlin, J.W. Modeling Peatland Carbon Stock in a Delineated Portion of the Nayshkootayaow River Watershed in Far North, Ontario Using an Integrated GIS and Remote Sensing Approach. Catena 2014, 121, 297–306. [Google Scholar] [CrossRef]
- Dissanska, M.; Bernier, M.; Payette, S. Object-Based Classification of Very High Resolution Panchromatic Images for Evaluating Recent Change in the Structure of Patterned Peatlands. Can. J. Remote Sens. 2017, 35, 189–215. [Google Scholar] [CrossRef]
- White, L.; Millard, K.; Banks, S.; Richardson, M.; Pasher, J.; Duffe, J. Moving to the RADARSAT Constellation Mission: Comparing Synthesized Compact Polarimetry and Dual Polarimetry Data with Fully Polarimetric RADARSAT-2 Data for Image Classification of Peatlands. Remote Sens. 2017, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Millard, K.; Thompson, D.K.; Parisien, M.-A.; Richardson, M. Soil Moisture Monitoring in a Temperate Peatland Using Multi-Sensor Remote Sensing and Linear Mixed Effects. Remote Sens. 2018, 10, 903. [Google Scholar] [CrossRef] [Green Version]
- Burdun, I.; Bechtold, M.; Sagris, V.; Lohila, A.; Humphreys, E.; Desai, A.R.; Nilsson, M.B.; De Lannoy, G.; Mander, Ü. Satellite Determination of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels of A SWIR-Based Moisture Index. Remote Sens. 2020, 12, 2936. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Münchberger, W.; Knoth, C.; Blodau, C.; Nieberding, F.; Prinz, T.; Pancotto, V.A.; Kleinebecker, T. High-Resolution Classification of South Patagonian Peat Bog Microforms Reveals Potential Gaps in Up-Scaled CH4 Fluxes by Use of Unmanned Aerial System (UAS) and CIR Imagery. Remote Sens. 2016, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Bennie, J.J.; Milton, E.J.; Hughes, P.D.M.; Lindsay, R.; Meade, R. Combining LiDAR and IKONOS Data for Eco-Hydrological Classification of an Ombrotrophic Peatland. J. Environ. Qual. 2010, 39, 260–273. [Google Scholar] [CrossRef]
- O’Connell, J.; Connolly, J.; Holden, N.M. A Monitoring Protocol for Vegetation Change on Irish Peatland and Heath. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 130–142. [Google Scholar] [CrossRef]
- Crichton, K.A.; Anderson, K.; Bennie, J.J.; Milton, E.J. Characterizing Peatland Carbon Balance Estimates Using Freely Available Landsat ETM+ Data. Ecohydrology 2015, 8, 493–503. [Google Scholar] [CrossRef]
- Harris, A.; Charnock, R.; Lucas, R.M. Hyperspectral Remote Sensing of Peatland Floristic Gradients. Remote Sens. Environ. 2015, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.; Holden, N.M. Detecting Peatland Drains with Object Based Image Analysis and Geoeye-1 Imagery. Carbon Balance Manag. 2017, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatis, N.; Anderson, K.; Grand-Clement, E.; Luscombe, D.J.; Hartley, I.P.; Smith, D.; Brazier, R.E. Evaluating MODIS Vegetation Products Using Digital Images for Quantifying Local Peatland CO2 Gas Fluxes. Remote Sens. Ecol. Conserv. 2017, 3, 217–231. [Google Scholar] [CrossRef]
- Cabezas, J.; Galleguillos, M.; Valdés, A.; Fuentes, J.P.; Pérez, C.; Perez-Quezada, J.F. Evaluation of Impacts of Management in an Anthropogenic Peatland Using Field and Remote Sensing Data. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Yager, K.; Valdivia, C.; Slayback, D.; Jimenez, E.; Meneses, R.I.; Palabral, A.; Bracho, M.; Romero, D.; Hubbard, A.; Pacheco, P.; et al. Socio-Ecological Dimensions of Andean Pastoral Landscape Change: Bridging Traditional Ecological Knowledge and Satellite Image Analysis in Sajama National Park, Bolivia. Reg. Environ. Chang. 2019, 19, 1353–1369. [Google Scholar] [CrossRef]
- Anderson, T.G.; Christie, D.A.; Chávez, R.O.; Olea, M.; Anchukaitis, K.J. Spatiotemporal Peatland Productivity and Climate Relationships Across the Western South American Altiplano. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005994. [Google Scholar] [CrossRef]
- Erudel, T.; Fabre, S.; Houet, T.; Mazier, F.; Briottet, X. Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sens. 2017, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, M.A.; Vozbrannaya, A.E.; Sirin, A.A.; Maslov, A.A. Capabilities of Multispectral Satellite Data in an Assessment of the Status of Abandoned Fire Hazardous and Rewetting Peat Extraction Lands. Izv. Atmos. Ocean. Phys. 2017, 53, 1072–1080. [Google Scholar] [CrossRef]
- Asmuss, T.; Bechtold, M.; Tiemeyer, B. On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sens. 2019, 11, 1659. [Google Scholar] [CrossRef] [Green Version]
- Bandopadhyay, S.; Rastogi, A.; Cogliati, S.; Rascher, U.; Gąbka, M.; Juszczak, R. Can Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging Spectroscopy Data. Remote Sens. 2021, 13, 2545. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Rascher, U.; Rademske, P.; Schickling, A.; Cogliati, S.; Julitta, T.; Mac Arthur, A.; Hueni, A.; Tomelleri, E.; et al. Hyplant-Derived Sun-Induced Fluorescence—A New Opportunity to Disentangle Complex Vegetation Signals from Diverse Vegetation Types. Remote Sens. 2019, 11, 1691. [Google Scholar] [CrossRef] [Green Version]
- Sirin, A.A.; Medvedeva, M.A.; Makarov, D.A.; Maslov, A.A.; Joosten, H. Multispectral Satellite Based Monitoring of Land Cover Change and Associated Fire Reduction after Large-Scale Peatland Rewetting Following the 2010 Peat Fires in Moscow Region (Russia). Ecol. Eng. 2020, 158, 106044. [Google Scholar] [CrossRef]
- Zhang, C.; Comas, X.; Brodylo, D. A Remote Sensing Technique to Upscale Methane Emission Flux in a Subtropical Peatland. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG006002. [Google Scholar] [CrossRef]
- Miettinen, J.; Liew, S.C. Degradation and Development of Peatlands in Peninsular Malaysia and in the Islands of Sumatra and Borneo since 1990. Land Degrad. Dev. 2010, 21, 285–296. [Google Scholar] [CrossRef]
- Wijaya, A.; Reddy Marpu, P.; Gloaguen, R. Discrimination of Peatlands in Tropical Swamp Forests Using Dual-Polarimetric SAR and Landsat ETM Data. Int. J. Image Data Fusion 2010, 1, 257–270. [Google Scholar] [CrossRef]
- Jaenicke, J.; Englhart, S.; Siegert, F. Monitoring the Effect of Restoration Measures in Indonesian Peatlands by Radar Satellite Imagery. J. Environ. Manag. 2011, 92, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, J.; Hooijer, A.; Wang, J.; Shi, C.; Liew, S.C. Peatland Degradation and Conversion Sequences and Interrelations in Sumatra. Reg. Environ. Chang. 2012, 12, 729–737. [Google Scholar] [CrossRef]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An Expert System Model for Mapping Tropical Wetlands and Peatlands Reveals South America as the Largest Contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hribljan, J.A.; Suarez, E.; Bourgeau-Chavez, L.; Endres, S.; Lilleskov, E.A.; Chimbolema, S.; Wayson, C.; Serocki, E.; Chimner, R.A. Multidate, Multisensor Remote Sensing Reveals High Density of Carbon-Rich Mountain Peatlands in the Páramo of Ecuador. Glob. Chang. Biol. 2017, 23, 5412–5425. [Google Scholar] [CrossRef] [PubMed]
- Novresiandi, D.A.; Nagasawa, R. Polarimetric Synthetic Aperture Radar Application for Tropical Peatlands Classification: A Case Study in Siak River Transect, Riau Province, Indonesia. J. Appl. Remote Sens. 2017, 11, 016040. [Google Scholar] [CrossRef]
- Marshall, C.; Large, D.J.; Athab, A.; Evers, S.L.; Sowter, A.; Marsh, S.; Sjögersten, S. Monitoring Tropical Peat Related Settlement Using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol. 2018, 244, 57–65. [Google Scholar] [CrossRef]
- Sencaki, D.B.; Gandharum, A.; Dayuf, M.J.; Sumargana, L. Peatland Delineation Using Remote Sensing Data in Sumatera Island. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (Agers), Jakarta, Indonesia, 18–19 September 2018; IEEE: New York, NY, USA, 2018; pp. 7–12. [Google Scholar]
- Widyatmanti, W.; Umarhadi, D.; Ningam, M.U.L.; Sarah, Z.; Nugroho, K.; Wahyunto; Sulaeman, Y. Mapping Acid Sulfate Soil Hydrogeomorphical Unit on the Peatland Landscape Using a Hybrid Remote Sensing Approach. In Tropical Wetlands—Innovation in Mapping and Management, Proceedings of the International Workshop on Tropical Wetlands: Innovation in Mapping and Management, Banjarmasin, Indonesia, 19–20 October 2018; Sulaeman, Y., Poggio, L., Minasny, B., Nursyamsi, D., Eds.; CRC Press: London, UK, 2019; pp. 30–37. ISBN 978-0-429-26446-7. [Google Scholar]
- Zhou, Z.; Li, Z.; Waldron, S.; Tanaka, A. InSAR Time Series Analysis of L-Band Data for Understanding Tropical Peatland Degradation and Restoration. Remote Sens. 2019, 11, 2592. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Takeuchi, W.; Ichii, K. Satellite-Based Estimation of Carbon Dioxide Budget in Tropical Peatland Ecosystems. Remote Sens. 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Sencaki, D.B.; Prayogi, H.; Arfah, S.; Pianto, T.A. Machine Learning Approach for Peatland Delineation Using Multi-Sensor Remote Sensing Data in Ogan Komering Ilir Regency. IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012005. [Google Scholar] [CrossRef]
- Sutikno, S.; Hidayati, N.; Rinaldi; Nasrul, B.; Putra, A.; Qomar, N. Classification of Tropical Peatland Degradation Using Remote Sensing and GIS Technique. AIP Conf. Proc. 2020, 2255, 070022. [Google Scholar] [CrossRef]
- Amoakoh, A.O.; Aplin, P.; Awuah, K.T.; Delgado-Fernandez, I.; Moses, C.; Alonso, C.P.; Kankam, S.; Mensah, J.C. Testing the Contribution of Multi-Source Remote Sensing Features for Random Forest Classification of the Greater Amanzule Tropical Peatland. Sensors 2021, 21, 3399. [Google Scholar] [CrossRef]
- Anda, M.; Ritung, S.; Suryani, E.; Sukarman; Hikmat, M.; Yatno, E.; Mulyani, A.; Subandiono, R.E. Revisiting Tropical Peatlands in Indonesia: Semi-Detailed Mapping, Extent and Depth Distribution Assessment. Geoderma 2021, 402, 115235. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Spectral Monitoring of Moorland Plant Phenology to Identify a Temporal Window for Hyperspectral Remote Sensing of Peatland. ISPRS J. Photogramm. Remote Sens. 2014, 90, 49–58. [Google Scholar] [CrossRef]
- Harris, A.; Bryant, R.G. A Multi-Scale Remote Sensing Approach for Monitoring Northern Peatland Hydrology: Present Possibilities and Future Challenges. J. Environ. Manag. 2009, 90, 2178–2188. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Stróżecki, M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of Warming and Reduced Precipitation on Photosynthetic and Remote Sensing Properties of Peatland Vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [Google Scholar] [CrossRef]
- Šimanauskienė, R.; Linkevičienė, R.; Bartold, M.; Dąbrowska-Zielińska, K.; Slavinskienė, G.; Veteikis, D.; Taminskas, J. Peatland Degradation: The Relationship between Raised Bog Hydrology and Normalized Difference Vegetation Index. Ecohydrology 2019, 12, e2159. [Google Scholar] [CrossRef]
- Segah, H.; Tani, H.; Hirano, T. Detection of Fire Impact and Vegetation Recovery over Tropical Peat Swamp Forest by Satellite Data and Ground-Based NDVI Instrument. Int. J. Remote Sens. 2010, 31, 5297–5314. [Google Scholar] [CrossRef]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L.; Vogelmann, A.F.; Hoshizaki, T. Remote Detection of Forest Damage: Plant Responses to Stress May Have Spectral “Signatures” That Could Be Used to Map, Monitor, and Measure Forest Damage. BioScience 1986, 36, 439–445. [Google Scholar] [CrossRef]
- Niedzielko, J.; Szepietowska, M.; Boral, B.; Milczarek, M.; Pokrzywnicka, M.; Łach, G.; Kaźmierczak, M.; Jarocińska, A. Analiza zależności między zawartością wody w roślinach zmierzoną w terenie a teledetekcyjnymi wskaźnikami roślinności. Teledetekcja Śr. 2012, 47, 15. [Google Scholar]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of Plant Water Concentration by the Reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Q.; Song, K.; Qin, G.; Wang, Y.; Wang, X.; Li, H.; Li, J.; Liu, G.; Li, H. Remotely Sensing the Ecological Influences of Ditches in Zoige Peatland, Eastern Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 5186–5197. [Google Scholar] [CrossRef]
- Ghulam, A.; Li, Z.-L.; Qin, Q.; Tong, Q.; Wang, J.; Kasimu, A.; Zhu, L. A Method for Canopy Water Content Estimation for Highly Vegetated Surfaces-Shortwave Infrared Perpendicular Water Stress Index. Sci. China Ser. Earth Sci. 2007, 50, 1359–1368. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Quinn, N.; Horswell, M.; White, P. Assessing Vegetation Response to Soil Moisture Fluctuation under Extreme Drought Using Sentinel-2. Water 2018, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- The European Space Agency Sentinel-1 SAR User Guide Introduction. Available online: https://sentinel.esa.int (accessed on 5 May 2021).
- Asmuß, T.; Bechtold, M.; Tiemeyer, B. Towards Monitoring Groundwater Table Depth in Peatlands from Sentinel-1 Radar Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 7793–7796. [Google Scholar]
- Hoekman, D.; Kooij, B.; Quiñones, M.; Vellekoop, S.; Carolita, I.; Budhiman, S.; Arief, R.; Roswintiarti, O. Wide-Area Near-Real-Time Monitoring of Tropical Forest Degradation and Deforestation Using Sentinel-1. Remote Sens. 2020, 12, 3263. [Google Scholar] [CrossRef]
- Tampuu, T.; Praks, J.; Kull, A.; Uiboupin, R.; Tamm, T.; Voormansik, K. Detecting Peat Extraction Related Activity with Multi-Temporal Sentinel-1 InSAR Coherence Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102309. [Google Scholar] [CrossRef]
- Kędzierski, M.; Fryśkowska, A.; Wierzbicki, D. Opracowania Fotogrametryczne z Niskiego Pułapu; Wojskowa Akademia Techniczna: Warszawa, Poland, 2014; ISBN 978-83-7938-047-3. [Google Scholar]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.E.; Wooster, M.J.; Smith, T.E.L.; Trivedi, M.; Vernimmen, R.R.E.; Dedi, R.; Shakti, M.; Dinata, Y. Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using UAV Photogrammetry and Airborne LiDAR. Remote Sens. 2016, 8, 1000. [Google Scholar] [CrossRef] [Green Version]
- Lovitt, J.; Rahman, M.M.; McDermid, G.J. Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex Peatlands. Remote Sens. 2017, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Klosterman, S.; Melaas, E.; Wang, J.A.; Martinez, A.; Frederick, S.; O’Keefe, J.; Orwig, D.A.; Wang, Z.; Sun, Q.; Schaaf, C.; et al. Fine-Scale Perspectives on Landscape Phenology from Unmanned Aerial Vehicle (UAV) Photography. Agric. For. Meteorol. 2018, 248, 397–407. [Google Scholar] [CrossRef]
- Sibaruddin, H.I.; Shafri, H.Z.M.; Pradhan, B.; Haron, N.A. Comparison of Pixel-Based and Object-Based Image Classification Techniques in Extracting Information from UAV Imagery Data. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012098. [Google Scholar] [CrossRef]
- Lopatin, J.; Kattenborn, T.; Galleguillos, M.; Perez-Quezada, J.F.; Schmidtlein, S. Using Aboveground Vegetation Attributes as Proxies for Mapping Peatland Belowground Carbon Stocks. Remote Sens. Environ. 2019, 231, 111217. [Google Scholar] [CrossRef]
- Górecki, K.; Rastogi, A.; Stróżecki, M.; Gąbka, M.; Lamentowicz, M.; Łuców, D.; Kayzer, D.; Juszczak, R. Water Table Depth, Experimental Warming, and Reduced Precipitation Impact on Litter Decomposition in a Temperate Sphagnum-Peatland. Sci. Total Environ. 2021, 771, 145452. [Google Scholar] [CrossRef]
- Ilnicki, P. Torfowiska i Torf; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Poland, 2002; ISBN 978-83-7160-243-6. [Google Scholar]
- Lamentowicz, M. Paleoekologia torfowisk—źródło informacji o historii klimatu i wpływie człowieka na środowisko. Przegląd Geol. 2007, 55, 1130–1135. [Google Scholar]
- Marcisz, K.; Lamentowicz, Ł.; Słowińska, S.; Słowiński, M.; Muszak, W.; Lamentowicz, M. Seasonal Changes in Sphagnum Peatland Testate Amoeba Communities along a Hydrological Gradient. Eur. J. Protistol. 2014, 50, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, G. Analiza makroszczątkowa w badaniach paleolimnologicznych. Stud. Limnol. Telmatologica 2007, 1, 67–82. [Google Scholar]
- Słowińska, S.; Słowiński, M.; Lamentowicz, M. Relationships between Local Climate and Hydrology in Sphagnum Mire: Implications for Palaeohydrological Studies and Ecosystem Management. Pol. J. Environ. Stud. 2010, 19, 779–787. [Google Scholar]
- Swindles, G.T.; Morris, P.J.; Mullan, D.J.; Payne, R.J.; Roland, T.P.; Amesbury, M.J.; Lamentowicz, M.; Turner, T.E.; Gallego-Sala, A.; Sim, T.; et al. Widespread Drying of European Peatlands in Recent Centuries. Nat. Geosci. 2019, 12, 922–928. [Google Scholar] [CrossRef]
- Karasiewicz, T.M.; Hulisz, P.; Noryśkiewicz, A.M.; Stachowicz-Rybka, R.; Michalski, A.; Dąbrowski, M.; Gamrat, W.W. The Impact of Postglacial Palaeoenvironmental Changes on the Properties of Sediments in the Kettle Hole at the Site of Jurki (NE Poland). Geol. Q. 2017, 61, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Lamentowicz, M.; Balwierz, Z.; Forysiak, J.; Płóciennik, M.; Kittel, P.; Kloss, M.; Twardy, J.; Żurek, S.; Pawlyta, J. Multiproxy Study of Anthropogenic and Climatic Changes in the Last Two Millennia from a Small Mire in Central Poland. Hydrobiologia 2009, 631, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Latałowa, M.; Święta-Musznicka, J.; Słowiński, M.; Pędziszewska, A.; Noryśkiewicz, A.M.; Zimny, M.; Obremska, M.; Ott, F.; Stivrins, N.; Pasanen, L.; et al. Abrupt Alnus Population Decline at the End of the First Millennium CE in Europe—The Event Ecology, Possible Causes and Implications. Holocene 2019, 29, 1335–1349. [Google Scholar] [CrossRef] [Green Version]
- Słowiński, M.; Marcisz, K.; Płóciennik, M.; Obremska, M.; Pawłowski, D.; Okupny, D.; Słowińska, S.; Borówka, R.; Kittel, P.; Forysiak, J.; et al. Drought as a Stress Driver of Ecological Changes in Peatland—A Palaeoecological Study of Peatland Development between 3500BCE and 200BCE in Central Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 461, 272–291. [Google Scholar] [CrossRef]
- Błaszkiewicz, M.; Piotrowski, J.A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Kramkowski, M.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A.M.; Ott, F.; et al. Climatic and Morphological Controls on Diachronous Postglacial Lake and River Valley Evolution in the Area of Last Glaciation, Northern Poland. Quat. Sci. Rev. 2015, 109, 13–27. [Google Scholar] [CrossRef]
- Czerwiński, S.; Guzowski, P.; Lamentowicz, M.; Gałka, M.; Karpińska-Kołaczek, M.; Poniat, R.; Łokas, E.; Diaconu, A.-C.; Schwarzer, J.; Miecznik, M.; et al. Environmental Implications of Past Socioeconomic Events in Greater Poland during the Last 1200 Years. Synthesis of Paleoecological and Historical Data. Quat. Sci. Rev. 2021, 259, 106902. [Google Scholar] [CrossRef]
- Hirsch, F.; Schneider, A.; Nicolay, A.; Błaszkiewicz, M.; Kordowski, J.; Noryskiewicz, A.M.; Tyszkowski, S.; Raab, A.; Raab, T. Late Quaternary Landscape Development at the Margin of the Pomeranian Phase (MIS 2) near Lake Wygonin (Northern Poland). Catena 2015, 124, 28–44. [Google Scholar] [CrossRef]
- Lamentowicz, M.; Marcisz, K.; Guzowski, P.; Gałka, M.; Diaconu, A.-C.; Kołaczek, P. How Joannites’ Economy Eradicated Primeval Forest and Created Anthroecosystems in Medieval Central Europe. Sci. Rep. 2020, 10, 18775. [Google Scholar] [CrossRef]
- Lotter, A. Multi-Proxy Climatic Reconstructions. In Global Change in the Holocene; Hodder Arnold: London, UK, 2003; pp. 373–383. [Google Scholar]
- Slowinski, M.; Blaszkiewicz, M.; Brauer, A.; Noryskiewicz, B.; Ott, F.; Tyszkowski, S. The Role of Melting Dead Ice on Landscape Transformation in the Early Holocene in Tuchola Pinewoods, North Poland. Quat. Int. 2015, 388, 64–75. [Google Scholar] [CrossRef]
- Słowiński, M.; Lamentowicz, M.; Łuców, D.; Barabach, J.; Brykała, D.; Tyszkowski, S.; Pieńczewska, A.; Śnieszko, Z.; Dietze, E.; Jażdżewski, K.; et al. Paleoecological and Historical Data as an Important Tool in Ecosystem Management. J. Environ. Manag. 2019, 236, 755–768. [Google Scholar] [CrossRef]
- Edvardsson, J.; Baužienė, I.; Lamentowicz, M.; Šimanauskienė, R.; Tamkevičiūtė, M.; Taminskas, J.; Linkevičienė, R.; Skuratovič, Ž.; Corona, C.; Stoffel, M. A Multi-Proxy Reconstruction of Moisture Dynamics in a Peatland Ecosystem: A Case Study from Čepkeliai, Lithuania. Ecol. Indic. 2019, 106, 105484. [Google Scholar] [CrossRef]
- Słowiński, M.; Skubała, P.; Zawiska, I.; Kruk, A.; Obremska, M.; Milecka, K.; Ott, F. Cascading Effects between Climate, Vegetation, and Macroinvertebrate Fauna in 14,000-Year Palaeoecological Investigations of a Shallow Lake in Eastern Poland. Ecol. Indic. 2018, 85, 329–341. [Google Scholar] [CrossRef]
- Chambers, F.M.; Booth, R.K.; De Vleeschouwer, F.; Lamentowicz, M.; Le Roux, G.; Mauquoy, D.; Nichols, J.E.; van Geel, B. Development and Refinement of Proxy-Climate Indicators from Peats. Quat. Int. 2012, 268, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, S.; Fleige, H.; Horn, R. Shrinkage Processes of a Drained Riparian Peatland with Subsidence Morphology. J. Soils Sediments 2010, 10, 484–493. [Google Scholar] [CrossRef]
- Grzywna, A. The Degree of Peatland Subsidence Resulting from Drainage of Land. Environ. Earth Sci. 2017, 76, 559. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Goodman, L.K.; May-Tobin, C.C. Modeling Relationships between Water Table Depth and Peat Soil Carbon Loss in Southeast Asian Plantations. Environ. Res. Lett. 2015, 10, 074006. [Google Scholar] [CrossRef]
- Couwenberg, J.; Hooijer, A. Towards Robust Subsidence-Based Soil Carbon Emission Factors for Peat Soils in South-East Asia, with Special Reference to Oil Palm Plantations. Mires Peat 2013, 12, 1–13. [Google Scholar]
- Othman, H.; Mohammed, A.T.; Mohamad Darus, F.; Harun, M.H.; Zambri, M.P. Best Management Practices for Oil Palm Cultivation on Peat: Ground Water-Table Maintenance in Relation to Peat Subsidence and Estimation of CO2 Emissions at Sessang, Sarawak. J. Oil Palm Res. 2011, 23, 1078–1086. [Google Scholar]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and Carbon Loss in Drained Tropical Peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Khasanah, N.; van Noordwijk, M. Subsidence and Carbon Dioxide Emissions in a Smallholder Peatland Mosaic in Sumatra, Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 147–163. [Google Scholar] [CrossRef] [Green Version]
Climate Regions | Number of Studies | Locations | References |
---|---|---|---|
Subarctic, boreal | 13 | Sweden (1), Arctic circle (1), Canada (3), Finland (6), Alaska (USA) (1), others (1) | [17,21,22,25,28,29,31,33,34,35,36,37,38] |
Cool temperature | 10 | Northern Hemisphere (2), Canada (7), Northern America and Scandinavia (1) | [20,24,27,39,40,41,42,43,44,45] |
Oceanic temperate | 12 | Ireland (3), England (4), Wales (1), Argentina (1), Bolivia (2), Chile (1) | [23,26,46,47,48,49,50,51,52,53,54,55] |
Temperate | 7 | Poland (2), Germany (2), Russia (2), France (1) | [18,56,57,58,59,60,61] |
Subtropical, tropical | 17 | Florida (USA) (1), Indonesia (11), Malesia (4), Ghana (1), Ecuador (1) | [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czapiewski, S.; Szumińska, D. An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021. Land 2022, 11, 24. https://doi.org/10.3390/land11010024
Czapiewski S, Szumińska D. An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021. Land. 2022; 11(1):24. https://doi.org/10.3390/land11010024
Chicago/Turabian StyleCzapiewski, Sebastian, and Danuta Szumińska. 2022. "An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021" Land 11, no. 1: 24. https://doi.org/10.3390/land11010024
APA StyleCzapiewski, S., & Szumińska, D. (2022). An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021. Land, 11(1), 24. https://doi.org/10.3390/land11010024