Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. Research Method
2.3. Technology Used in the Experimental Site
2.4. Methods of Analysis and Processing Experimental Data
3. Results
3.1. Climate Conditions and the Impact on Soybean Cultivation Technology
3.2. Influence of the Tillage System upon Weed Infestation in the Soybean Crop
3.3. Soybean Yield in Relation to Experimental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechmann, M.E.; Bøe, F. Soil Tillage and Crop Growth Effects on Surface and Subsurface Runoff, Loss of Soil, Phosphorus and Nitrogen in a Cold Climate. Land 2021, 10, 77. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Kuka, A.; Czyż, K.; Smoliński, J.; Cholewińska, P.; Wyrostek, A. The Interactions between Some Free-Ranging Animals and Agriculture—A Review. Agriculture 2022, 12, 628. [Google Scholar] [CrossRef]
- Telak, L.J.; Pereira, P.; Ferreira, C.S.S.; Filipovic, V.; Filipovic, L.; Bogunovic, I. Short-Term Impact of Tillage on Soil and the Hydrological Response within a Fig (Ficus Carica) Orchard in Croatia. Water 2020, 12, 3295. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation Tillage Impacts on Soil, Crop and the Environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Mango, N.; Siziba, S.; Makate, C. The Impact of Adoption of Conservation Agriculture on Smallholder Farmers’ Food Security in Semi-arid Zones of Southern Africa. Agric. Food Secur. 2017, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M. Impact of Climate Change on Agro-climatic Indicators and Agricultural Lands in the Transylvanian Plain between 2008-2014. Carpathian J. Earth Environ. Sci. 2017, 12, 23–34. [Google Scholar]
- Răus, L.; Jităreanu, G.; Ailincăi, C.; Pârvan, L.; Ţopa, D. Impact of Different Soil Tillage Systems and Organo-Mineral Fertilization on Physical Properties of the Soil and on Crops Yield in Pedoclimatical Conditions of Moldavian Plateau. Rom. Agric. Res. 2016, 33, 111–123. [Google Scholar]
- Cociu, A.I.; Alionte, E. Yield and Some Quality Traits of Winter Wheat, Maize and Soyabean, Grown in Different Tillage and Deep Loosening Systems Aimed to Soil Conservation. Rom. Agric. Res. 2011, 28, 109–120. [Google Scholar]
- Chețan, F.; Chețan, C.; Bogdan, I.; Pop, A.I.; Moraru, P.I.; Rusu, T. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land 2021, 10, 200. [Google Scholar] [CrossRef]
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T. Effect of Tillage Systems on Soil Moisture, Soil Temperature, Soil Respiration and Production of Wheat, Maize and Soybean Crops. J. Food Agric. Environ. 2012, 10, 445–448. [Google Scholar]
- Sritongtae, C.; Monkham, T.; Sanitchon, J.; Lodthong, S.; Srisawangwong, S.; Chankaew, S. Identification of Superior Soybean Cultivars through the Indication of Specific Adaptabilities within Duo-Environments for Year-Round Soybean Production in Northeast Thailand. Agronomy 2021, 11, 585. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Ma, H.; Alimov, J.; Reckling, M.; Wirth, S.; Bellingrath-Kimura, S.D. Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms 2020, 8, 1674. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A.; Bobrecka-Jamro, D.; Jańczak-Pieniążek, M.; Kotecki, A.; Kozak, M. Effect of Nitrogen Fertilisation and Inoculation with Bradyrhizobium japonicum on the Fatty Acid Profile of Soybean (Glycine max (L.) Merrill) Seeds. Agronomy 2021, 11, 941. [Google Scholar] [CrossRef]
- Rusu, T. Energy Efficiency and Soil Conservation in Conventional, Minimum Tillage and No-tillage. Int. Soil Water Conserv. Res. 2014, 2, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.F.d.; Galon, L.; Aspiazú, I.; Ferreira, E.A.; Concenço, G.; Júnior, E.U.R.; Rocha, P.R.R. Weed Management in the Soybean Crop. In Soybean-Pest Resistance; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Vivian, R.; Reis, A.; Kálnay, P.A.; Vargas, L.; Ferreira, A.C.C.; Mariani, F. Weed Management in Soybean—Issues and Practices. In Soybean-Pest Resistance; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage System. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Weber, J.F.; Gerhards, R. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology. Sensors 2018, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Jo, H.; Song, J.T.; Lee, J.-D. The Prospect of Bentazone-Tolerant Soybean for Conventional Cultivation. Agronomy 2020, 10, 1650. [Google Scholar] [CrossRef]
- Weber, J.F.; Kunz, C.; Peteinatos, G.G.; Zikeli, S.; Gerhards, R. Weed Control Using Conventional Tillage, Reduced Tillage, No-Tillage, and Cover Crops in Organic Soybean. Agriculture 2017, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Jagadamma, S.; Arelli, P. Soil Physical Properties and Soybean Yield as Influenced by Long-Term Tillage Systems and Cover Cropping in the Midsouth USA. Sustainability 2018, 10, 4696. [Google Scholar] [CrossRef] [Green Version]
- Alagbo, O.; Spaeth, M.; Saile, M.; Schumacher, M.; Gerhards, R. Weed Management in Ridge Tillage Systems—A Review. Agronomy 2022, 12, 910. [Google Scholar] [CrossRef]
- Saulic, M.; Oveisi, M.; Djalovic, I.; Bozic, D.; Pishyar, A.; Savić, A.; Prasad, P.V.; Vrbničanin, S. How Do Long Term Crop Rotations Influence Weed Populations: Exploring the Impacts of More than 50 Years of Crop Management in Serbia. Agronomy 2022, 12, 1772. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Kwaw-Mensah, D. Quantifying Soil Carbon Change in a Long-Term Tillage and Crop Rotation Study Across Iowa Landscapes. Soil Sci. Soc. Am. J. 2020, 84, 182–202. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Chetan, F.; Rusu, T.; Chetan, C.; Moraru, P.I. Influence of Soil Tillage upon Weeds, Production and Economical Efficiency of Corn Crop. AgroLife Sci. J. 2016, 5, 36–43. [Google Scholar]
- Heinrichs, E.A.; Muniappan, R. Integrated pest management for tropical crops: Soybeans. CAB Rev. 2018, 13, 1–44. [Google Scholar] [CrossRef]
- Meseldžija, M.; Rajković, M.; Dudić, M.; Vranešević, M.; Bezdan, A.; Jurišić, A.; Ljevnaić-Mašić, B. Economic Feasibility of Chemical Weed Control in Soybean Production in Serbia. Agronomy 2020, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-S.; Chung, J.-H.; Lee, K.J.; Kwon, J.; Kim, J.-W.; Im, J.-H.; Kim, D.-S. Herbicide-Based Weed Management for Soybean Production in the Far Eastern Region of Russia. Agronomy 2020, 10, 1823. [Google Scholar] [CrossRef]
- Donald, W.W. Estimated Soybean (Glycine max) Yield Loss from Herbicide Damage Using Ground Cover or Rated Stunting. Weed Sci. 1998, 46, 454–458. [Google Scholar] [CrossRef]
- Vollmer, K.; VanGessel, M.; Johnson, Q.; Scott, B. Preplant and Residual Herbicide Application Timings for Weed Control in No-Till Soybean. Weed Technol. 2019, 33, 166–172. [Google Scholar] [CrossRef]
- Mureşanu, E.; Mărginean, R.; Negru, S. Felix-The Early Soybean Cultivar. An. INCDA Fundulea 2010, 78, 55–62. (In Romanian) [Google Scholar]
- Balaş, S.; Urdă, C.; Păcurar, L.; Russu, F.; Burnea, A.; Duda, M. Effects of Seed Inoculation and Cropping System on Chemical Composition of Some Early Soybean Varieties. Life Sci. Suitable Dev. 2021, 2, 7–11. [Google Scholar]
- PoliFact 2020. ANOVA and Duncan’s Test PC Program for Variant Analyses Made for Completely Randomized Polyfactorial Experiences; USAMV: Cluj-Napoca, Romania, 2020. [Google Scholar]
- Rusu, T.; Chețan, C.; Bogdan, I.; Chețan, F.; Ignea, M.; Duda, B.; Ivan, I. Researches Regarding Weed Control in Soybean Crop. Bul. USAMV Ser. Agric. 2014, 71, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.; Henry, W.B.; Gao, W.; Reddy, K.R. Physiological Assessment of Water Deficit in Soybean Using Midday Leaf Water Potential and Spectral Features. J. Plant Interact. 2019, 14, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.; Godar, J.; Frey, G.P.; Börner, J.; Gardner, T. The Paraguayan Chaco at a Crossroads: Drivers of an Emerging Soybean Frontier. Reg. Environ. Chang. 2021, 21, 72. [Google Scholar] [CrossRef]
- Chetan, C.; Rusu, T.; Chetan, F.; Simon, A. Influence of Soil Tillage Systems and Weed Control Treatments on Root Nodules, Production and Qualitative Indicators of Soybean. Procedia Technol. 2016, 22, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L.; Kerr, H.D.; Gebhardt, M.R. Interrelations of Tillage and Weed Control for Soybean (Glycine max) Production. Weed Sci. 1987, 35, 830–836. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Kouneli, V.; Karydogianni, S.; Folina, A.; Triantafyllidis, V.; Efthimiadou, A.; Roussis, I.; Zotos, A.; Kosma, C.; et al. Effects of Nitrogen Fertilization on Weed Flora and Productivity of Soybean [Glycine max (L.) Merr.] Crop. Nitrogen 2022, 3, 284–297. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in Herbaceous Field Crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable Crop and Weed Management in the Era of the EU Green Deal: A Survival Guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Halwani, M.; Reckling, M.; Schuler, J.; Bloch, R.; Bachinger, J. Soybean in No-Till Cover-Crop Systems. Agronomy 2019, 9, 883. [Google Scholar] [CrossRef]
- Hausherr Lüder, R.-M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Noulas, C. Effect of Tillage Systems on Spatial Variation in Soil Chemical Properties and Winter Wheat (Triticum aestivum L.) Performance in Small Fields. Agronomy 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Cordeau, S.; Baudron, A.; Adeux, G. Is Tillage a Suitable Option for Weed Management in Conservation Agriculture? Agronomy 2020, 10, 1746. [Google Scholar] [CrossRef]
- Geddes, C.M.; Gulden, R.H. Wheat and Cereal Rye Inter-Row Living Mulches Interfere with Early Season Weeds in Soybean. Plants 2021, 10, 2276. [Google Scholar] [CrossRef]
- Schappert, A.; Messelhäuser, M.H.; Saile, M.; Peteinatos, G.G.; Gerhards, R. Weed Suppressive Ability of Cover Crop Mixtures Compared to Repeated Stubble Tillage and Glyphosate Treatments. Agriculture 2018, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Derrouch, D.; Chauvel, B.; Felten, E.; Dessaint, F. Weed Management in the Transition to Conservation Agriculture: Farmers’ Response. Agronomy 2020, 10, 843. [Google Scholar] [CrossRef]
- Bonny, S. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA. Sustainability 2011, 3, 1302–1322. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, C.; Gleim, S.; Smyth, S.J. Correlating Genetically Modified Crops, Glyphosate Use and Increased Carbon Sequestration. Sustainability 2021, 13, 11679. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Wang, T. Effects of Imazethapyr on Soybean Root Growth and Soil Microbial Communities in Sloped Fields. Sustainability 2022, 14, 3518. [Google Scholar] [CrossRef]
- Fonteyne, S.; Singh, R.G.; Govaerts, B.; Verhulst, N. Rotation, Mulch and Zero Tillage Reduce Weeds in a Long-Term Conservation Agriculture Trial. Agronomy 2020, 10, 962. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R. Sustainable Weed Control in the Agro-Ecosystems. Sustainability 2021, 13, 8639. [Google Scholar] [CrossRef]
- Landers, J.N.; de Freitas, P.L.; de Oliveira, M.C.; da Silva Neto, S.P.; Ralisch, R.; Kueneman, E.A. Next Steps for Conservation Agriculture. Agronomy 2021, 11, 2496. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Ambroziak, K. The Choice of Soybean Cultivar Alters the Underyielding of Protein and Oil under Drought Conditions in Central Poland. Appl. Sci. 2022, 12, 7830. [Google Scholar] [CrossRef]
Monthly Temperature, °C | Average | ||||||
Year/month | IV | V | VI | VII | VIII | IX | IV–IX |
2017 | 9.9 | 15.7 | 20.7 | 20.3 | 22.3 | 15.8 | 17.5 |
2018 | 15.3 | 18.7 | 19.4 | 20.4 | 22.3 | 16.7 | 18.8 |
2019 | 11.3 | 13.6 | 21.8 | 20.4 | 22.1 | 17.1 | 17.7 |
2020 | 10.3 | 13.7 | 19.1 | 20.2 | 21.5 | 17.8 | 17.1 |
2021 | 7.8 | 14.1 | 19.8 | 22.7 | 19.7 | 15.0 | 16.5 |
1945–2010 | 10.0 | 15.0 | 18.0 | 19.8 | 19.5 | 15.2 | 16.3 |
Monthly rainfall, mm | Sum | ||||||
Year/month | IV | V | VI | VII | VIII | IX | IV–IX |
2017 | 62.5 | 65.4 | 30.6 | 110.2 | 36.1 | 56.2 | 363.7 |
2018 | 26.2 | 56.8 | 98.3 | 85.7 | 38.2 | 29.8 | 335.0 |
2019 | 62.6 | 152.4 | 68.8 | 35.0 | 63.8 | 19.4 | 402.0 |
2020 | 17.8 | 44.4 | 166.6 | 86.8 | 58.0 | 57.4 | 431.0 |
2021 | 37.4 | 80.8 | 45.0 | 123.1 | 52.9 | 39.1 | 379.3 |
1945–2010 | 45.6 | 69.4 | 84.6 | 78.0 | 56.1 | 42.4 | 376.1 |
No./ Classification | Species/Soil Tillage System | No. Weeds m−2, 2017 | No. Weeds m−2, 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | MTC | MTD | NT | CS | MTC | MTD | NT | |||
1 | AM | Bromus tectorum | - | - | - | - | - | - | 8 | 11 |
2 | Setaria glauca | - | 1 | 1 | - | 1 | - | - | - | |
3 | Echinochloa crus- galli | 1 | - | 1 | 1 | - | 1 | 1 | - | |
Total AM | 1 | 1 | 2 | 1 | 1 | 1 | 9 | 11 | ||
1 | PM | Agropyron repens | - | - | 1 | 2 | - | - | 3 | 7 |
Total PM | - | - | 1 | 2 | - | 1 | 3 | 7 | ||
1 | AD | Xanthium strumarium | 3 | 5 | 7 | 4 | 4 | 6 | 7 | 3 |
2 | Chenopodium album | 1 | - | 2 | 1 | 2 | 1 | 1 | - | |
3 | Polygonum convolvulus | - | 1 | 2 | 1 | 1 | 1 | 2 | - | |
4 | Tragopogon dubius | - | - | - | - | - | 1 | 1 | 2 | |
5 | Sonchus asper | - | 1 | - | 2 | - | 1 | - | 1 | |
6 | Hibiscus trionum | - | 1 | 2 | - | 2 | 1 | 1 | - | |
7 | Anthemis cotula | - | - | - | - | - | - | 1 | 3 | |
8 | Viola arvensis | 1 | - | 1 | 2 | - | - | 1 | - | |
9 | Daucus carota | - | 1 | 1 | 1 | - | - | 1 | 2 | |
10 | Silene noctiflora | 2 | 1 | 1 | 1 | 1 | 1 | 1 | - | |
11 | Amaranthus hybridus | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | |
12 | Datura stramonium | - | 1 | - | 1 | - | - | 1 | 1 | |
13 | Galeopsis ladanum | 1 | 1 | - | - | 1 | 2 | - | - | |
14 | Polygonum lapathifolium | 1 | 1 | 1 | 2 | - | 1 | - | - | |
Total AD | 10 | 14 | 18 | 16 | 12 | 16 | 17 | 13 | ||
1 | PD | Convolvulus arvensis | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 4 |
2 | Rubus caesius | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 3 | |
3 | Cirsium arvense | - | - | 1 | 1 | - | - | 2 | 2 | |
4 | Lathyrus tuberosus | - | - | 1 | 2 | - | 1 | 1 | 4 | |
5 | Taraxacum officinale | - | - | - | - | - | - | 1 | 2 | |
Total PD | 2 | 2 | 5 | 8 | 2 | 3 | 9 | 15 | ||
Total weeds | 13 | 17 | 26 | 27 | 15 | 21 | 38 | 46 |
No./ Classification | Species/Soil Tillage System | No. Weeds m−2, 2017 | No. Weeds m−2, 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | MTC | MTD | NT | CS | MTC | MTD | NT | |||
1 | AM | Bromus tectorum | - | - | - | - | - | - | 3 | 5 |
2 | Setaria glauca | - | 2 | 1 | 1 | 1 | - | 1 | 1 | |
3 | Echinochloa crus-galli | 1 | - | 1 | - | 1 | 2 | 1 | - | |
Total AM | 1 | 2 | 2 | 1 | 2 | 2 | 5 | 6 | ||
1 | Agropyron repens | - | - | 3 | 2 | - | - | 4 | 8 | |
Total PM | - | - | 3 | 2 | - | - | 4 | 8 | ||
1 | AD | Xanthium strumarium | 1 | 3 | 2 | 3 | 1 | 2 | 1 | 1 |
2 | Polygonum convolvulus | - | - | 1 | - | - | 1 | 1 | - | |
3 | Tragopogon dubius | - | - | - | - | - | - | - | 1 | |
4 | Hibiscus trionum | 1 | 1 | 1 | - | - | - | 1 | 1 | |
5 | Galeopsis ladanum | - | 1 | 1 | - | - | 1 | - | - | |
6 | Polygonum lapathifolium | - | - | 1 | - | 1 | - | 1 | - | |
Total AD | 2 | 5 | 6 | 3 | 2 | 4 | 4 | 3 | ||
1 | PD | Convolvulus arvensis | - | - | - | 1 | - | - | 2 | 3 |
2 | Rubus caesius | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | |
3 | Cirsium arvense | - | - | 1 | 2 | - | - | 1 | 1 | |
4 | Taraxacum officinale | - | - | - | - | - | - | - | - | |
Total PD | 1 | 1 | 2 | 4 | 1 | 1 | 5 | 6 | ||
Total weeds | 4 | 8 | 11 | 11 | 7 | 10 | 18 | 23 |
Experimental Factor | Yield, kg ha−1 | Differences±, kg ha−1 |
---|---|---|
A—Experimental year | ||
Years mean | 2209 | ct ct |
2017 | 2434 | 226 *** |
2018 | 2187 | −21 ns |
2019 | 2205 | −3 ns |
2020 | 2072 | −13500 |
2021 | 2141 | −670 |
Notes: LSD (5%) = 64 kg ha−1, LSD (1%) = 106 kg ha−1, LSD (0.1%) = 198 kg ha−1; ct. = control; *** = 0.001 p-value significant, positive values; 0,00 = 0.05 and 0.01 p-value significant, negative values; ns = not significant. | ||
B—Soil tillage system | ||
Conventional system | 2437 | ct ct |
Minimum tillage—Chisel | 2460 | 23 ns |
Minimum tillage—Disk | 2194 | −243 000 |
No tillage | 1762 | −675 000 |
Notes: LSD (5%) = 104 kg ha−1, LSD (1%) = 144 kg ha−1, LSD (0.1%) = 199 kg ha−1; ct. = control; ns = not significant; 000 = 0.001 p-value significant, negative values. | ||
C—Fertilization system | ||
Unfertilized | 2034 | ct ct |
Fertilized with N20P20 | 2381 | 347 *** |
Notes: LSD (5%) = 31 kg ha−1, LSD (1%) = 42 kg ha−1, LSD (0.1%) = 57 kg ha−1; ct. = control; *** = 0.001 p-value significant, positive values. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheţan, F.; Rusu, T.; Cheţan, C.; Urdă, C.; Rezi, R.; Şimon, A.; Bogdan, I. Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop. Land 2022, 11, 1708. https://doi.org/10.3390/land11101708
Cheţan F, Rusu T, Cheţan C, Urdă C, Rezi R, Şimon A, Bogdan I. Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop. Land. 2022; 11(10):1708. https://doi.org/10.3390/land11101708
Chicago/Turabian StyleCheţan, Felicia, Teodor Rusu, Cornel Cheţan, Camelia Urdă, Raluca Rezi, Alina Şimon, and Ileana Bogdan. 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop" Land 11, no. 10: 1708. https://doi.org/10.3390/land11101708
APA StyleCheţan, F., Rusu, T., Cheţan, C., Urdă, C., Rezi, R., Şimon, A., & Bogdan, I. (2022). Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop. Land, 11(10), 1708. https://doi.org/10.3390/land11101708