Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. The Instantaneous Waterline Extraction
2.3.2. Tidal Flat Zonation
2.3.3. Tidal Creek Extraction
2.3.4. Parameterization of the Tidal Creek Morphology
3. Results and Analysis
3.1. Morphological Characteristics of Tidal Creeks
3.2. Properties of a Tidal Creek Network
4. Discussion
4.1. Analysis of the Morphological Characteristics of Tidal Creeks
4.2. Evaluation of the Complexity and Hydrological Connectivity of the Tidal Creek Network
5. Conclusions
- (1)
- The tidal creeks on the tidal flat of the LRE were scoured by tidal currents. The main tidal creeks and tributaries of the tidal flat were linked together in the shape of a “tidal tree.” The tidal creek branches were concentrated near the mean high-tide level in a dendritic pattern, and the main tidal creeks were perpendicular to the shoreline and disappeared near the average low-tide level in a pattern similar to the main trunk of a tree.
- (2)
- In the study area, there was obvious spatial heterogeneity in the order and average length of the tidal creeks. The level of tidal creeks in the upper and middle intertidal zones was higher than in the supratidal zone. In the study area, with an increase in the order of tidal creeks, the average length of tidal creeks increased exponentially but the number of tidal creeks decreased exponentially (R2 > 0.99). The total density of tidal creeks declined dramatically with a decreasing beach surface elevation gradient. In addition, as the hydrodynamic intensities on the tidal flat differed, the sinuosity ratio of offshore tidal creeks was lower than that of inshore ones and the average bifurcation ratio of the tidal creeks in the upper intertidal zone (Rb = 3.54) was the highest in the LRE.
- (3)
- In the coastal wetlands of the LRE, the properties of the tidal creek network and the morphological characteristics of tidal creeks were interconnected. The connectivity of the tidal creek network was positively correlated with the average bifurcation ratio of tidal creeks and the number of island-shaped tidal creeks. The fractal dimension of the tidal creek network was regulated by the sinuosity ratio and total density of tidal creeks. In the study area, the tidal creek network in the upper intertidal zone had the strongest hydrological connectivity and the tidal creek system in the supratidal zone was the most complex, with an F value of 1.56.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Gao, N.; Chen, M.; Cagle, G.A.; Hou, A.; Han, G.; Tian, X. Seedling adaptive characteristics of Phragmites australis to nutrient heterogeneity under salt stress using a split-root approach. Aquat. Sci. 2021, 83, 1–11. [Google Scholar] [CrossRef]
- Rogers, K.; Saintilan, N.; Copeland, C. Managed retreat of saline coastal wetlands: Challenges and opportunities identified from the Hunter River Estuary, Australia. Estuaries Coasts 2014, 37, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Pestrong, R. The Development of Drainage Patterns on Tidal Marshes; Stanford University: Stanford, CA, USA, 1965. [Google Scholar]
- Yu, X.; Zhang, Z.; Xue, Z.; Wu, H.; Zhang, H. Effects of tidal channels and roads on landscape dynamic distribution in the Yellow River Delta, China. Chin. Geograp. Sci. 2020, 30, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Mou, K.; Wang, Q.; Qiu, H.; Zhang, C.; Zhou, D. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Sci. Total Environ. 2021, 769, 144572. [Google Scholar] [CrossRef]
- Agudo, P.; Sámano, M.L.; Rodríguez, A.; Crespo, J.; Masías, M.; Dzul, L.; Gracia, S. Validation of a methodology to analyze the morphological parameters in newly created tidal channels through a video monitoring system. Appl. Sci. 2019, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Vijay, R.; Dey, J.; Sakhre, S.; Kumar, R. Impact of urbanization on creeks of Mumbai, India: A geospatial assessment approach. J. Coast. Conserv. 2020, 24, 1–16. [Google Scholar] [CrossRef]
- Park, C.; Yu, J.; Kim, J.; Yang, D.Y. Monitoring variation of tidal channels associated with Shihwa reclamation project using remote sensing approaches. Econ. Environ. Geol. 2019, 52, 299–312. [Google Scholar]
- Shi, Z.; Lamb, H.F.; Collin, R.L. Geomorphic change of saltmarsh tidal creek networks in the Dyfi Estuary, Wales. Mar. Geol. 1995, 128, 73–83. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Xie, C.; Cui, B.; Xie, T.; Yu, S.; Liu, Z.; Chen, C.; Ning, Z.; Wang, Q.; Zou, Y.; Shao, X. Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta. Sci. Total Environ. 2020, 739, 139860. [Google Scholar] [CrossRef] [PubMed]
- Goudie, A. Characterising the distribution and morphology of creeks and pans on salt marshes in England and Wales using Google Earth. Estuar. Coast. Shelf Sci. 2013, 129, 112–123. [Google Scholar] [CrossRef]
- Hood, W.G. Tidal channel meander formation by depositional rather than erosional processes: Examples from the prograding Skagit River Delta (Washington, USA). Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2010, 35, 319–330. [Google Scholar] [CrossRef]
- Passalacqua, P.; Trung, T.D.; Foufoula-Georgiou, E.; Sapiro, G.; Dietrich, W.E. A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. J. Geophys. Res. Earth Surf. 2010, 115, F01002. [Google Scholar] [CrossRef] [Green Version]
- Chirol, C.; Haigh, I.; Pontee, N.; Thompson, C.; Gallop, S. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar. Remote Sens. Environ. 2018, 209, 291–311. [Google Scholar] [CrossRef]
- Limaye, A.B. Extraction of multithread channel networks with a reduced-complexity flow model. J. Geophys. Res. Earth Surf. 2017, 122, 1972–1990. [Google Scholar] [CrossRef]
- Mason, D.C.; Scott, T.R.; Wang, H.J. Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS J. Photogramm. Remote Sens. 2006, 61, 67–83. [Google Scholar] [CrossRef]
- Hiatt, M.; Sonke, W.; Addink, E.A.; van Dijk, W.M.; van Kreveld, M.; Ophelders, T.; Verbeek, K.; Vlaming, J.; Speckmann, B.; Kleinhans, M.G. Geometry and topology of estuary and braided river channel networks automatically extracted from topographic data. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005206. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, Z.; Xue, Z.; Song, X.; Zhang, H.; Wu, H. Morphological characteristics and connectivity of tidal channels in the Yellow River Delta for 7 periods since 1989. Wetl. Sci. 2018, 16, 517–523. [Google Scholar]
- Passalacqua, P.; Lanzoni, S.; Paola, C.; Rinaldo, A. Geomorphic signatures of deltaic processes and vegetation: The Ganges-Brahmaputra-Jamuna case study. J. Geophys. Res. Earth Surf. 2013, 118, 1838–1849. [Google Scholar] [CrossRef]
- Eom, J.; Choi, J.K.; Ryu, J.H.; Woo, H.J.; Won, J.S.; Jang, S. Tidal channel distribution in relation to surface sedimentary facies based on remotely sensed data. Geosci. J. 2012, 16, 127–137. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, RG1002. [Google Scholar] [CrossRef]
- Kim, D.; Cairns, D.M.; Bartholdy, J. Tidal creek morphology and sediment type influence spatial trends in salt marsh vegetation. Prof. Geogr. 2013, 65, 544–560. [Google Scholar] [CrossRef]
- Tambroni, N.; Bolla Pittaluga, M.; Seminara, G. Laboratory observations of the morphodynamic evolution of tidal channels and tidal inlets. J. Geophys. Res. Earth Surf. 2005, 110, F04009. [Google Scholar] [CrossRef] [Green Version]
- Stefanon, L.; Carniello, L.; D’Alpaos, A.; Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 2010, 30, 950–962. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Liu, Y.; Xu, W.; Liu, Y.; Sun, J.; Wang, L. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sens. 2019, 11, 2426. [Google Scholar] [CrossRef] [Green Version]
- Vlaswinkel, B.M.; Cantelli, A. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surf. Process. Landf. 2011, 36, 739–752. [Google Scholar] [CrossRef]
- Seminara, G.; Lanzoni, S.; Tambroni, N.; Toffolon, M. How long are tidal channels? J. Fluid Mech. 2010, 643, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Vandenbruwaene, W.; Bouma, T.J.; Meire, P.; Temmerman, S. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landf. 2013, 38, 122–132. [Google Scholar] [CrossRef]
- Davies, G.; Woodroffe, C.D. Tidal estuary width convergence: Theory and form in North Australian estuaries. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2010, 35, 737–749. [Google Scholar] [CrossRef]
- Florinsky, I.V. Quantitative topographic method of fault morphology recognition. Geomorphology 1996, 16, 103–119. [Google Scholar] [CrossRef]
- Qu, Z.; Li, Y.; Yu, J.; Yang, J.; Yu, M.; Zhou, D.; Wang, X.; Wang, Z.; Yu, Y.; Ma, Y.; et al. Influence of gate dams on Yellow River Delta Wetlands. Land 2022, 11, 706. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic system. Hydrol. Process. Int. J. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L. Impacts of human activities on the structural and functional connectivity of a river network in the Taihu Plain. Land Degrad. Dev. 2018, 29, 2575–2588. [Google Scholar] [CrossRef]
- Feng, J.; Liang, J.; Li, Q.; Zhang, X.; Yue, Y.; Gao, J. Effect of hydrological connectivity on soil carbon storage in the Yellow River delta wetlands of China. Chin. Geogr. Sci. 2021, 31, 197–208. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, T.; Jiang, H. The impacts of runoff decrease and shoreline change on the salinity distribution in the wetlands of Liao River estuary, China. Ocean Sci. 2021, 17, 187–201. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Lloyd, H.; Zhang, Z.; Li, D. Rapid reclamation and degradation of suaeda salsa saltmarsh along coastal China’s Northern Yellow Sea. Land 2021, 10, 835. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Xukai, Z.; Xia, Z.; Banghui, Y.; Zhi, Z.H.; Kun, S.H. Coastline extraction using remote sensing based on coastal type and tidal correction. Remote Sens. Land Resour. 2013, 25, 91–97. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.L.; Shen, Y.M.; Fang, R.J. A morphological analysis of tidal creek network patterns on the central Jiangsu coast. Acta Geogr. Sinica 2013, 68, 955–965. [Google Scholar]
- Lv, X.; Ma, B.; Yu, J.; Chang, S.X.; Xu, J.; Li, Y.; Wang, G.; Han, G.; Bo, G.; Chu, X. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Sci. Rep. 2016, 6, 36550. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Q.; Niu, Z.G. China intertidal zone dataset based on tidal correction. J. Glob. Change Data Discov. 2019, 3, 42–47. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Novakowski, K.I.; Torres, R.; Gardner, L.R.; Voulgaris, G. Geomorphic analysis of tidal creek networks. Water Resour. Res. 2004, 40, W05401. [Google Scholar] [CrossRef]
- Strahler, A.N. Revisions of Horton’s quantitative factors in erosional terrain. Trans. Am. Geophys. Union 1953, 34, 345. [Google Scholar]
- Edmonds, D.A.; Paola, C.; Hoyal, D.C.J.D.; Sheets, B.A. Quantitative metrics that describe river deltas and their channel networks. J. Geophys. Res. Earth Surf. 2011, 116, F04022. [Google Scholar] [CrossRef]
- Cui, B.; Wang, C.; Tao, W.; You, Z. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China. J. Environ. Manag. 2009, 90, 3675–3686. [Google Scholar] [CrossRef]
- Shao, X.S. Genetic classification of tidal creek and factors affecting its development. Acta Geogr. Sinica 1988, 43, 35–43. [Google Scholar]
- Xie, D.F.; Gao, S.; Pan, C.H. Numerical simulation study on geomorphological evolution of tidal channel system. Acta Oceanol. Sin-Chinese Edit. 2010, 5, 154–161. [Google Scholar]
- Qiu, Z.; Xiao, C.; Perrie, W.; Sun, D.Y.; Wang, S.Q.; Shen, H.; Yang, D.Z.; He, Y.J. Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary. J. Geophys. Res. Oceans 2017, 122, 276–290. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Transact. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Yan, S. The Growth and Evolution of Tidal Creeks on the Prograding Mud Flat in Jiangsu Province; Nanjing Normal University: Nanjing, China, 2002. [Google Scholar]
- Hibma, A.; Stive MJ, F.; Wang, Z.B. Estuarine morphodynamics. Coast. Eng. 2004, 51, 765–778. [Google Scholar] [CrossRef]
- Marani, M.; Lanzoni, S.; Zandolin, D.; Seminara, G.; Rinaldo, A. Tidal meanders. Water Resour. Res. 2002, 38, 7-1. [Google Scholar] [CrossRef]
- LaBarbera, P.R.R. On the fractal dimensions of stream network. Water Resour. Res. 1989, 25, 735–741. [Google Scholar] [CrossRef]
- Eom, J.A.; Choi, J.K.; Ryu, J.H.; Won, J.S. A study of tidal channel influence upon surficial sediment distribution in the Ganghwa-Do southern tidal flat. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 934–937. [Google Scholar]
Image Data | Data Source | High Tide | Low Tide | Tidal Information | ||||
---|---|---|---|---|---|---|---|---|
Time | Tidal Level/m | Time | Tidal Level/m | Image Time | Tidal Level/m | Tidal Condition | ||
29 May 2021 | Landsat8 OLI | 08:08 | 3.30 | 14:11 | 0.44 | 10:35 | 1.449 | Ebb tide |
20 October 2021 | Landsat8 OLI | 06:01 | 3.60 | 12:25 | 0.72 | 10:35 | 1.265 | Ebb tide |
Parameter | Abbreviation | Formula | Description |
---|---|---|---|
Length [6] | L | — | — |
Number [45] | n | — | — |
Density [46] | D | The total length of tidal creeks per unit area on the tidal flat | |
Frequency [45] | f | The total number of tidal creeks per unit area on the tidal flat | |
Sinuosity ratio [4] | C | The ratio of the length of the tidal creeks to the straight length of the tidal creeks | |
Bifurcation ratio [47] | Rb | The ratio of the number of order w tidal creeks to the number of order w + 1 tidal creeks | |
Fractal dimension [48] | F | The slope of lnN(a) and ln 1/a | |
Network connectivity [49] | α | The ratio of the actual number of loops to the maximum number of possible loops | |
β | The average creek number of connections per node in the network | ||
γ | The ratio of the actual number of tidal creeks to the maximum number of possible tidal creeks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, M.; Jiang, H. Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands. Land 2022, 11, 1707. https://doi.org/10.3390/land11101707
Chen X, Zhang M, Jiang H. Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands. Land. 2022; 11(10):1707. https://doi.org/10.3390/land11101707
Chicago/Turabian StyleChen, Xu, Mingliang Zhang, and Hengzhi Jiang. 2022. "Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands" Land 11, no. 10: 1707. https://doi.org/10.3390/land11101707
APA StyleChen, X., Zhang, M., & Jiang, H. (2022). Morphological Characteristics and Hydrological Connectivity Evaluation of Tidal Creeks in Coastal Wetlands. Land, 11(10), 1707. https://doi.org/10.3390/land11101707