Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Water Body Extraction and Assessment
2.3.2. Change Analysis of Water Bodies
2.3.3. Vegetation Distribution Response
3. Results and Discussion
3.1. Accuracy Assessment
3.2. Dynamics of Inundation Frequency
3.2.1. The Mapped Inundation Frequency
3.2.2. Area Changes of HIA and MLIA
3.3. Inundation Frequency in Wetland Ecosystem
3.3.1. Constructed Wetland
3.3.2. Natural Wetland
3.4. Response to Vegetation Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhi, C.; Gao, Y.; Chen, C.; Chen, Z.; Su, H.; Lu, W.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Fagherazzi, S.; Cui, B.S. Success of coastal wetlands restoration isdriven by sediment availability. Commun. Earth Environ. 2021, 2, 44. [Google Scholar] [CrossRef]
- Acua-Piedra, J.F.; Quesada-Román, A. Multidecadal biogeomorphic dynamics of a deltaic mangrove forest in Costa Rica. Ocean Coast. Manag. 2021, 211, 105770. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.M.; Diefenderfer, H.L.; Ward, D.L.; Borde, A.B. A spatially based area–time inundation index model developed to assess habitat opportunity in tidal–fluvial wetlands and restoration sites. Ecol. Eng. 2015, 82, 624–642. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Fagherazzi, S.; She, X.J.; Ma, X.; Xie, C.J.; Cui, B.S. Efficient tidal channel networks alleviate the drought-induced die-off of saltmarshes: Implications for coastal restoration and management. Sci. Total Environ. 2020, 749, 141493. [Google Scholar] [CrossRef]
- Townsend, P.A.; Walsh, S.J. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 1998, 21, 295–312. [Google Scholar] [CrossRef]
- Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R.; Kingdon, C.C. Remote sensing of the distribution and abundance of host species for spruce budworm in northern Minnesota and Ontario. Remote Sens. Environ. 2008, 112, 3971–3982. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Canovas, J.A.; Granados, S.; Birkel, C.; Stoffel, M. Dendrogeomorphic reconstruction of floods in a dynamic tropical river. Geomorphology 2020, 359, 107133. [Google Scholar] [CrossRef]
- Box, W.; Jrvel, J.; Vstil, K. Flow resistance of floodplain vegetation mixtures for modelling river flows. J. Hydrol. 2021, 601, 126593. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Villalobos-Chacón, A. Flash flood impacts of hurricane otto and hydrometeorological risk mapping in Costa Rica. Geogr. Tidsskr. Dan. J. Geogr. 2020, 120, 142–155. [Google Scholar] [CrossRef]
- Takagi, H.; Ty, T.V.; Thao, N.D.; Esteban, M. Ocean tides and the influence of sea-level rise on floods in urban areas of the Mekong Delta. J. Flood Risk Manag. 2015, 8, 292–300. [Google Scholar] [CrossRef]
- Takagi, H.; Tsurudome, C.; Thao, N.D.; Anh, L.T.; Ty, T.V.; Tri, V.P. Ocean tide modelling for urban flood risk assessment in the Mekong Delta. Hydrol. Res. Lett. 2016, 10, 21–26. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.; Shrestha, S.; Pal, I.; Ninsawat, S.; Chaowiwat, S. Assessment of flood adaptive capacity of urban areas in Thailand. Environ. Impact Assess. Rev. 2020, 81, 106363. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Liu, W.C. Disaster risk assessment of informal settlements in the Global South. Sustainability 2022, 14, 10261. [Google Scholar] [CrossRef]
- Yereseme, A.K.; Surendra, H.J.; Kuntoji, G. Sustainable integrated urban flood management strategies for planning of smart cities: A review. Sustain. Water Resour. Manag. 2022, 8, 85. [Google Scholar] [CrossRef]
- Quesada-Román, A. Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environ. Sci. Policy 2022, 133, 98–106. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Adepoju, K.A.; Adelabu, S.A. Improving accuracy of Landsat-8 OLI classification using image composite and multisource data with Google Earth Engine. Remote Sens. Lett. 2020, 11, 107–116. [Google Scholar] [CrossRef]
- Venkatappa, M.; Sasaki, N.; Han, P.; Abed, I. Impacts of droughts and floods on croplands and crop production in Southeast Asia–An application of Google Earth Engine. Sci. Total Environ. 2021, 795, 148829. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, W.; He, T.; Deng, X.Y.; Chen, W.Q. Extraction of built-up area using multi-sensor data—A case study based on Google Earth Engine in Zhejiang Province, China. Int. J. Remote Sens. 2021, 42, 389–404. [Google Scholar] [CrossRef]
- Shaharum, N.; Shafri, H.; Wan, A.; Samsatli, S.; Al-Habshi, M.; Yusuf, B. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2020, 17, 100287. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y.C. Mapping winter crops using a Phenology Algorithm, time-series Sentinel-2 and Landsat-7/8 images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [Google Scholar] [CrossRef]
- Hird, J.; DeLancey, E.; McDermid, G.; Kariyeva, J. Google Earth Engine, Open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.G.; Zou, Z.H.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Li, J.; Lv, J.; Chen, Z.; Jia, K. Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sens. 2017, 9, 270. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-term changes of open-surface water bodies in the Yangtze River Basin based on the Google Earth Engine cloud platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
- Inman, V.L.; Lyons, M.B. Automated inundation mapping over large areas using Landsat data and Google Earth Engine. Remote Sens. 2020, 12, 1348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Chen, S.L.; Pan, S.; Fan, Y.S.; Ji, H.Y. Geomorphic evolution of the Yellow River delta: Quantification of basin-scale natural and anthropogenic impacts. Catena 2018, 163, 361–377. [Google Scholar] [CrossRef]
- Fan, Y.S.; Chen, S.L.; Zhao, B.; Ji, H.Y.; Jiang, C. Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta. Environ. Monit. Assess. 2018, 190, 396. [Google Scholar] [CrossRef] [PubMed]
- Kuenzer, C.; Ottinger, M.; Liu, G.H.; Sun, B.; Baumhauer, R.; Dech, S. Earth observation-691 based coastal zone monitoring of the Yellow River delta: Dynamics in China’s second largest 692 oil producing region observed over four decades. Appl. Geogr. 2014, 55, 92–107. [Google Scholar] [CrossRef]
- Kong, X.L.; Li, Y.L.; Han, M.; Tian, L.X.; Niu, X.R.; Zhu, J.Q.; Wang, M.; Huang, S.P. Distribution of natural wetlands in the Yellow River Delta for three periods since 1990 and driving factors of their changes. Wetl. Sci. 2020, 18, 603–612. [Google Scholar]
- Ren, M.E.; Cui, G. Relative sea-level rise in yellow river delta——implications and response strategies. J. Chin. Geogr. 1991, 5, 85–95. [Google Scholar]
- Li, C.; Li, G.E.; Xie, Z.W.; Wang, H.C. Analysis of the land use history and the causes in Yellow River Delta during the last 15 years. Sci. Technol. Rev. 2015, 33, 37–44. (In Chinese) [Google Scholar]
- Fan, Y.S.; Dou, S.T.; Wang, G.Z.; Wang, K.R. Review and prospect of Yellow River estuary management. Water Resour. Dev. Res. 2022, 22, 48–53. (In Chinese) [Google Scholar]
- Jia, M.M.; Wang, Z.M.; Mao, D.H.; Ren, C.Y.; Wang, C.; Wang, Y.Q. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Ning, J.; Yu, X.; Zhang, Y. An improved method for mapping tidal flats based on remote sensing waterlines: A case study in the Bohai Rim, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5123–5129. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Mao, L.; Cheng, L.; Chen, K.F. Seasonal pattern of tidal-flat topography along the Jiangsu Middle Coast, China, using HJ-1 optical images. Wetlands 2013, 33, 871–886. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; Clemens, R.S.; Roelfsema, C.M.; Fulter, R.A. Continental scale mapping of tidal flats across East Asia using the Landsat archive. Remote Sens. 2012, 4, 3417–3426. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; Ana, D. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.; Zhong, K.; Wang, Y.; Hu, H.; Wu, P. Impervious Surface Extraction by Linear Spectral Mixture Analysis with Post-Processing Model. IEEE Access 2020, 8, 128476–128489. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Sun, J.; Li, J.; Yang, F.; Fu, Z.Y. Spatio-temporal characteristics and main influencing factors of vegetation net primary productivity in the Yellow River Delta in recent 30 years. Acta Ecol. Sin. 2018, 38, 2683–2697. (In Chinese) [Google Scholar]
- Zhou, X.; Xu, X. Typical models of efficient ecological fishery in Dongying City. J. Shanghai Ocean Univ. 2014, 23, 463–469. (In Chinese) [Google Scholar]
- Xie, C.J.; Cui, B.S.; Xie, T.; Yu, S.; Shao, X. Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta. Sci. Total Environ. 2020, 739, 139860. [Google Scholar] [CrossRef]
- Wang, Y. Coastal Marine Scientific Research and Practice; Nanjing University Press: Nanjing, China, 2021. [Google Scholar]
- Ren, G.; Zhao, Y.; Wang, J.; Pw, A.; Yi, M.A. Ecological effects analysis of Spartina alterniflora invasion within yellow river delta using long time series remote sensing imagery. Estuar. Coast. Shelf Sci. 2020, 249, 207111. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Zhang, S. Morphological characteristics and changes of tidal creeks in coastal wetlands of the Yellow River delta under Spartina alterniflora invasion and continuous expansion. Wetl. Sci. 2021, 19, 88–97. [Google Scholar]
- Zhang, C.; Chen, S.; Li, P.; Liu, Q. Spatiotemporal dynamic remote sensing monitoring of typical wetland vegetation in the Current Huanghe River Estuary Reserve. Haiyang Xuebao 2022, 44, 125–136. (In Chinese) [Google Scholar]
- Shi, H.; Lu, J.; Zheng, W.; Sun, J.; Ding, D. Evaluation system of coastal wetland ecological vulnerability under the synergetic influence of land and sea: A case study in the Yellow River Delta, China. Mar. Pollut. Bull. 2020, 161, 111735. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chi, Y.; Fu, Z.; Li, T.; Dong, K. Spatiotemporal variation of plant diversity under a unique estuarine wetland gradient system in the Yellow River delta, China. Chin. Geogr. Sci. 2020, 30, 217–232. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Xu, J.; Nittrouer, J.A.; Yang, Z.; Saito, Y.; Wang, H. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size. Geomorphology 2017, 292, 115–127. [Google Scholar] [CrossRef]
- Bi, N.; Wang, H.; Wu, X.; Saito, Y.; Xu, C.; Yang, Z. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms. Mar. Geol. 2021, 437, 106516. [Google Scholar] [CrossRef]
- Viles, H.A.; Naylor, L.A.; Carter, N.E.A.; Chaput, D. Biogeomorphological disturbance regimes: Progress in linking ecological and geomorphological systems. Earth Surf. Processes Landf. 2008, 33, 1419–1435. [Google Scholar] [CrossRef]
- Verheijen, B.; Varner, D.M.; Haukos, D.A. Effects of large-scale wetland loss on network connectivity of the Rainwater Basin, Nebraska. Landsc. Ecol. 2018, 33, 1939–1951. [Google Scholar] [CrossRef] [Green Version]
Period | Sensor | Time | Image Count |
---|---|---|---|
1990 | Landsat 5 TM | From 1 January 1989 to 31 December 1991 | 42 |
2000 | Landsat 5 TM | From 1 January 1999 to 31 December 2001 | 53 |
Landsat 7 ETM+ | |||
2010 | Landsat 5 TM | From 1 January 2009 to 31 December 2011 | 51 |
Landsat 7 ETM+ | |||
2020 | Landsat 5 TM | From 1 January 2019 to 31 December 2021 | 67 |
Landsat 7 ETM+ | |||
Landsat 8 OLI |
Samples | GF-1/2 | Total | User’s Accuracy | ||
---|---|---|---|---|---|
Water | Non-Water | ||||
Landsat | Water | 492 | 13 | 505 | 97.43% |
Non-water | 18 | 477 | 495 | 96.36% | |
Total | 510 | 490 | 1000 | Overall accuracy = 96.89 | |
Producer’s accuracy | 96.47% | 97.35% | Kappa coefficient = 0.934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Yu, S.; Wang, J.; Li, P.; Chen, S.; Ji, H.; Li, P.; Dou, S. Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation. Land 2022, 11, 1647. https://doi.org/10.3390/land11101647
Fan Y, Yu S, Wang J, Li P, Chen S, Ji H, Li P, Dou S. Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation. Land. 2022; 11(10):1647. https://doi.org/10.3390/land11101647
Chicago/Turabian StyleFan, Yaoshen, Shoubing Yu, Jinghao Wang, Peng Li, Shenliang Chen, Hongyu Ji, Ping Li, and Shentang Dou. 2022. "Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation" Land 11, no. 10: 1647. https://doi.org/10.3390/land11101647
APA StyleFan, Y., Yu, S., Wang, J., Li, P., Chen, S., Ji, H., Li, P., & Dou, S. (2022). Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation. Land, 11(10), 1647. https://doi.org/10.3390/land11101647