Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.2.1. Data Sources and Processing
2.2.2. Transition Matrix of Landscape Types
2.2.3. Landscape Pattern Changes
2.2.4. Quantitative Analysis of Driving Factors for Landscape Pattern
3. Results
3.1. Spatiotemporal Changes in Landscape Types
3.2. Spatiotemporal Changes in Landscape Pattern
3.3. Quantitative Analysis of the Relationships between Landscape Pattern Evolution and Driving Factors
4. Discussion
4.1. Spatial Variation in Land Use, Land Cover, and Landscape Pattern
4.2. Relative Influence of Climatic Factors and Human Activities on Landscape Pattern Evolution
4.3. Limitations
5. Conclusions
- (1)
- From 2000 to 2005, cropland showed a trend of expansion, mainly from the conversion of grassland. Policies, such as the Grain to Green Program, have increased the area of forestland and converted unused land into grassland, slowing grassland degradation. However, population growth and economic development have also led to the conversion of grassland into built-up land, and the area of grassland is still declining.
- (2)
- The landscape pattern in the northwest area was relatively concentrated, with good connectivity, low fragmentation, and relatively regular landscape shapes. The southeastern area had a complex landscape structure and a high SHDI. Moreover, the landscape was more fragmented and heterogeneous. Therefore, we thought that spatial heterogeneity should be considered in land use management and policy making.
- (3)
- This study showed that the higher precipitation, temperature, and population increased the fragmentation of the landscape in the study area. Both climate and human activities played important roles in the impacts of landscape patterns. Human activity was a key driver of the landscape-level landscape index. This study can provide a reference for the balance between ecological environmental protection and socioeconomic development.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Zuo, D.; Xu, Z.; Zhang, R.; Han, Y.; Sun, W.; Pang, B.; Ban, C.; Kan, G.; Yang, H. Dynamic changes of land use/cover and landscape pattern in a typical alpine river basin of the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2021, 32, 4327–4339. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Miller, J.R.; Melack, J.M.; Stanley, E.H. Landscape indicators of human impacts to riverine systems. Aquat. Sci. 2002, 64, 118–128. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G.; Jarvis, W.T.; Zhong, R.; Guo, L. Evolution of landscape pattern and the association with ecosystem services in the Ili-Balkhash Basin. Environ. Monit. Assess. 2022, 194, 1–18. [Google Scholar] [CrossRef]
- Khadka, S.; Gyawali, B.R.; Shrestha, T.B.; Cristan, R.; Banerjee, S.B.; Antonious, G.; Poudel, H.P. Exploring relationships among landownership, landscape diversity, and ecological productivity in Kentucky. Land Use Policy 2021, 111, 105723. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Relationship between landscape diversity and crop production: A case study in the Hebei Province of China based on multi-source data integration. J. Clean Prod. 2017, 142, 985–992. [Google Scholar] [CrossRef]
- Xia, H.; Kong, W.; Zhou, G.; Sun, O.J. Impacts of landscape patterns on water-related ecosystem services under natural restoration in Liaohe River Reserve, China. Sci. Total Environ. 2021, 792, 148290. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Wu, J. A legendary landscape in peril: Land use and land cover change and environmental impacts in the Wulagai River Basin, Inner Mongolia. J. Environ. Manage. 2022, 301, 113816. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; Chen, H.; He, X.; Chu, Y.; Chen, J. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China. Ocean Coast. Manag. 2021, 213, 105842. [Google Scholar] [CrossRef]
- Yang, M.; Gong, J.; Zhao, Y.; Wang, H.; Zhao, C.; Yang, Q.; Yin, Y.; Wang, Y.; Tian, B. Landscape Pattern Evolution Processes of Wetlands and Their Driving Factors in the Xiong’an New Area of China. Int. J. Environ. Res. Public Health 2021, 18, 4403. [Google Scholar] [CrossRef]
- Deng, Z.; Cao, J.; Hu, Y. Spatial and temporal evolution of landscape pattern in downtown area of Jixi City, China. Eur. J. Remote Sensing 2020, 53, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, J.; Zhang, J.; Qin, F.; Hu, J.; Zhou, Z. Analysis of Characteristics and Driving Factors of Wetland Landscape Pattern Change in Henan Province from 1980 to 2015. Land 2021, 10, 564. [Google Scholar] [CrossRef]
- Guo, S.; Bai, H.; Meng, Q.; Zhao, T.; Huang, X.; Qi, G. Landscape pattern changes of woodland and grassland and its driving forces in Qinling Mountains. Acta Ecologica Sinica. 2020, 40, 130–140. [Google Scholar]
- Fan, Q.; Ding, S. Landscape pattern changes at a county scale: A case study in Fengqiu, Henan Province, China from 1990 to 2013. Catena. 2016, 137, 152–160. [Google Scholar] [CrossRef]
- Liu, C.J.; Zhang, F.; Johnson, V.C.; Duan, P.; Kung, H.T. Spatio-temporal variation of oasis landscape pattern in arid area: Human or natural driving? Ecol. Indic. 2021, 125, 107495. [Google Scholar] [CrossRef]
- Xiao, F.; Gao, G.; Shen, Q.; Wang, X.; Ma, Y.; Lü, Y.; Fu, B. Spatio-temporal characteristics and driving forces of landscape structure changes in the middle reach of the Heihe River Basin from 1990 to 2015. Landsc. Ecol. 2019, 34, 755–770. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Li, A.; Liang, C. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena. 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.Q.; Ouyang, Z.T. Responses of landscape structure to the ecological restoration programs in the farming-pastoral ecotone of Northern China. Sci. Total Environ. 2020, 710, 136311. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, J.; Zeng, Q.; Yang, M.; Wang, Y. Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian. Sustainability. 2021, 13, 9747. [Google Scholar] [CrossRef]
- Dou, H.S.; Li, X.B.; Li, S.K.; Dang, D.L.; Li, X.; Lyu, X.; Li, M.Y.; Liu, S.Y. Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. J. Clean Prod. 2020, 256, 15. [Google Scholar] [CrossRef]
- Tong, S.; Dong, Z.; Zhang, J.; Bao, Y.; Guna, A.; Bao, Y. Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015. Sustainability. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Thinh, N.; Li, C. Spatio-Temporal Variation Analysis of Landscape Pattern Response to Land Use Change from 1985 to 2015 in Xuzhou City, China. Sustainability. 2018, 10. [Google Scholar] [CrossRef]
- Garrabou, J.; Riera, J.; Zabala, M. Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landsc. Ecol. 1998, 13, 225–247. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. Fragstats: Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. 1995, 351, 1–122. [Google Scholar]
- Zhang, J.; Lei, G.; Qi, L.; Ding, X.; Cheng, C.; Liu, X. The landscape pattern and ecological service value in Danjiangkou City under land use change from 2003 to 2018. Acta Ecol. Sin. 2021, 41, 1280–1290. [Google Scholar]
- Grande, T.O.; Aguiar, L.M.S.; Machado, R.B. Heating a biodiversity hotspot: Connectivity is more important than remaining habitat. Landsc. Ecol. 2020, 35, 639–657. [Google Scholar] [CrossRef]
- Tran, D.X.; Pearson, D.; Palmer, A.; Lowry, J.; Gray, D.; Dominati, E.J. Quantifying spatial non-stationarity in the relationship between landscape structure and the provision of ecosystem services: An example in the New Zealand hill country. Sci. Total Environ. 2021, 808, 152126. [Google Scholar] [CrossRef]
- Gao, B.; Gong, P.; Zhang, W.; Yang, J.; Si, Y. Multiscale effects of habitat and surrounding matrices on waterbird diversity in the Yangtze River Floodplain. Landsc. Ecol. 2021, 36, 179–190. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, J. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ. 2021, 771, 144904. [Google Scholar] [CrossRef]
- Le Bagousse-Pinguet, Y.; Soliveres, S.; Gross, N.; Torices, R.; Berdugo, M.; Maestre, F.T. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2019, 116, 8419–8424. [Google Scholar] [CrossRef]
- Zubaida, M.; Xia, J.; Polat, M.; Shi, Q.; Zhang, R. Spatiotemporal changes of land use/cover from 1995 to 2015 in an oasis in the middle reaches of the Keriya River, southern Tarim Basin, Northwest China. Catena 2018, 171, 416–425. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Luo, S.; Xu, B.; Zhou, Q. Land Use Changes in the Zoige Plateau Based on the Object-Oriented Method and Their Effects on Landscape Patterns. Remote Sensing. 2019, 12, 14. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Yang, L.; Bao, N.; Sheng, L.; Zhu, Y. Dynamics and driving forces of landscape patterns in Huhhot City of Inner Mongolia Autonomous Region from 1990 to 2010. Bull. Soil Water Conserv. 2018, 38, 217–222. [Google Scholar]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2018, 71, 170–182. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Wang, H.; Hu, M. Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sensing. 2021, 13, 1168. [Google Scholar] [CrossRef]
- Dai, E.; Wu, Z.; Du, X. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China. Front. Earth Sci. 2017, 12, 791–807. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Xin, Y.; Cao, W.; Wang, S.; Liu, Y.; Hao, Y.; Wang, J.; Li, W. Landscape pattern changes and their driving factors in the farming-pasture ecotone, Eastern Qilian Mountains, from 1988 to 2018. Pratacultural Sci. 2020, 37, 1941–1951. [Google Scholar]
- Yao, Y.; Zhang, S.; Shi, Y.; Xu, M.; Zhang, J.; Zhang, Y.; Zhao, J. Landscape Pattern Change of Impervious Surfaces and Its Driving Forces in Shanghai during 1965–2010. Water 2021, 13, 1956. [Google Scholar] [CrossRef]
Level | Metrics | Abbr. | Range | Ecological Significance | References |
---|---|---|---|---|---|
Class | Largest patch index | LPI/% | (0,100] | The proportion of the largest patch in a certain landscape type to the entire landscape area. It determines the dominant patch in the landscape. | [25] |
Patch density | PD/(No/km2) | >0 | The number of a certain patch type per unit area reflects the density of the patch. | [26] | |
Edge density | ED/(m/hm2) | ≥0 | The edge length per unit area reflects the fragmentation degree of the landscape. | [27] | |
Landscape | Aggregation index | AI/% | (0,100] | It indicates the aggregation degree of the landscape; the larger value indicates more aggregation. | [26] |
Contagion | CONTAG/% | (0,100] | It indicates the degree of aggregation and extension of the landscape type; a high extension value indicates that a certain dominant patch type has good connectivity. | [14] | |
Landscape shape index | LSI | ≥1 | It reflects the degree of dispersion and regularity of the landscape shape, which increases as the landscape shape becomes irregular. | [26] | |
Shannon’s diversity index | SHDI | >0 | It reflects the heterogeneity of the landscape. The larger the value is, the higher the heterogeneity, the balanced distribution of each patch type in the landscape, the richer the land use, and the higher the degree of fragmentation. | [28] |
Time | Landscape | Cropland | Forestland | Grassland | Water | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|
2000–2005 | Cropland | 111,707 | 618 | 1570 | 82 | 125 | 144 |
Forestland | 235 | 163,124 | 522 | 16 | 28 | 106 | |
Grassland | 1887 | 1675 | 525,541 | 172 | 285 | 3283 | |
Water | 144 | 34 | 200 | 13,375 | 9 | 929 | |
Built-up land | 24 | 8 | 36 | 3 | 11,164 | 9 | |
Unused land | 273 | 80 | 1519 | 177 | 26 | 319,042 | |
2005–2010 | Cropland | 114,110 | 3 | 48 | 57 | 33 | 19 |
Forestland | 35 | 165,392 | 73 | 34 | 1 | 4 | |
Grassland | 420 | 16 | 528,608 | 108 | 78 | 159 | |
Water | 37 | - | 63 | 13,631 | - | 94 | |
Built-up land | 4 | - | - | 9 | 11,621 | 3 | |
Unused land | 29 | - | 1150 | 93 | 11 | 322,230 | |
2010–2015 | Cropland | 113,172 | 165 | 457 | 100 | 693 | 48 |
Forestland | 145 | 164,855 | 276 | 16 | 96 | 23 | |
Grassland | 941 | 295 | 526,704 | 202 | 1516 | 284 | |
Water | 49 | 8 | 81 | 13,649 | 45 | 100 | |
Built-up land | 33 | 7 | 40 | 10 | 11,648 | 6 | |
Unused land | 141 | 304 | 1822 | 387 | 516 | 319,339 | |
2000–2015 | Cropland | 110,561 | 690 | 1791 | 198 | 838 | 168 |
Forestland | 338 | 162,704 | 709 | 61 | 109 | 110 | |
Grassland | 2916 | 1868 | 522,425 | 420 | 1876 | 3338 | |
Water | 200 | 38 | 304 | 13,118 | 46 | 985 | |
Built-up land | 49 | 12 | 49 | 20 | 11,098 | 16 | |
Unused land | 417 | 322 | 4101 | 547 | 547 | 315,183 |
Population | GDP | Livestock | Temperature | Precipitation | R2adj | ||
---|---|---|---|---|---|---|---|
Standardized regression coefficient | C-LPI | 0.63 *** | −0.24 ** | −0.23 ** | 0.23 * | 0.05 | 0.39 |
F-LPI | 0.17 | −0.01 | −0.17 | −0.55 *** | 0.15 | 0.38 | |
G-LPI | −0.63 *** | 0.3 ** | 0.34 *** | −0.22 * | −0.1 | 0.42 | |
C-PD | −0.23 | 0.29 ** | −0.07 | 0.34 ** | 0.55 *** | 0.26 | |
F-PD | 0.12 | 0.09 | −0.31 *** | 0.42 *** | 0.47 *** | 0.39 | |
G-PD | 0.6 *** | −0.23 * | −0.34 *** | 0.17 | 0.0003 | 0.32 | |
C-ED | 0.44 *** | −0.21 ** | −0.16 | 0.36 *** | 0.3 ** | 0.41 | |
F-ED | 0.22 * | 0.005 | −0.21 * | −0.18 | 0.46 *** | 0.4 | |
G-ED | −0.008 | 0.05 | −0.09 | 0.32 ** | 0.59 *** | 0.28 |
Population | GDP | Livestock | Temperature | Precipitation | R2adj | ||
---|---|---|---|---|---|---|---|
Standardized regression coefficient | LSI | −0.11 | −0.06 | 0.58 *** | −0.03 | 0.51 *** | 0.6 |
CONTAG | −0.41 *** | −0.06 | 0.21 *** | −0.37 *** | −0.33 *** | 0.5 | |
AI | −0.31 *** | 0.03 | 0.2 * | −0.43 *** | −0.46 *** | 0.49 | |
SHDI | 0.44 *** | 0.08 | −0.18 * | 0.33 *** | 0.27 *** | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Li, X.; Liu, S.; Lyu, X.; Dang, D.; Dou, H.; Wang, K. Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015. Land 2022, 11, 1410. https://doi.org/10.3390/land11091410
Li M, Li X, Liu S, Lyu X, Dang D, Dou H, Wang K. Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015. Land. 2022; 11(9):1410. https://doi.org/10.3390/land11091410
Chicago/Turabian StyleLi, Mengyuan, Xiaobing Li, Siyu Liu, Xin Lyu, Dongliang Dang, Huashun Dou, and Kai Wang. 2022. "Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015" Land 11, no. 9: 1410. https://doi.org/10.3390/land11091410
APA StyleLi, M., Li, X., Liu, S., Lyu, X., Dang, D., Dou, H., & Wang, K. (2022). Analysis of the Spatiotemporal Variation of Landscape Patterns and Their Driving Factors in Inner Mongolia from 2000 to 2015. Land, 11(9), 1410. https://doi.org/10.3390/land11091410