Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
- (1)
- Landsat 8 OLI satellite data were used to develop a salinity map which was downloaded from the United States Geological Survey (USGS). The path and row that were used in USGS to download the image are 137 and 44, respectively. The cloud cover was less than 10 percent.
- (2)
- For the ground truth data, a printed map was collected from the Soil Resource Development Institute (SRDI), Ministry of Agriculture. The map illustrates the various point locations with the soil salinity data and the electrical conductivity (EC) value.
2.3. Methodology
2.3.1. Land Use–Land Cover Classification
2.3.2. Normalized Difference Vegetation Index (NDVI)
2.3.3. Satellite Data-Based Soil Salinity Map Preparation and Regression Analysis
3. Results
3.1. Land Use–Land Cover (LULC) Classification
3.2. Normalized Difference Vegetation Index (NDVI)
3.3. Satellite-Based Soil Salinity Maps and Regression Charts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, H. Coastal Zone Management Bangladesh Coastal Zone Management Status and Future Trends. J. Coast. Zone Manag. 2019, 22, 466. [Google Scholar] [CrossRef]
- Abu, M.; Kamal, U.; Rob, K. Delineation of the Coastal Zone; PDO-ICZMP: Dhaka, Bangladesh, 2003. [Google Scholar]
- Rawlani, A.K.; Sovacool, B.K. Building Responsiveness to Climate Change through Community Based Adaptation in Bangladesh. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 845–863. [Google Scholar] [CrossRef]
- Catenazzo, G.; Urso, J.D.; Fragnière, E.; Tuberosa, J. Climate Change and the Sustainable Use of Water Resources; Springer Nature: Basel, Switzerland, 2012; pp. 499–513. [Google Scholar] [CrossRef]
- CIESIN. Low-Elevation Coastal Zone (LECZ) Rural-Urban Estimates. 2010. Available online: http://sedac.ciesin.columbia.edu/gpw/lecz.jsp (accessed on 10 June 2015).
- Wheeler, D. Quantifying Vulnerability to Climate Change: Implications for Adaptation Assistance. SSRN Electron. J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D.; Yan, J. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis. Clim. Change 2009, 93, 379–388. [Google Scholar] [CrossRef]
- Vermeer, M.; Rahmstorf, S. Global Sea Level Linked to Global Temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.E.; Sato, M. Paleoclimate Implications for Human-Made Climate Change (2012); Springer: Vienna, Austria, 2011. [Google Scholar]
- Brecht, H.; Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Sea-Level Rise and Storm Surges: High Stakes for a Small Number of Developing Countries. J. Environ. Dev. 2012, 21, 120–138. [Google Scholar] [CrossRef]
- Clarke, D.; Williams, S.; Jahiruddin, M.; Parks, K.; Salehin, M. Projections of On-Farm Salinity in Coastal Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1127–1136. [Google Scholar] [CrossRef]
- Solutions, S.; World, C. 19th World Congress of Soil Science Global Changes and Soil Salination Table of Contents. 2010. Available online: https://www.iuss.org/19th%20WCSS/Symposium/pdf/WG3.4.pdf (accessed on 8 October 2022).
- Dasgupta, S.; Hossain, M.; Huq, M.; Wheeler, D. Climate Change, Soil Salinity, and the Economics of High-Yield Rice Production in Coastal Bangladesh. World Bank Policy Res. Work. Pap. 2014, 7140. [Google Scholar]
- Hossen, B.; Yabar, H.; Mizunoya, T. Land Suitability Assessment for Pulse (Green Gram) Production through Remote Sensing, GIS and Multicriteria Analysis in the Coastal Region of Bangladesh. Sustainability 2021, 13, 12360. [Google Scholar] [CrossRef]
- Dasgupta, S.; Kamal, F.A.; Khan, Z.H.; Choudhury, S.; Nishat, A. River Salinity and Climate Change: Evidence from Coastal Bangladesh. World Sci. Ref. Asia World Econ. 2015, 205–242. [Google Scholar] [CrossRef] [Green Version]
- Haque, S.A. Salinity Problems and Crop Production in Coastal Regions of Bangladesh. Pakistan J. Bot. 2006, 38, 1359–1365. [Google Scholar]
- Rahman, S. Coastal Community Resilience to Tsunami: A Study on Planning Capacity and Social Capacity, Dichato, Chile. IOSR J. Humanit. Soc. Sci. 2013, 12, 55–63. [Google Scholar] [CrossRef]
- Dasgupta, S.; Sobhan, I.; Wheeler, D. The Impact of Climate Change and Aquatic Salinization on Mangrove Species in the Bangladesh Sundarbans. Ambio 2017, 46, 680–694. [Google Scholar] [CrossRef]
- Choudhury, S.; Dasgupta, S.; Kamal, F.A.; Khan, Z.H.; Nishat, A. River Salinity and Climate Change: Evidence from Coastal Bangladesh (English); Policy Research Working Paper; World Bank Group: Washington, DC, USA, 2014; p. 6817. Available online: https://documents.worldbank.org/curated/en/522091468209055387/River-salinity-and-climate-change-evidence-from-coastal-Bangladesh (accessed on 9 February 2022).
- Land and Soil Resource Utilization Guide; Soil Resource Development Institute (SRDI), SRMAF Project; Ministry of Agriculture: Dhaka, Bangladesh, 2010; pp. 3–5.
- Munns, R.; Husain, S.; Rivelli, A.R.; James, R.A.; Condon, A.T.; Lindsay, M.P.; Hare, R.A. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium; Springer: Dordrecht, The Netherlands, 2002; pp. 93–105. [Google Scholar]
- Läuchli, A.; Grattan, S.R. Plant Responses to Saline and Sodic Conditions; American Society of Civil Engineers: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Schachtman, D.P.; Condon, A.G. The significance of a two-phase growth response to salinity in wheat and barley. Funct. Plant Biol. 1995, 22, 561–569. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A.; Galmés, J.; Kaldenhoff, R.; Medrano, H.; Ribas-Carbo, M. Rapid Variations of Mesophyll Conductance in Response to Changes in CO2 Concentration around Leaves. Plant Cell Environ. 2007, 30, 1284–1298. [Google Scholar] [CrossRef]
- Delfine, S.; Alvino, A.; Villani, M.C.; Loreto, F. Restrictions to Carbon Dioxide Conductance and Photosynthesis in Spinach Leaves Recovering from Salt Stress. Plant Physiol. 1999, 119, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Yeo, A.R. Salinity. In Plant Solute Transport; Yeo, A.R., Flowers, T.J., Eds.; Blackwell: Oxford, UK, 2007; pp. 340–365. [Google Scholar]
- Ghabour, T.; Daels, L. Mapping and Monitoring of Soil Salinity of ISSN. Egypt. J. Soil Sci. 1993, 33, 355–370. [Google Scholar]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative Analysis of Salt-Affected Soil Reflectance Spectra: A Comparison of Two Adaptive Methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Bierwirth, P.N.; Brodie, R.S. Gamma-Ray Remote Sensing of Aeolian Salt Sources in the Murray-Darling Basin, Australia. Remote Sens. Environ. 2008, 112, 550–559. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B.P. Digital Mapping of Soil Salinity in Ardakan Region, Central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Saleh, A. Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques. Arab. J. Geosci. 2013, 6, 2843–2853. [Google Scholar] [CrossRef]
- Saleh, A.M.; Belal, A.B.; Mohamed, E.S. Land resources assessment of El-Galaba basin, South Egypt for the potentiality of agriculture expansion using remote sensing and GIS techniques. Egypt. J. Rem. Sens. Space Sci. 2015, 18, S19–S30. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.M.; Belal, A.B.; Mohamed, E.S. Mapping of soil salinity using electromagnetic induction: A case study of East Nile Delta. Egypt. Egypt. J. Soil Sci. 2017, 57, 167–174. [Google Scholar]
- Morshed, M.M.; Islam, M.T.; Jamil, R. Soil Salinity Detection from Satellite Image Analysis: An Integrated Approach of Salinity Indices and Field Data. Environ. Monit. Assess. 2016, 188, 1–10. [Google Scholar] [CrossRef]
- Alavipanah, S.K. Study of desertification and land changes of playa Damghan by using multitemporal and multispectral satellites. Desert J. 2004, 9, 144–154. [Google Scholar]
- Yu, H.; Liu, M.; Du, B.; Wang, Z.; Hu, L.; Zhang, B. Mapping Soil Salinity/Sodicity by Using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China. Sensors 2018, 18, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Zheng, W.; Sun, J. Simulating Spatial Distribution of Coastal Soil Carbon Content Using a Comprehensive Land Surface Factor System Based on Remote Sensing. Sci. Total Environ. 2018, 628–629, 384–399. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Sun, J.; Liu, W.; Wang, J.; Zhao, M. Mapping Coastal Wetland Soil Salinity in Different Seasons Using an Improved Comprehensive Land Surface Factor System. Ecol. Indic. 2019, 107, 105517. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Atkinson, P.M.; Dash, J.; Rioja-Nieto, R. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8. Remote Sens. 2015, 7, 14530–14558. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, D. Improving Forest Aboveground Biomass Estimation Using Seasonal Landsat NDVI Time-Series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 Imagery for Mapping Leaf Area Index of Mangrove Forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Olano, J.M.; Martín-Hernández, N.; Peña-Gallardo, M.; Tomás-Burguera, M.; Gazol, A.; Azorin-Molina, C.; Bhuyan, U.; El Kenawy, A. Diverse Relationships between Forest Growth and the Normalized Difference Vegetation Index at a Global Scale. Remote Sens. Environ. 2016, 187, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Chávez, R.O.; Clevers, J.G.P.W.; Decuyper, M.; de Bruin, S.; Herold, M. 50 Years of Water Extraction in the Pampa Del Tamarugal Basin: Can Prosopis Tamarugo Trees Survive in the Hyper-Arid Atacama Desert (Northern Chile)? J. Arid Environ. 2016, 124, 292–303. [Google Scholar] [CrossRef]
- Dutrieux, L.P.; Verbesselt, J.; Kooistra, L.; Herold, M. Monitoring Forest Cover Loss Using Multiple Data Streams, a Case Study of a Tropical Dry Forest in Bolivia. ISPRS J. Photogramm. Remote Sens. 2015, 107, 112–125. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.; Al, A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Tempfli, K.; Kerle, N.; Huurneman, G.C.; Janssen, L.L.F.; Bakker, W.H.; Feringa, W.; Woldai, T. Principles of Remote Sensing, An Introductory Textbook, theInternational Institute for Geo-information Science and Earth Observation; University of Twente Faculty of Geo-Information and Earth Observation (ITC): Enschede, The Netherlands, 2009; Chapter 2.2–2.4; pp. 56–85. [Google Scholar]
- Liang, S.; Fang, H.; Chen, M. Atmospheric Correction of Landsat ETM+ Land Surface Imagery-Part I: Methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2490–2498. [Google Scholar] [CrossRef]
- Brown, J.W.; Hayward, H.E.; Richards, A.; Bernstein, L.; Hatcher, J.T.; Reeve, R.C.; Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils, 60; United States Department of Agriculture, Agriculture Handbook, 1954. Available online: https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf (accessed on 8 October 2022).
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. In Agricultural Water Management; Elsevier: Amsterdam, The Netherlands, 2005; Volume 77, pp. 96–109. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of Advanced Land Imaging (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. In Proceedings of the Land, Water & Environmental Management: Integrated Systems for Sustainability, Christchurch, New Zealand; 2007; pp. 2632–2638. Available online: https://researchoutput.csu.edu.au/ws/portalfiles/portal/9629947/CSU290411.pdf (accessed on 8 October 2022).
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; De Pauw, E. Mapping Soil Salinity Changes Using Remote Sensing in Central Iraq. Geoderma Reg. 2014, 2–3, 21–31. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil Salinity Prediction in the Lower Cheliff Plain (Algeria) Based on Remote Sensing and Topographic Feature Analysis. J. Arid Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Zhang, T.T.; Qi, J.G.; Gao, Y.; Ouyang, Z.T.; Zeng, S.L.; Zhao, B. Detecting Soil Salinity with MODIS Time Series VI Data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Shrestha, R.P. Relating Soil Electrical Conductivity to Remote Sensing and Other Soil Properties for Assessing Soil Salinity in Northeast Thailand. L. Degrad. Dev. 2006, 17, 677–689. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A. A Comparison of Methods for Estimating Fractional Vegetation Cover in Arid Regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Djuraev, A.; Mirdjalalov, D.; Nuratdinov, A.; Khushvaktov, T.; Karimov, Y. Evaluation of Soil Salinity Level through NDVI in Syrdarya Province, Uzbekistan. E3S Web Conf. 2021, 258, 03017. [Google Scholar] [CrossRef]
The Total Area Affected by Soil Salinity (×103 ha) | Different Soil Salinity Classes and Areas (×103 ha) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 2.0–4.0 dS/m | S2 4.1–8.0 dS/m | S3 −16.0 dS/m | S4 >16 dS/m | |||||||||||
1973 | 2000 | 2009 | 1973 | 2000 | 2009 | 1973 | 2000 | 2009 | 1973 | 2000 | 2009 | 1973 | 2000 | 2009 |
833.45 | 1020.75 | 1056.26 | 287.37 | 289.76 | 328.43 | 426.43 | 307.20 | 274.22 | 79.75 | 336.58 | 351.69 | 39.90 | 87.14 | 101.92 |
Period 2000–2009 (×103 ha) | Period 1973–2009 (×103 ha) |
35.51 (3.5%) | 222.81 (26.7%) |
Salinity Class | EC (ds/m) | Level of Salinity Effects on Plants |
---|---|---|
Non-saline | 0–2 | Negligible effects on plants. |
Slightly saline | 2–4 | Reduction of crop yield for susceptible plants. |
Moderately saline | 4–8 | Affect a wide variety of plants and limit their yield. |
Highly saline | 8–16 | Only salinity-resistant crops can survive. |
Extremely saline | >16 | Most of the plants cannot grow up. Only a few highly resistant crops survive. |
Salinity Index (SI) | Description | References |
---|---|---|
B2 = Blue (Band 2) B4 = Red (Band 4) | [59] | |
B3 = Green (Band 3) B4 = Red (Band 4) | [59] | |
B3 = Green (Band 3) B4 = Red (Band 4) B5 = Near Infrared (Band 5) | [60] | |
B3 = Green (Band 3) B4 = Red (Band 4) | [60] | |
B4 = Red (Band 4) B5 = Near Infrared (Band 5) | [59] | |
NDSI = Normalized Differential Salinity Index R = Red, NIR = Near Infrared | [59] | |
SWIR = Short-Wave Infrared | [61] | |
G = Green Band, R = Red Band | [61] | |
R = Red Band, NIR = Near Infrared, G = Green Band | [62] |
Salinity Index (SI) | Index Range | Date of Satellite Image | Number of Samples | R2 |
---|---|---|---|---|
0.095–0.4 | 25 May 2017 | 85 | 0.0208 | |
0.084–0.41 | 25 May 2017 | 85 | 0.021 | |
0.17–0.83 | 25 May 2017 | 85 | 0.00006 | |
0.12–0.59 | 25 May 2017 | 85 | 0.0207 | |
0.13–0.72 | 25 May 2017 | 85 | 0.00009 | |
−0.69–0.17 | 25 May 2017 | 85 | 0.0076 | |
0.009–0.099 | 25 May 2017 | 85 | 0.0042 | |
0.05–0.44 | 25 May 2017 | 85 | 0.0228 | |
0.079–0.62 | 25 May 2017 | 85 | 0.0011 |
Salinity Index (SI) | Index Range | Sample Numbers | R2 Value |
---|---|---|---|
0–1 | 28 | 0.83 | |
0–1 | 28 | 0.77 | |
0–1.73 | 28 | 0.76 | |
0–1.42 | 28 | 0.74 | |
0–1.42 | 28 | 0.71 |
NDVI Range | Soil Salinity Level |
---|---|
0.15–0.25 | Very severe salinization |
0.26–0.40 | Moderate to Severe salinization |
0.41–0.55 | Moderate salinization |
0.56–0.70 | Weak salinization |
0.71–1.00 | Non-salinization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossen, B.; Yabar, H.; Faruque, M.J. Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh. Land 2022, 11, 1784. https://doi.org/10.3390/land11101784
Hossen B, Yabar H, Faruque MJ. Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh. Land. 2022; 11(10):1784. https://doi.org/10.3390/land11101784
Chicago/Turabian StyleHossen, Billal, Helmut Yabar, and Md Jamal Faruque. 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh" Land 11, no. 10: 1784. https://doi.org/10.3390/land11101784
APA StyleHossen, B., Yabar, H., & Faruque, M. J. (2022). Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh. Land, 11(10), 1784. https://doi.org/10.3390/land11101784