Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Screening and Selection of Articles
2.3. Data Extraction, Management, and Analysis
2.4. Scope and Limitations
3. Results
4. Discussion
4.1. Trends in Groundwater–Vegetation Research during the Last Three Decades
4.2. Are Plant Growth, Physiology, and Species Diversity Related to Groundwater Depth?
4.3. Can Tree Plantations Deplete Groundwater Resource?
4.4. Can a Decline in Groundwater Depth Promote Biological Invasion?
5. Conclusions and Way Forward
Funding
Data Availability Statement
Conflicts of Interest
References
- Orellana, F.; Verma, P.; Loheide, S.P.; Daly, E. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Rev. Geophys. 2012, 50, 1–24. [Google Scholar] [CrossRef]
- Naumburg, E.; Mata-gonzalez, R.; Hunter, R.G.; Mclendon, T.; Martin, D.W. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation. Environ. Manag. 2005, 35, 726–740. [Google Scholar] [CrossRef] [PubMed]
- Sophocleous, M. From safe yield to sustainable development of water resources—The Kansas Experience. J. Hydrol. 2000, 235, 27–43. [Google Scholar] [CrossRef]
- Green, T.R. Linking climate change and groundwater. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 97–141. [Google Scholar] [CrossRef] [Green Version]
- Skiadaresis, G.; Schwarz, J.A.; Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus Robur L.). Front. For. Glob. Change 2019, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Kalf, F.R.P.; Woolley, D.R. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol. J. 2005, 13, 295–312. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, G.; Yin, H.; Zhao, S.; Shareef, M.; Liu, B.; Gao, X.; Zeng, F. Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. Front. Plant Sci. 2021, 12, 665168. [Google Scholar] [CrossRef] [PubMed]
- Wierda, A.; Fresco, L.F.M.; Grootjans, A.P.; Diggelen, R. Numerical assessment of plant species as indicators of the groundwater regime. J. Veg. Sci. 1997, 8, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.L.; White, D.A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee eucalypt with variation to groundwater depth. Tree Physiol. 2009, 29, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Schume, H.; Grabner, M.; Eckmullner, O. The influence of an altered groundwater regime on vessel properties of hybrid poplar. Trees Struct. Funct. 2004, 18, 184–194. [Google Scholar] [CrossRef]
- Li, J.; Yu, B.; Zhao, C.; Nowak, R.S.; Zhao, Z.; Sheng, Y.; Li, J. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiol. 2012, 33, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wang, H.-W.; Shi, Q.-D. Contrasting plant water-use responses to groundwater depth from seedlings to mature trees in the Gurbantunggut Desert. J. Hydrol. 2022, 610, 127986. [Google Scholar] [CrossRef]
- Doody, T.M.; Holland, K.L.; Benyon, R.G. Effect of groundwater freshening on riparian vegetation water balance. Hydrol. Process. 2009, 23, 3485–3499. [Google Scholar] [CrossRef]
- Knighton, J.; Fricke, E.; Evaristo, J.; Boer, H.J.; Wassen, M.J. Phylogenetic underpinning of groundwater use by trees. Geophys. Res. Lett. 2021, 48, e2021GL093858. [Google Scholar] [CrossRef]
- Knighton, J.; Souter-Kline, V.; Volkmann, T.; Troch, P.A.; Kim, M.; Harman, C.J.; Morris, C.; Buchanan, B.; Walter, M.T. Seasonal and topographic variations in ecohydrological separation within a small, temperate, snow-influenced catchment. Water Resour. Res. 2019, 55, 6417–6435. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; Kohn, M.J.; Laudon, H.; McNamara, J.P.; Smith, A.; Sprenger, M.; Soulsby, C. Stable isotopes of water reveal differences in plant—Soil water relationships across northern environments. Hydrol. Process. 2021, 35, e14023. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for Environmental Science Research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, E.; Castro, J.; Araujo, J.; Heineck, T. A Systematic Literature Review of iStar extensions. J. Syst. Softw. 2018, 137, 1–33. [Google Scholar] [CrossRef]
- Perevochtchikova, M.; De la Mora-De la Mora, G.; Flores, J.A.H.; Marin, W.; Flores, A.L.; Bueno, A.R.; Negrete, I.A.R. Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017. Ecosyst. Serv. 2019, 36, 100900. [Google Scholar] [CrossRef]
- Acharya, K.P.; Pathak, S. Applied Research in low-income countries: Why and how? Front. Res. Metr. Anal. 2019, 4, 3. [Google Scholar] [CrossRef]
- Hernandez, J.O.; Buot, I.E., Jr.; Park, B.B. Prioritizing Choices in the Conservation of Flora and Fauna: Research Trends and Methodological Approaches. Land 2022, 11, 1645. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Xu, C.; Ye, Z.; Chen, Y. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River Basin. Environ. Earth Sci. 2015, 73, 547–558. [Google Scholar] [CrossRef]
- Froend, R.; Sommer, B. Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response. Ecol. Eng. 2010, 36, 1191–1200. [Google Scholar] [CrossRef]
- Eamus, D.; Froend, R. Groundwater-dependent ecosystems: The where, what and why of gdes. Aust. J. Bot. 2006, 54, 91. [Google Scholar] [CrossRef]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef]
- Famiglietti, J. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Fišer, C.; Pipan, T.; Culver, D.C. The vertical extent of groundwater metazoans: An ecological and evolutionary perspective. BioScience 2014, 64, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Devitt, T.J.; Wright, A.M.; Cannatella, D.C.; Hillis, D.M. Species delimitation in endangered groundwater salamanders: Implications for aquifer management and Biodiversity Conservation. Proc. Natl. Acad. Sci. USA 2019, 116, 2624–2633. [Google Scholar] [CrossRef] [Green Version]
- UIS. Research and Development. UNESCO Institute of Statistics. Available online: http://uis.unesco.org/en/topic/research-and-development (accessed on 21 October 2022).
- Lall, U.; Josset, L.; Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Wu, Z.; Yu, J.; Pozdniakov, S.P.; Guan, X.; Wang, H.; Xu, H.; Yan, D. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes. Agric. For. Meteorol. 2022, 320, 108959. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adane, Z.A.; Nasta, P.; Zlotnik, V.; Wedin, D. Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. J. Hydrol. Reg. Stud. 2018, 15, 171–183. [Google Scholar] [CrossRef]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Renninger, H.J.; Carlo, N.; Clark, K.L.; Schafer, K.V. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Tree Physiol. 2014, 34, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, M.M.; Dawson, T.E.; Richards, J.H. Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia 1998, 113, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, C.M.; Pataki, D.E. Ecosystem effects of groundwater depth in Owens Valley, California. Ecohydrology 2011, 4, 458–468. [Google Scholar] [CrossRef]
- Bren, L. Red Gum Forests. In The Murray; Mackay, N., Eastburn, D., Eds.; Murray-Darling Basin Commission: Canberra, Australia, 1990; pp. 230–242. [Google Scholar]
- Heinrich, P. The Eco-Physiology of Riparian River Red Gum (Eucalyptus camaldulensis); Final Report; Australian Water Resources Advisory Council: Melbourne, Australia, 1990. [Google Scholar]
- Yu, K.; D’Odorico, P. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Resour. 2014, 66, 70–80. [Google Scholar] [CrossRef]
- Fei, W.; Yilu, X.; Xiaodong, Y.; Yanju, L.; Guang-Hui, L.; Shengtian, Y. Soil water potential determines the presence of hydraulic lift of Populus euphratica Olivier across growing seasons in an arid desert region. J. For. Sci. 2018, 64, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-D.; Zhang, X.N.; Lv, G.H.; Ali, A. Linking populus euphratica hydraulic redistribution to diversity assembly in the Arid Desert Zone of Xinjiang, China. PLoS ONE 2014, 9, e109071. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.H.; Chen, Y.N.; Li, W.H.; Chen, Y.P. Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, Northwest China. Photosynthetica 2010, 48, 257–268. [Google Scholar] [CrossRef]
- Groom, P.K. Groundwater-dependency and water relations of four Myrtaceae shrub species during a prolonged summer drought. J. R. Soc. West. Aust. 2003, 86, 31–40. [Google Scholar]
- Daudet, F.A.; Lacointe, A.; Gaudillère, J.P.; Cruiziat, P. Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status. J. Theor. Biol. 2002, 214, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Pfautsch, S.; Dodson, W.; Madden, S.; Adams, M.A. Assessing the impact of large-scale water table modifications on riparian trees: A case study from Australia. Ecohydrology 2014, 8, 642–651. [Google Scholar] [CrossRef]
- Skiadaresis, G.; Schwarz, J.; Stahl, K.; Bauhus, J. Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events. Sci. Rep. 2021, 11, 5149. [Google Scholar] [CrossRef]
- Tumajer, J.; Treml, V. Influence of artificial alteration of groundwater level on vessel Lumen area and tree-ring width of Quercus robur. Trees 2017, 31, 1945–1957. [Google Scholar] [CrossRef]
- Tulik, M.; Grochowina, A.; Jura-Morawiec, J.; Bijak, S. Groundwater level fluctuations affect the mortality of black alder (Alnus glutinosa Gaertn.). Forests 2020, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.M.; Jeschke, M.; Zhang, X.; Lang, P. Stand structure and productivity of Populus euphratica along a gradient of groundwater distances at the Tarim River (NW China). J. Plant Ecol. 2016, 10, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Bogino, S.M.; Jobbágy, E.G. Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the pampas (Argentina). For. Ecol. Manag. 2011, 262, 1766–1774. [Google Scholar] [CrossRef]
- Ciruzzi, D.M.; Loheide, S.P. Groundwater subsidizes tree growth and transpiration in sandy humid forests. Ecohydrology 2021, 14, e2294. [Google Scholar] [CrossRef]
- Brolsma, R.J.; Karssenberg, D.; Bierkens, M.F.P. Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater. Ecol. Model. 2010, 221, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Sousa, T.R.; Schietti, J.; Ribeiro, I.O.; Emílio, T.; Fernández, R.H.; ter Steege, H.; Castilho, C.V.; Esquivel-Muelbert, A.; Baker, T.; Pontes-Lopes, A.; et al. Water table depth modulates productivity and biomass across Amazonian forests. Glob. Ecol. Biogeogr. 2022, 31, 1571–1588. [Google Scholar] [CrossRef]
- Feng, W.; Mariotte, P.; Xu, L.; Buttler, A.; Bragazza, L.; Jiang, J.; Santonja, M. Seasonal variability of groundwater level effects on the growth of carex cinerascens in Lake Wetlands. Ecol. Evol. 2019, 10, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, W.; Zhang, Z.; Hou, X.; Ma, Z.; Chen, B. River-groundwater interaction affected species composition and diversity perpendicular to a regulated river in an arid riparian zone. Glob. Ecol. Conserv. 2021, 27, e01595. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Wang, W.; Chen, Y.; Liu, X. Characteristics of plant community and its relationship with groundwater depth of the desert riparian zone in the lower reaches of the Ugan River, Northwest China. Water 2022, 14, 1663. [Google Scholar] [CrossRef]
- Deng, W.; Chen, M.; Zhao, Y.; Yan, L.; Wang, Y.; Zhou, F. The role of groundwater depth in semiarid grassland restoration to increase the resilience to drought events: A lesson from Horqin Grassland, China. Ecol. Indic. 2022, 141, 109122. [Google Scholar] [CrossRef]
- Lv, J.; Wang, X.-S.; Zhou, Y.; Qian, K.; Wan, L.; Eamus, D.; Tao, Z. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China. Ecohydrology 2022, 6, 142–149. [Google Scholar] [CrossRef]
- Villalobos-Vega, R.; Salazar, A.; Miralles-Wilhelm, F.; Haridasan, M.; Franco, A.C.; Goldstein, G. Do groundwater dynamics drive spatial patterns of tree density and diversity in neotropical savannas? J. Veg. Sci. 2014, 25, 1465–1473. [Google Scholar] [CrossRef]
- Gottsberger, G.; Silberbauer-Gottsberger, I. Life in the Cerrado, a South American Tropical Seasonal Ecosystem; Reta: Ulm, Germany, 2006; Volume I. [Google Scholar]
- Antonić, O.; Hatic, D.; Krian, J.; Bukovec, D. Modelling groundwater regime acceptable for the forest survival after the building of the Hydro-Electric Power Plant. Ecol. Model. 2001, 138, 277–288. [Google Scholar] [CrossRef]
- Hingee, M.C.; Eamus, D.; Krix, D.W.; Zolfaghar, S.; Murray, B.R. Patterns of plant species composition in mesic woodlands are related to a naturally occurring depth-to-groundwater gradient. Community Ecol. 2017, 18, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Jobbagy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading Water for Carbon with Biological Carbon Sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswamy, J.; Bonell, M.; Venkatesh, B.; Purandara, B.K.; Rakesh, K.N.; Lele, S.; Kiran, M.C.; Reddy, V.; Badiger, S. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”. J. Hydrol. 2013, 498, 191–209. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2016, 176, 1213–1222. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Miller, G.R.; Chen, X.; Rubin, Y.; Ma, S.; Baldocchi, D.D. Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour. Res. 2010, 46, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Feikema, P.M.; Morris, J.D.; Connell, L.D. The water balance and water sources of a eucalyptus plantation over shallow saline groundwater. Plant Soil 2010, 332, 429–449. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, W.; Yu, P.; Shen, Z.; Guo, M.; Guan, W.; Ma, C.; Ye, B.; Guo, H. Study on the evapotranspiration of forest and vegetation in dryland. J. Soil Water Conserv. 2006, 4, 19–26. [Google Scholar]
- Benyon, R.G.; Theiveyanathan, S.; Doody, T.M. Impacts of tree plantations on groundwater in south-eastern Australia. Aust. J. Bot. 2006, 54, 181. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiao, Y.; Luo, Y.; Song, C.; Bi, J. Effects of afforestation on water resource variations in the Inner Mongolian Plateau. PeerJ 2019, 7, e7525. [Google Scholar] [CrossRef] [Green Version]
- Jobbágy, E.G.; Jackson, R.B. Groundwater use and salinization with grassland afforestation. Glob. Change Biol. 2004, 10, 1299–1312. [Google Scholar] [CrossRef]
- Allen, A.; Chapman, D. Impacts of afforestation on groundwater resources and quality. Hydrogeol. J. 2001, 9, 390–400. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Dzikiti, S.; Schachtschneider, K.; Naiken, V.; Gush, M.; Moses, G.; Le Maitre, D.C. Water relations and the effects of clearing invasive prosopis trees on groundwater in an arid environment in the Northern Cape, South Africa. J. Arid. Environ. 2013, 90, 103–113. [Google Scholar] [CrossRef]
- Shiferaw, H.; Alamirew, T.; Dzikiti, S.; Bewket, W.; Zeleke, G.; Schaffner, U. Water use of Prosopis juliflora and its impacts on catchment water budget and rural livelihoods in Afar Region, Ethiopia. Sci. Rep. 2021, 11, 2688. [Google Scholar] [CrossRef] [PubMed]
- Le Maitre, D.C.; Blignaut, J.N.; Clulow, A.; Dzikiti, S.; Everson, C.S.; Görgens, A.H.; Gush, M.B. Impacts of plant invasions on terrestrial water flows in South Africa. In Biological Invasions in South Africa; Springer: Cham, Switzerland, 2020; pp. 431–457. [Google Scholar] [CrossRef] [Green Version]
- Fortini, L.B.; Leopold, C.R.; Perkins, K.S.; Chadwick, O.A.; Yelenik, S.G.; Jacobi, J.D.; Bishaw, K.; Gregg, M. Landscape level effects of invasive plants and animals on water infiltration through Hawaiian tropical forests. Biol. Invasions 2021, 23, 2155–2172. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S. Altered stream-flow regimes and invasive plant species: The Tamarix case. Glob. Ecol. Biogeogr. 2007, 16, 381–393. [Google Scholar] [CrossRef]
- Ntshidi, Z. Comparative Use of Groundwater by Prosopis Invasions and Cooccurring V. karoo Trees in a Semi-Arid Catchment in the Northern Cape Province, South Africa. Master’s Thesis, University of Western Cape, Cape Town, South Africa, 2015. [Google Scholar]
Search Terms | No. of Articles | ||||
---|---|---|---|---|---|
Science Direct | PubMed | Google Scholar | Direct Search | Total | |
“groundwater level” OR “groundwater depth” AND “effects” | 740 | 828 | 208 | 33 | 1269 |
“groundwater” AND “phreatophytes” | 377 | 16 | 4170 | 16 | 4579 |
“water table” AND “phreatophytes” | 310 | 6 | 3630 | 30 | 3696 |
Extraction Criteria | Information Considered and Justification |
---|---|
1. Publication year | Between 1988 and 2022; to get enough number of studies. |
2. Country of study site | Worldwide; to map the geographical distribution of studies and the trends of publications. |
3. Precipitation | Mentioned mean annual precipitation in the article; to map the amount of precipitation received by the study sites during a specific study period and relate it to aridity conditions. |
4. Topic | Keywords in the title; to determine research trends during the last three decades. |
5. Dominant phreatophytes | The plant species mentioned as dominant in the study site; to determine which among the identified phreatophytes are well-studied and determine how they respond to groundwater fluctuations. |
6. Variables/parameters measured | All variables measured in order to achieve the objectives of the study; to determine which variables are frequently used across the world. |
7. Methodological approaches | All methods employed for measuring the variables/parameters; to determine which methods are frequently used. |
8. Type of study | Field-based, laboratory-based, greenhouse-based, simulation/modelling or combinations; to determine the extent of research investments/efforts for each country. |
Tested Hypotheses | Relative Count (%) | Frequently Measured Parameters | Frequently Used Methods |
---|---|---|---|
Plant growth, physiology, species diversity, and community structure are related to groundwater depth. | 53.64 | Species evenness/diversity/dominance/distribution/composition, plant communities/growth/mortality/distribution/type, Normalized difference vegetation index (NDVI), xylem vessel characteristics, groundwater flux/use/depth/recharge/storage, soil physical and chemical properties, environmental conditions | Dendrochronological technique/cross-dating, stable isotope techniques, groundwater monitoring, vegetation monitoring, thermocouple psychrometry, remote sensing (Landsat), hydrologic modeling |
Tree/farm plantations deplete groundwater due to increased evapotranspiration. | 44.37 | Evapotranspiration, root uptake/density/depth/length, stem sap flow/xylem water, leaf water potential, and environmental conditions | Zero-flux plane (ZFP) method, Eddy-covariance method, stable isotope techniques, groundwater monitoring, vegetation monitoring, heat field deformation method, heat pulse method, remote sensing (Landsat) |
Declines in groundwater depth may promote biological invasion. | 1.99 | Leaf water potential, groundwater flux/use/depth/recharge/storage, plant cover, species richness | Stable isotope techniques, groundwater monitoring, vegetation monitoring, thermocouple psychrometry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, J.O. Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades. Land 2022, 11, 2061. https://doi.org/10.3390/land11112061
Hernandez JO. Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades. Land. 2022; 11(11):2061. https://doi.org/10.3390/land11112061
Chicago/Turabian StyleHernandez, Jonathan O. 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades" Land 11, no. 11: 2061. https://doi.org/10.3390/land11112061
APA StyleHernandez, J. O. (2022). Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades. Land, 11(11), 2061. https://doi.org/10.3390/land11112061