Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Cross-Laminated Timber
3.1.1. Market Development
3.1.2. Climate and Environmental Effects
3.1.3. Development-Enabling Factors
3.2. Paper and Paper Products
3.2.1. Market Development
Graphic Paper
Packaging
3.2.2. Climate and Environmental Impacts
3.2.3. Development-Enabling Factors
3.3. Man-Made Cellulosic Fibres
3.3.1. Market Development
3.3.2. Climate and Environmental Impacts
3.3.3. Development-Enabling Factors
3.4. Biochemicals
3.4.1. Market Development
Crude Sulphate Turpentine
Crude Tall Oil
Lignin
3.4.2. Climate and Environmental Impacts
3.4.3. Development-Enabling Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policymakers; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Secretariat: Bonn, Germany, 2019. [Google Scholar]
- IRP Global Material Flows Database 2020. UN Environment Programme, Secretariat of the International Resource Panel (IRP). Available online: https://www.resourcepanel.org/global-material-flows-database (accessed on 22 December 2022).
- Hatfield-Dodds, S.; Schandl, H.; Newth, D.; Obersteiner, M.; Cai, Y.; Baynes, T.; West, J.; Havlik, P. Assessing Global Resource Use and Greenhouse Emissions to 2050, with Ambitious Resource Efficiency and Climate Mitigation Policies. J. Clean. Prod. 2017, 144, 403–414. [Google Scholar] [CrossRef]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A.; et al. Global Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Aguilar, A.; Twardowski, T.; Wohlgemuth, R. Bioeconomy for Sustainable Development. Biotechnol. J. 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU Ambition to Build the World’s Leading Bioeconomy: Uncertain Times Demand Innovative and Sustainable Solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Birner, R. Bioeconomy Concepts; Lewandowski, I., Ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-68152-8. [Google Scholar]
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five Cornerstones of a Global Bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, Circular, Bio Economy: A Comparative Analysis of Sustainability Avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Hetemäki, L.; Hanewinkel, M.; Muys, B.; Ollikainen, M.; Palahí, M.; Trasobares, A. Leading the Way to a European Circular Bioeconomy Strategy; European Forest Institute: Joensuu, Finland, 2017; Volume 5. [Google Scholar]
- Palahí, M.; Pantsar, M.; Costanza, R.; Kubiszewski, I.; Potočnik, J.; Stuchtey, M.; Nasi, R.; Lovins, H.; Giovannini, E.; Fioramonti, L.; et al. Investing in Nature to Transform the Post COVID-19 Economy: A 10-Point Action Plan to Create a Circular Bioeconomy Devoted to Sustainable Wellbeing. Solutions 2020, 11. Available online: https://thesolutionsjournal.com/2022/07/28/investing-in-nature-to-transform-the-post-covid-19-economy-a-10-point-action-plan-to-create-a-circular-bioeconomy-devoted-to-sustainable-wellbeing/ (accessed on 22 December 2022).
- Global Bioeconomy Summit Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing. In Proceedings of the Global Bioeconomy Summit 2018, Berlin, Germany, 19–20 April 2018.
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Future. 2019, 7, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Global Bioeconomy Summit Expanding the Sustainable Bioeconomy—Vision and Way Forward. In Proceedings of the Global Bioeconomy Summit 2020, Berlin, Germany, 16–20 November 2020.
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The Global Status and Trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Sathre, R.; O’Connor, J. Meta-Analysis of Greenhouse Gas Displacement Factors of Wood Product Substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- MacRae, E.; Harnett, M. Forestry Will Drive New Zealand’s Circular Bioeconomy—No Twig or Needle Wasted. N. Z. J. For. 2019, 64, 3–7. [Google Scholar]
- Hurmekoski, E.; Jonsson, R.; Korhonen, J.; Jänis, J.; Mäkinen, M.; Leskinen, P.; Hetemäki, L. Diversification of the Forest Industries: Role of New Wood-Based Products. Can. J. For. Res. 2018, 48, 1417–1432. [Google Scholar] [CrossRef]
- Hassegawa, M.; Karlberg, A.; Hertzberg, M.; Verkerk, P.J. Innovative Forest Products in the Circular Bioeconomy [Version 2; Peer Review: 2 Approved]. Open Res. Eur. 2022, 2, 19. [Google Scholar] [CrossRef]
- Geng, A.; Yang, H.; Chen, J.; Hong, Y. Review of Carbon Storage Function of Harvested Wood Products and the Potential of Wood Substitution in Greenhouse Gas Mitigation. For. Policy Econ. 2017, 85, 192–200. [Google Scholar] [CrossRef]
- Leskinen, P.; Cardellini, G.; González García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.E.; Stern, T.; Verkerk, H. Substitution Effects of Wood-Based Products in Climate Change Mitigation; European Forest Instute: Joensuu, Finland, 2018; Volume 7, ISBN 978-952-5980-70-7. [Google Scholar]
- Myllyviita, T.; Soimakallio, S.; Judl, J.; Seppälä, J. Wood Substitution Potential in Greenhouse Gas Emission Reduction—Review on Current State and Application of Displacement Factors. For. Ecosyst. 2021, 8. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Smyth, C.E.; Stern, T.; Verkerk, P.J.; Asada, R. Substitution Impacts of Wood Use at the Market Level: A Systematic Review. Environ. Res. Lett. 2021, 16, 123004. [Google Scholar] [CrossRef]
- Näyhä, A.; Hetemäki, L.; Stern, T. New Products Outlook. In Future of the European Forest-Based Sector: Structural Changes towards Bioeconomy; Hetemäki, L., Ed.; European Forest Institute: Joensuu, Finland, 2018; pp. 43–54. ISBN 9789525980165. [Google Scholar]
- Robert, N.; Jonsson, R.; Chudy, R.; Camia, A. The EU Bioeconomy: Supporting an Employment Shift Downstream in the Wood-Based Value Chains? Sustainability 2020, 12, 758. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Sector Outlook 2050: Assessing Future Demand and Sources of Timber for a Sustainable Economy—Background Paper for The State of the World’s Forests; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- UNECE/FAO. Forest Sector Outlook Study 2020–2040; United Nations and the Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- UNECE/FAO. Forest Products Annual Market Review 2019–2020; United Nations and the Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2020; ISBN 9789211172577. [Google Scholar]
- Spekreijse, J.; Lammens, T.; Parisi, C.; Ronzon, T.; Vis, M. Insights into the European Market for Bio-Based Chemicals: Analysis Based on 10 Key Product Categories; Publications Office of the European Union: Luxembourg, Belgium, 2019. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Hassegawa, M.; Van Brusselen, J.; Cramm, M.; Chen, X.; Maximo, Y.I.; Koç, M.; Lovrić, M.; Tegegne, Y.T. Forest Products in the Global Bioeconomy: Enabling Substitution by Wood-Based Products and Contributing to the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; ISBN 9789251351512. [Google Scholar]
- Zaman, A.; Chan, Y.-Q.; Jonescu, E.; Stewart, I. Critical Challenges and Potential for Widespread Adoption of Mass Timber Construction in Australia—An Analysis of Industry Perceptions. Buildings 2022, 12, 1405. [Google Scholar] [CrossRef]
- Muszynski, L.; Larasatie, P.; Hansen, E.N.; Guerrero, E.J.M.; Albee, R. Mass-Timber Panel (MTP) Industry and Its Supply/Value Chain. In Proceedings of the 2021 Society of Wood Science and Technology International Convention, Flagstaff, AZ, USA, 1–6 August 2021. [Google Scholar]
- Muszynski, L.; Larasatie, P.; Guerrero, J.E.; Albee, R. Global CLT Industry in 2020: Growth beyond the Alpine Region. In Proceedings of the 63rd International Convention of Society of Wood Science and Technology, Online, 12–15 July 2020. [Google Scholar]
- UNECE/FAO. Forest Products Annual Market Review 2017–2018; United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO): Geneva, Switzerland, 2018. [Google Scholar]
- Timberbiz First Industrial Scale CLT Plant Opens in Russia. Available online: https://www.timberbiz.com.au/first-industrial-scale-clt-plant-opens-in-russia/ (accessed on 1 September 2021).
- What Wood Ladozhsky DSK Started Producing CLT. Available online: https://whatwood.ru/english/ladozhsky-dsk-started-producing-clt/ (accessed on 1 September 2021).
- Muszynski, L.; Hansen, E.; Fernando, S.; Schwarzmann, G.; Rainer, J.; Abdouli, M.; De Amicis, R.; Geisel, J.; Gitt, N.; Igarashi, T.; et al. Insights into the Global Cross-Laminated Timber Industry. Bioprod. Bus. 2017, 2, 77–92. [Google Scholar] [CrossRef]
- Woodbizforum Japan Announces a Roadmap for Cross-Laminated Timber Use in Mid-Height Construction. Available online: https://www.woodbizforum.com/japan-announces-a-roadmap-for-cross-laminated-timber-use-in-mid-height-construction/ (accessed on 1 September 2021).
- Passarelli, R.N.; Koshihara, M. The Implementation of Japanese Cross Laminated Timber: Current Situation and Future Tasks. In Proceedings of the World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Oliveira, G.L. Cross Laminated Timber (CLT) in Brazil: Constructive Process and Performance. Recommendations for the Architectural Design Process; Universidade de São Paulo: São Paulo, Brazil, 2018. (In Portuguese) [Google Scholar]
- Maximo, Y.I.; Hassegawa, M.; Verkerk, P.J.; Missio, A.L. Forest Bioeconomy in Brazil: Potential Innovative Products from the Forest Sector. Land 2022, 11, 1297. [Google Scholar] [CrossRef]
- URBEM High Technology and Innovation in Brazil. Available online: https://urbembr.com/en/ (accessed on 24 October 2022).
- Durlinger, B.; Crossin, E.; Wong, J. Life Cycle Assessment of a Cross Laminated Timber Building; Market Access Report PRA282-1112; Forest and Wood Products Australia: Melbourne, Australia, 2013. [Google Scholar]
- Grann, B. A Comparative Life Cycle Assessment of Two Multistory Residential Buildings: Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls; FPInnovations: Vancouver, BC, Canada, 2013. [Google Scholar]
- Knauf, M.; Köhl, M.; Mues, V.; Olschofsky, K.; Frühwald, A. Modeling the CO2-Effects of Forest Management and Wood Usage on a Regional Basis. Carbon Balance Manag. 2015, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.; D’Amico, B.; Pomponi, F. Whole-Life Embodied Carbon in Multistory Buildings: Steel, Concrete and Timber Structures. J. Ind. Ecol. 2021, 25, 403–418. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Swedish Wood. Building in Wood around the World. Available online: https://www.swedishwood.com/building-with-wood/construction/a_variety_of_wooden_structures/single_family_houses_and_multi_storey_buildings/building_in_wood_around_the_world/ (accessed on 28 January 2021).
- FAO-ACSFI. Status of Public Policies Encouraging Wood Use in Construction—An Overview; Draft Background Paper Prepared for the 61st Session of the FAO Advisory Committee on Sustainable Forest-Based Industries, April 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Shigue, E.K. Difusão Da Construção Em Madeira No Brasil: Agentes, Ações e Produtos [Diffusion of Timber Construction in Brazil: Stakeholders, Actions and Products]; University of Sao Paulo: Sao Carlos, Brazil, 2018. [Google Scholar]
- Viholainen, N.; Franzini, F.; Lähtinen, K.; Nyrud, A.Q.; Widmark, C.; Hoen, H.F.; Toppinen, A. Citizen Views on Wood as a Construction Material: Results from Seven European Countries. Can. J. For. Res. 2021, 51, 647–659. [Google Scholar] [CrossRef]
- Toivonen, R.; Lilja, A.; Vihemäki, H.; Toppinen, A. Future Export Markets of Industrial Wood Construction—A Qualitative Backcasting Study. For. Policy Econ. 2021, 128, 102480. [Google Scholar] [CrossRef]
- Hetemäki, L.; Hurmekoski, E. Forest Bioeconomy Development: Markets and Industry Structures. In The Wicked Problem Of Forest Policy: A Multidisciplinary Approach to Sustainability in Forest Landscapes; Nikolakis, W., Innes, J., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 231–258. [Google Scholar]
- FAOSTAT Forestry Production and Trade Data. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 16 September 2022).
- Hetemäki, L.; Hänninen, R.; Moiseyev, A. Markets and Market Forces for Pulp and Paper Products. In The Global Forest Sector: Changes, Practices, and Prospects; Hansen, E., Panwar, R., Vlosky, R., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hetemäki, L. ICT and Communication Paper Markets. In Information Technology and the Forest Sector. IUFRO World Series; Hetemäki, L., Nilsson, S., Eds.; IUFRO: Vienna, Austria, 2005; Volume 18, pp. 76–104. [Google Scholar]
- Latta, G.S.; Plantinga, A.J.; Sloggy, M.R. The Effects of Internet Use on Global Demand for Paper Products. J. For. 2016, 114. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Oka, H.; Kayo, C. Socioeconomic Factors Influencing Global Paper and Paperboard Demand. J. Wood Sci. 2017, 63. [Google Scholar] [CrossRef]
- Rougieux, P. Modelling European Forest Products Consumption and Trade in a Context of Structural Change; Université de Lorraine: Nancy, France, 2017. [Google Scholar]
- Johnston, C.M.T. Global Paper Market Forecasts to 2030 under Future Internet Demand Scenarios. J. For. Econ. 2016, 25, 14–28. [Google Scholar] [CrossRef]
- Ervasti, I. Wood Fiber Contents of Different Materials in the Paper Industry Material Chain Expressed in Roundwood Equivalents (RWEs). Silva Fenn. 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Products Facts and Figures 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Hetemäki, L.; Palahí, M.; Nasi, R. Seeing the Wood in the Forests; European Forest Institute: Joensuu, Finland, 2020. [Google Scholar]
- Berg, P.; Lingqvist, O. Pulp, Paper, and Packaging in the Next Decade: Transformational Change; McKinsey Insights: Stockholm, Sweden; Available online: https://www.mckinsey.com/industries/paper-forest-products-and-packaging/our-insights/pulp-paper-and-packaging-in-the-next-decade-transformational-change (accessed on 22 December 2022).
- Barker, T. Comparison of Carton and Plastic Packaging Sustainability; McKinsey & Company: Seoul, Republic of Korea, 2018. [Google Scholar]
- Haggith, M.; Kinsella, S.; Baffoni, S.; Anderson, P.; Ford, J.; Leithe, R.; Neyroumande, E.; Murtha, N.; Tinhout, B. The State of the Global Paper Industry. Shifting Seas: New Challenges and Opportunities for Forests, People and the Climate; Martin, J., Haggith, M., Eds.; Environmental Paper Network: Asheville, NC, USA, 2018. [Google Scholar]
- Tallentire, C.W.; Steubing, B. The Environmental Benefits of Improving Packaging Waste Collection in Europe. Waste Manag. 2020, 103, 426–436. [Google Scholar] [CrossRef]
- FAO. Recovered Paper Data 2009; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- FAO. Recovered Paper Data 2017; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Mansikkasalo, A.; Lundmark, R.; Söderholm, P. Market Behavior and Policy in the Recycled Paper Industry: A Critical Survey of Price Elasticity Research. For. Policy Econ. 2014, 38, 17–29. [Google Scholar] [CrossRef]
- Staub, C. Details on India’s Mixed Paper Import Crackdown. 2020. Resource Recycling. Available online: https://resource-recycling.com/recycling/2020/01/14/details-on-indias-mixed-paper-import-crackdown/ (accessed on 28 January 2021).
- Putz, H.-J.; Schabel, S. Der Mythos Begrenzter Faserlebenszyklen. Über Die Leistungsfähigkeit Einer Papierfaser. Wochenbl. Pap. 2018, 6, 350–357. [Google Scholar]
- Rüter, S.; Werner, F.; Forsell, N.; Prins, C.; Vial, E.; Levet, A.-L. ClimWood2030—Climate Benefits of Material Substitution by Forest Biomass and Harvested Wood Products: Perspective 2030; Thünen Report 42; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2016. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Myllyviita, T.; Seppälä, J.; Heinonen, T.; Kilpeläinen, A.; Pukkala, T.; Mattila, T.; Hetemäki, L.; Asikainen, A.; Peltola, H. Impact of Structural Changes in Wood-Using Industries on Net Carbon Emissions in Finland. J. Ind. Ecol. 2020, 24, 899–912. [Google Scholar] [CrossRef]
- Achachlouei, M.A.; Moberg, Å. Life Cycle Assessment of a Magazine, Part II: A Comparison of Print and Tablet Editions. J. Ind. Ecol. 2015, 19, 590–606. [Google Scholar] [CrossRef]
- Albrecht, S.; Brandstetter, P.; Beck, T.; Fullana-i-Palmer, P.; Grönman, K.; Baitz, M.; Deimling, S.; Sandilands, J.; Fischer, M. An Extended Life Cycle Analysis of Packaging Systems for Fruit and Vegetable Transport in Europe. Int. J. Life Cycle Assess. 2013, 18, 1549–1567. [Google Scholar] [CrossRef]
- Palm. Palm Launches New Graphic Paper: Palm Diamond as Alternative to SC-B Quality. Available online: https://www.palm.de/en/news/news-list/artikel/palm-launches-new-graphic-paper-palm-diamond-as-alternative-to-sc-b-quality-1.html (accessed on 20 May 2021).
- Ahmed, N.M.; Adel, A.M.; Diab, M.A. Packaging Paper with Improved Mechanical and Oil Absorption Properties Based on Novel Ingredients. Packag. Technol. Sci. 2020, 33, 303–320. [Google Scholar] [CrossRef]
- Setajit, C.; Kongvarhodom, C.; Xiao, H. Development of Grease Resistant Packaging Paper Using Cellulose Nanocrystals and Sodium Alginate. Sci. Adv. Mater. 2020, 12, 212–219. [Google Scholar] [CrossRef]
- Shen, Z.; Rajabi-Abhari, A.; Oh, K.; Yang, G.; Youn, H.J.; Lee, H.L. Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating: Effect of the Base Paper and Nanoclay. Polymers 2021, 13, 1334. [Google Scholar] [CrossRef]
- Mittuniversitetet. New Technology Makes the Paper Industry More Efficient. Available online: https://www.miun.se/en/Research/research-centers/fscn-research-centre/News/2017-6/new-technology-makes-the-paper-industry-more-efficient/ (accessed on 20 May 2021).
- PA Consulting. Why Reinventing Corrugated Cardboard Demands Thinking Outside the Box. Available online: https://www.paconsulting.com/insights/why-reinventing-corrugated-cardboard-demands-thinking-outside-the-box/ (accessed on 20 May 2021).
- VTT. Plastic-like Packaging Material Made from Completely Renewable Raw Materials by VTT. Available online: https://www.vttresearch.com/en/news-and-ideas/plastic-packaging-material-made-completely-renewable-raw-materials-vtt (accessed on 6 June 2021).
- Chen, J. Synthetic Textile Fibers. In Textiles and Fashion; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Textile Exchange. Preferred Fiber and Materials: Market Report 2021. 2021. Available online: https://textileexchange.org/app/uploads/2021/08/Textile-Exchange_Preferred-Fiber-and-Materials-Market-Report_2021.pdf (accessed on 22 December 2022).
- CIRFS. Information on Man-Made Fibres; CIRFS: Brussels, Belgium, 2018. [Google Scholar]
- Textile Exchange. Preferred Fibre and Materials: Market Report 2020. 2020. Available online: https://textileexchange.org/app/uploads/2021/03/Textile-Exchange_Preferred-Fiber-Material-Market-Report_2020.pdf (accessed on 22 December 2022).
- Kallio, A.M.I. Wood-Based Textile Fibre Market as Part of the Global Forest-Based Bioeconomy. For. Policy Econ. 2021, 123, 102364. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Patel, M.K. Environmental Impact Assessment of Man-Made Cellulose Fibres. Resour. Conserv. Recycl. 2010, 55, 260–274. [Google Scholar] [CrossRef]
- Mateos-Espejel, E.; Radiotis, T.; Jemaa, N. Implications of Converting a Kraft Pulp Mill to a Dissolving Pulp Operation with a Hemicellulose Extraction Stage. TAPPI J. 2013, 12, 29–38. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Cheng, D.; He, Z. Dissolving Pulp Market and Technologies: Chinese Prospective—A Mini-Review. BioResources 2016, 11, 7902–7916. [Google Scholar] [CrossRef]
- Lundberg, V.; Bood, J.; Nilsson, L.; Axelsson, E.; Berntsson, T.; Svensson, E. Converting a Kraft Pulp Mill into a Multi-Product Biorefinery: Techno-Economic Analysis of a Case Mill. Clean Technol. Environ. Policy 2014, 16, 1411–1422. [Google Scholar] [CrossRef]
- Kumar, H.; Christopher, L.P. Recent Trends and Developments in Dissolving Pulp Production and Application. Cellulose 2017, 24, 2347–2365. [Google Scholar] [CrossRef]
- Şevval Taşar, Z. Virgin Pulp and Recycled Pulp. Available online: https://www.papertr.com/blog/virgin-pulp-and-recycled-pulp/ (accessed on 28 January 2021).
- European Commission. A New Circular Economy Action Plan: For a Cleaner and More Competitive Europe; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 98 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Gillabel, J.; Manshoven, S.; Grossi, F.; Mortensen, L.F.; Coscieme, L. Business Models in a Circular Economy; OECD: Paris, France, 2021. [Google Scholar]
- European Commission. EU Strategy for Textiles; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Elander, M.; Tojo, N.; Tekie, H.; Hennlock, M. Impact Assessment of Policies Promoting Fiber-to-Fiber Recycling of Textiles; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Konwar, L.J.; Mikkola, J.-P.; Bordoloi, N.; Saikia, R.; Chutia, R.S.; Kataki, R. Sidestreams from Bioenergy and Biorefinery Complexes as a Resource for Circular Bioeconomy. In Waste Biorefinery; Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–125. [Google Scholar]
- Baumassy, M. Pine Chemicals Industry Global Overview and Trends. In Proceedings of the 2019 PCA International Conference, Vancouver, BC, Canada, 22–24 September 2019. [Google Scholar]
- Speight, J.G. Upgrading by Gasification. In Heavy Oil Recovery and Upgrading; Elsevier: Amsterdam, The Netherlands, 2019; pp. 559–614. ISBN 978-0-12-813025-4. [Google Scholar]
- Abraham, T.W.; Höfer, R. Lipid-Based Polymer Building Blocks and Polymers. In Polymer Science: A comprehensive reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 15–58. ISBN 9780080878621. [Google Scholar]
- Fraunhofer Institute. Analysis of the European Crude Tall Oil Industry—Environmental Impact, Socio-Economic Value and Downstream Potential; Fraunhofer Institute: Oberhausen, Germany, 2016. [Google Scholar]
- Aryan, V.; Kraft, A. The Crude Tall Oil Value Chain: Global Availability and the Influence of Regional Energy Policies. J. Clean. Prod. 2021, 280, 124616. [Google Scholar] [CrossRef]
- Balakshin, M.Y.; Capanema, E.A.; Sulaeva, I.; Schlee, P.; Huang, Z.; Feng, M.; Borghei, M.; Rojas, O.J.; Potthast, A.; Rosenau, T. New Opportunities in the Valorization of Technical Lignins. ChemSusChem 2021, 14, 1016–1036. [Google Scholar] [CrossRef]
- Miller, J.; Faleiros, M.; Pilla, L.; Bodart, A.-C. Lignin: Technology, Applications and Markets; RISI, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Poveda-Giraldo, J.A.; Solarte-Toro, J.C.; Cardona Alzate, C.A. The Potential Use of Lignin as a Platform Product in Biorefineries: A Review. Renew. Sustain. Energy Rev. 2021, 138, 110688. [Google Scholar] [CrossRef]
- Windeisen, E.; Wegener, G. Lignin as Building Unit for Polymers. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 255–265. ISBN 9780080878621. [Google Scholar]
- Bujanovic, B.M.; Goundalkar, M.J.; Amidon, T.E. Increasing the Value of a Biorefinery Based on Hot-Water Extraction: Lignin Products. TAPPI J. 2012, 10, 19–26. [Google Scholar] [CrossRef]
- Xu, C.C.; Dessbesell, L.; Zhang, Y.; Yuan, Z. Lignin Valorization beyond Energy Use: Has Lignin’s Time Finally Come? Biofuels Bioprod. Biorefining 2020, 15, 32–36. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of Biomass Lignin to High-Value Polyurethane: A Review. J. Bioresour. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environment Impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of Life Cycle Assessments of Lignin and Derived Products: Lessons Learned. Sci. Total Environ. 2021, 770, 144656. [Google Scholar] [CrossRef]
- Cashman, S.A.; Moran, K.M.; Gaglione, A.G. Greenhouse Gas and Energy Life Cycle Assessment of Pine Chemicals Derived from Crude Tall Oil and Their Substitutes. J. Ind. Ecol. 2016, 20, 1108–1121. [Google Scholar] [CrossRef] [Green Version]
- De Bruycker, R.; Anthonykutty, J.M.; Linnekoski, J.; Harlin, A.; Lehtonen, J.; Van Geem, K.M.; Räsänen, J.; Marin, G.B. Assessing the Potential of Crude Tall Oil for the Production of Green-Base Chemicals: An Experimental and Kinetic Modeling Study. Ind. Eng. Chem. Res. 2014, 53, 18430–18442. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, C.; Yao, Y.; Li, J.; He, S.; Zhou, Y.; Li, T.; Pan, X.; Yao, Y.; Hu, L. A Strong, Biodegradable and Recyclable Lignocellulosic Bioplastic. Nat. Sustain. 2021, 4, 627–635. [Google Scholar] [CrossRef]
- Jędrzejczak, P.; Collins, M.N.; Jesionowski, T.; Klapiszewski, Ł. The Role of Lignin and Lignin-Based Materials in Sustainable Construction—A Comprehensive Review. Int. J. Biol. Macromol. 2021, 187, 624–650. [Google Scholar] [CrossRef] [PubMed]
- Parot, M.; Rodrigue, D.; Stevanovic, T. High Purity Softwood Lignin Obtained by an Eco-Friendly Organosolv Process. Bioresour. Technol. Rep. 2022, 17, 100880. [Google Scholar] [CrossRef]
- Dessbesell, L.; Paleologou, M.; Leitch, M.; Pulkki, R.; Xu, C. (Charles) Global Lignin Supply Overview and Kraft Lignin Potential as an Alternative for Petroleum-Based Polymers. Renew. Sustain. Energy Rev. 2020, 123, 109768. [Google Scholar] [CrossRef]
- Nitsos, C.; Stoklosa, R.; Karnaouri, A.; Vörös, D.; Lange, H.; Hodge, D.; Crestini, C.; Rova, U.; Christakopoulos, P. Isolation and Characterization of Organosolv and Alkaline Lignins from Hardwood and Softwood Biomass. ACS Sustain. Chem. Eng. 2016, 4, 5181–5193. [Google Scholar] [CrossRef]
- Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. BioResources 2011, 6, 3547–3568. [Google Scholar] [CrossRef]
- Schier, F.; Morland, C.; Dieter, M.; Weimar, H. Estimating Supply and Demand Elasticities of Dissolving Pulp, Lignocellulose-Based Chemical Derivatives and Textile Fibres in an Emerging Forest-Based Bioeconomy. For. Policy Econ. 2021, 126, 102422. [Google Scholar] [CrossRef]
- Lovrić, N.; Lovrić, M.; Mavsar, R. Factors behind Development of Innovations in European Forest-Based Bioeconomy. For. Policy Econ. 2020, 111, 102079. [Google Scholar] [CrossRef]
- Hänninen, R.; Hurmekoski, E.; Mutanen, A.; Viitanen, J. Complexity of Assessing Future Forest Bioenergy Markets: Review of Bioenergy Potential Estimates in the European Union. Curr. For. Rep. 2018, 4, 13–22. [Google Scholar] [CrossRef]
- Sahoo, K.; Bergman, R.; Alanya-Rosenbaum, S.; Gu, H.; Liang, S. Life Cycle Assessment of Forest-Based Products: A Review. Sustainability 2019, 11, 4722. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.; Wolf, C.; Schulz, C.; Weber-Blaschke, G. 20 Years of Life Cycle Assessment (LCA) in the Forestry Sector: State of the Art and a Methodical Proposal for the LCA of Forest Production. Int. J. Life Cycle Assess. 2015, 20, 556–575. [Google Scholar] [CrossRef]
- Mäkelä, M. Environmental Impacts and Aspects in the Forest Industry: What Kind of Picture Do Corporate Environmental Reports Provide? For. Policy Econ. 2017, 80, 178–191. [Google Scholar] [CrossRef]
- Chaudhary, A.; Burivalova, Z.; Koh, L.P.; Hellweg, S. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs. Sci. Rep. 2016, 6, 23954. [Google Scholar] [CrossRef] [Green Version]
- Butt, N.; Beyer, H.L.; Bennett, J.R.; Biggs, D.; Maggini, R.; Mills, M.; Renwick, A.R.; Seabrook, L.M.; Possingham, H.P. Biodiversity Risks from Fossil Fuel Extraction. Science 2013, 342, 425–426. [Google Scholar] [CrossRef] [Green Version]
- Winter, L.; Lehmann, A.; Finogenova, N.; Finkbeiner, M. Including Biodiversity in Life Cycle Assessment: State of the Art, Gaps and Research Needs. Environ. Impact Assess. Rev. 2017, 67, 88–100. [Google Scholar] [CrossRef]
- Crenna, E.; Marques, A.; La Notte, A.; Sala, S. Biodiversity Assessment of Value Chains: State of the Art and Emerging Challenges. Environ. Sci. Technol. 2020, 54, 9715–9728. [Google Scholar] [CrossRef]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Ecol. 2012, 16, S169–S181. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Filipe, D.A.; Paço, A.; Duarte, A.C.; Rocha-Santos, T.; Patrício Silva, A.L. Are Biobased Plastics Green Alternatives?—A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 7729. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Ozarska, B. Minimizing Environmental Impacts of Timber Products through the Production Process “from Sawmill to Final Products”. Environ. Syst. Res. 2018, 7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassegawa, M.; Van Brusselen, J.; Cramm, M.; Verkerk, P.J. Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability. Land 2022, 11, 2131. https://doi.org/10.3390/land11122131
Hassegawa M, Van Brusselen J, Cramm M, Verkerk PJ. Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability. Land. 2022; 11(12):2131. https://doi.org/10.3390/land11122131
Chicago/Turabian StyleHassegawa, Mariana, Jo Van Brusselen, Mathias Cramm, and Pieter Johannes Verkerk. 2022. "Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability" Land 11, no. 12: 2131. https://doi.org/10.3390/land11122131
APA StyleHassegawa, M., Van Brusselen, J., Cramm, M., & Verkerk, P. J. (2022). Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability. Land, 11(12), 2131. https://doi.org/10.3390/land11122131