Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Documents
2.2. Assignment to Core Themes
3. Results and Discussion
3.1. Body of Literature
3.1.1. Temporal Distribution
3.1.2. First Appearance of Keywords
3.1.3. Assignment to the five Core Themes
3.2. Core Themes and the Related Articles
3.2.1. Core Theme 1—Sustainable Settlement Development
3.2.2. Core Theme 2—Establishment of Agricultural Priority Zones
3.2.3. Core Theme 3—Establishment of Ecological Priority Zones
3.2.4. Core Theme 4—Optimisation of Resource Use
3.2.5. Core Theme 5—Planning Processes
4. Conclusions
- Land acquisition for built environment as a restriction for the use of arable land for bioeconomy-related activities: land-saving urban development is ultimately linked to the land take of biologically productive land. Future research should highlight these land use conflicts and offer approaches to reduce land take.
- Creation of a toolbox offering different methods for the protection of fertile land: The protection of agricultural production areas must be adapted to the regional framework conditions. This requires different planning instruments and tools that have to be built on a comprehensive data basis, the existing regulatory frameworks and the societal discourses around sustainable spatial development.
- Influence of intensified agriculture on the multifunctionality of landscapes: research about bioeconomy strategies should include options for controlling this intensification by using spatial planning as well as landscape and nature conservation instruments to deal with land demand related to less intensive agricultural, horticultural and silvicultural production. It should also consider the protection of living spaces for wild plants and animals as well as the provision of sustainable land use combinations.
- Impacts of the transition to a bioeconomy on biodiversity and ecosystem services: further research should, inter alia, address the use of strategic environmental assessment and environmental impact assessment to integrate policies to reduce and adapt to environmental crises such as climate change, biodiversity losses or the degradation of biologically productive land.
- The role of the regional planning level with respect to the model of a decentralised bioeconomy: how centralised or decentralised should a bioeconomy be? These issues should be discussed on a basis of facts about necessary resource flows and their spatial organisation in the BE transition.
- Planning guidance to avoid land use conflicts and other negative impacts: Research has to be conducted on how to integrate regional effects and the socioeconomic impacts of BE implementation, in planning and governance processes. This also includes the:
- Development of new planning models and instruments that consider the above-listed aspects and combine them in terms of planning contents and processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Generalized Keyword | Quantity | First Appearance |
---|---|---|
Actors | 1 | 2018 |
Adaptation | 1 | 2020 |
Agricultural | 1 | 2018 |
Agriculture | 5 | 2013 |
Agro | 1 | 2021 |
Agroecology | 1 | 2020 |
Bio based | 1 | 2019 |
Bio-based | 3 | 2018 |
Biobased | 1 | 2018 |
Biodiversity | 6 | 2012 |
Bioenergy | 10 | 2012 |
Bioflocculants | 1 | 2020 |
biofuel | 14 | 2010 |
Biogas | 7 | 2012 |
Biomass | 11 | 2010 |
Biorefinery | 16 | 2013 |
Bio-refinery | 1 | 2015 |
Bioregion | 1 | 2016 |
Bioresource | 3 | 2019 |
Bio-resources | 2 | 2017 |
Bio-sourced | 1 | 2018 |
Cascade | 1 | 2019 |
Cascading | 5 | 2013 |
Circular | 1 | 2018 |
Circularity | 4 | 2018 |
Decentralized | 1 | 2021 |
District heating | 1 | 2018 |
Ecological | 1 | 2017 |
Ecology | 1 | 2021 |
Ecosystem | 1 | 2020 |
Energy | 4 | 2017 |
Environment | 5 | 2013 |
Environmental | 1 | 2020 |
Even-flow harvesting targets | 1 | 2017 |
Farm | 1 | 2021 |
Farmland | 1 | 2020 |
Food | 3 | 2018 |
Forest | 2 | 2019 |
Forestry | 3 | 2016 |
Fuels | 1 | 2017 |
Geospatial analysis | 1 | 2020 |
Governance | 6 | 2015 |
Green belt | 1 | 2019 |
Green building | 1 | 2018 |
Green infrastructure | 1 | 2019 |
Impact | 2 | 2019 |
Indirect land use | 1 | 2019 |
Land conflicts | 1 | 2019 |
Land footprint | 3 | 2015 |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Articles selected in WoS | 3 | 9 | 11 | 17 | 24 | 47 | 49 | 126 | 204 | 239 | 365 | 733 | 1827 |
Excluded by Journal | X | X | X | X | X | 4 | 9 | 21 | 33 | 44 | 228 | 14 | 353 |
Excluded by Title or Abstract | 2 | 8 | 11 | 14 | 22 | 34 | 35 | 100 | 154 | 171 | 119 | 697 | 1367 |
Papers analysed | 1 | 1 | 0 | 3 | 2 | 9 | 5 | 5 | 17 | 24 | 18 | 22 | 107 |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Sum per Sub-theme | Sum per Theme | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Core Theme | Subtheme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | Subt. | Core Theme | ||
1 - Land Saving Development | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | ||||||||||||||
2 - Agricultural Priority Areas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 4 | ||||||||||||||
3 - Ecological Priority Areas | Preservation of Biodiversity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 3 | 0 | 1 | 1 | 6 |
Ecosystem Services | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | |||||||||||||||
Landscape Protection | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | ||||||||||||||
4 - Optimization of Resource Use | Utilization of Byproducts | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 7 | 2 | 3 | 1 | 3 | 4 | 13 | 5 | 11 | 2 | 7 | 4 | 14 | 20 | 63 |
Decentralization/Regionality | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 3 | 10 | ||||||||||||||
Resource Use and Management | 0 | 1 | 0 | 1 | 1 | 3 | 1 | 0 | 0 | 0 | 1 | 2 | 10 | ||||||||||||||
Social Aspects | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 6 | 5 | 0 | 5 | 18 | ||||||||||||||
Transportation/Infrastructure | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 5 | ||||||||||||||
5 - Planning Processes | Influence of Policy/Governance | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 9 | 5 | 6 | 6 | 6 | 24 | 32 |
Participation processes | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 4 | ||||||||||||||
Land Use Conflicts | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 4 | ||||||||||||||
Sum of Articles with Spatial Aspects | 1 | 1 | 0 | 3 | 2 | 9 | 5 | 5 | 17 | 24 | 18 | 22 | 107 | 107 |
References
- European Commission. Bioeconomy Country Dashboard. Available online: https://knowledge4policy.ec.europa.eu/visualisation/bioeconomy-different-countries_en (accessed on 7 July 2022).
- German Federal Ministry of Education and Research. Worldwide Strategies. Available online: https://biooekonomie.de/en/topics/in-depth-reports-worldwide?term_node_tid_depth=All (accessed on 27 July 2022).
- Hausknost, D.; Schriefl, E.; Lauk, C.; Kalt, G. A Transition to Which Bioeconomy? An Exploration of Diverging Techno-Political Choices. Sustainability 2017, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-Economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- Schütte, G. What Kind of Innovation Policy Does the Bioeconomy Need? New Biotechnol. 2017, 40, 82–86. [Google Scholar] [CrossRef]
- Bugge, M.; Hansen, T.; Klitkou, A. What Is the Bioeconomy? A Review of the Literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef] [Green Version]
- Priefer, C.; Jörissen, J.; Frör, O. Pathways to Shape the Bioeconomy. Resources 2017, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Gaio, M.; Semenzin, E. A Review of LCA Assessments of Forest-Based Bioeconomy Products and Processes under an Ecosystem Services Perspective. Sci. Total Environ. 2020, 706, 135859. [Google Scholar] [CrossRef]
- Ferreira Gregorio, V.; Pié, L.; Terceño, A. A Systematic Literature Review of Bio, Green and Circular Economy Trends in Publications in the Field of Economics and Business Management. Sustainability 2018, 10, 4232. [Google Scholar] [CrossRef] [Green Version]
- Grossauer, F.; Stoeglehner, G. Bioeconomy—Spatial Requirements for Sustainable Development. Sustainability 2020, 12, 1877. [Google Scholar] [CrossRef] [Green Version]
- Federal Ministry of Education and Research (BMBF). Nationale Forschungsstrategie BioÖkonomie 2030-Unser Weg zu einer bio-basierten Wirtschaft; BMBF: Berlin, Germany, 2010; p. 56. Available online: https://www.nabu.de/imperia/md/content/nabude/gentechnik/nationale_forschungsstrategie_bio__konomie2030.pdf (accessed on 1 December 2022).
- Federal Ministry of Education and Research (BMBF). National Research Strategy BioEconomy 2030; BMBF: Berlin, Germany, 2011; p. 56. [Google Scholar]
- Papadopoulou, C.-I.; Loizou, E.; Melfou, K.; Chatzitheodoridis, F. The Knowledge Based Agricultural Bioeconomy: A Bibliometric Network Analysis. Energies 2021, 14, 6823. [Google Scholar] [CrossRef]
- Pallagst, K.; Vargas-Hernández, J.; Hammer, P. Green Innovation Areas—En Route to Sustainability for Shrinking Cities? Sustainability 2019, 11, 6674. [Google Scholar] [CrossRef]
- Francocci, F.; Trincardi, F.; Barbanti, A.; Zacchini, M.; Sprovieri, M. Linking Bioeconomy to Redevelopment in Contaminated Sites: Potentials and Enabling Factors. Front. Environ. Sci. 2020, 8, 144. [Google Scholar] [CrossRef]
- Melchior, I.C.; Newig, J. Governing Transitions towards Sustainable Agriculture—Taking Stock of an Emerging Field of Research. Sustainability 2021, 13, 528. [Google Scholar] [CrossRef]
- Englund, O.; Börjesson, P.; Berndes, G.; Scarlat, N.; Dallemand, J.-F.; Grizzetti, B.; Dimitriou, I.; Mola-Yudego, B.; Fahl, F. Beneficial Land Use Change: Strategic Expansion of New Biomass Plantations Can Reduce Environmental Impacts from EU Agriculture. Glob. Environ. Change 2020, 60, 101990. [Google Scholar] [CrossRef]
- Gottero, E. Identifying Vulnerable Farmland: An Index to Capture High Urbanisation Risk Areas. Ecol. Indic. 2019, 98, 61–67. [Google Scholar] [CrossRef]
- Choi, H.S.; Entenmann, S.K. Land in the EU for Perennial Biomass Crops from Freed-up Agricultural Land: A Sensitivity Analysis Considering Yields, Diet, Market Liberalization and World Food Prices. Land Use Policy 2019, 82, 292–306. [Google Scholar] [CrossRef]
- Helis, M.; Strzelczyk, M.; Golimowski, W.; Steinhoff-Wrześniewska, A.; Paszkiewicz-Jasińska, A.; Hawrot-Paw, M.; Koniuszy, A.; Hryniewicz, M. Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range. Energies 2021, 14, 7156. [Google Scholar] [CrossRef]
- Haberl, H.; Mbow, C.; Deng, X.; Irwin, E.G.; Kerr, S.; Kuemmerle, T.; Mertz, O.; Meyfroidt, P.; Turner II, B.L. Finite Land Resources and Competition. In Rethinking Global Land Use in an Urban Era; Seto, K.C., Reenberg, A., Eds.; The MIT Press: Cambridge, MA, USA, 2014; pp. 35–69. ISBN 978-0-262-02690-1. [Google Scholar]
- Landesregierung Vorarlberg. Verordnung der Landesregierung über die Festlegung von überörtlichen Freiflächen in der Talsohle des Walgaues; Landesregierung Vorarlberg: Bregenz, Austria, 2020; Volume LVB40038950, p. 6. [Google Scholar]
- Schweizerische Eidgenossenschaft. Sachplan Fruchtfolgeflächen. 2020, p. 24. Available online: https://www.are.admin.ch/are/de/home/medien-und-publikationen/publikationen/strategie-und-planung/sachplan-fruchtfolgeflachen.html (accessed on 1 December 2022).
- Naumov, V.; Manton, M.; Elbakidze, M.; Rendenieks, Z.; Priednieks, J.; Uhlianets, S.; Yamelynets, T.; Zhivotov, A.; Angelstam, P. How to Reconcile Wood Production and Biodiversity Conservation? The Pan-European Boreal Forest History Gradient as an “Experiment”. J. Environ. Manag. 2018, 218, 1–13. [Google Scholar] [CrossRef]
- Englund, O.; Dimitriou, I.; Dale, V.H.; Kline, K.L.; Mola-Yudego, B.; Murphy, F.; English, B.; McGrath, J.; Busch, G.; Negri, M.C.; et al. Multifunctional Perennial Production Systems for Bioenergy: Performance and Progress. WIREs Energy Environ. 2020, 9, e375. [Google Scholar] [CrossRef]
- Blankenberg, A.-G.B.; Skarbøvik, E. Phosphorus Retention, Erosion Protection and Farmers’ Perceptions of Riparian Buffer Zones with Grass and Natural Vegetation: Case Studies from South-Eastern Norway. Ambio 2020, 49, 1838–1849. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Kyere, I. Spatio-Temporal Analysis of the Effects of Biogas Production on Agricultural Lands. Land Use Policy 2021, 102, 105240. [Google Scholar] [CrossRef]
- Lazdinis, M.; Angelstam, P.; Pülzl, H. Towards Sustainable Forest Management in the European Union through Polycentric Forest Governance and an Integrated Landscape Approach. Landsc. Ecol. 2019, 34, 1737–1749. [Google Scholar] [CrossRef] [Green Version]
- Ganzevles, J.; Asveld, L.; Osseweijer, P. Extending Bioenergy towards Smart Biomass Use Issues of Social Acceptance at Park Cuijk, The Netherlands. Energy Sustain. Soc. 2015, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food Waste: Challenges and Opportunities for Enhancing the Emerging Bio-Economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- Olofsson, J.; Börjesson, P. Residual Biomass as Resource—Life-Cycle Environmental Impact of Wastes in Circular Resource Systems. J. Clean. Prod. 2018, 196, 997–1006. [Google Scholar] [CrossRef]
- Santagata, R.; Ripa, M.; Genovese, A.; Ulgiati, S. Food Waste Recovery Pathways: Challenges and Opportunities for an Emerging Bio-Based Circular Economy. A Systematic Review and an Assessment. J. Clean. Prod. 2021, 286, 125490. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A Roadmap towards a Circular and Sustainable Bioeconomy through Waste Valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Wensing, J.; Carraresi, L.; Bröring, S. Do Pro-Environmental Values, Beliefs and Norms Drive Farmers’ Interest in Novel Practices Fostering the Bioeconomy? J. Environ. Manag. 2019, 232, 858–867. [Google Scholar] [CrossRef]
- Manniello, C.; Statuto, D.; Di Pasquale, A.; Giuratrabocchetti, G.; Picuno, P. Planning the Flows of Residual Biomass Produced by Wineries for the Preservation of the Rural Landscape. Sustainability 2020, 12, 847. [Google Scholar] [CrossRef] [Green Version]
- Klein, O.; Nier, S.; Tamásy, C. Towards a Circular Bioeconomy? Pathways and Spatialities of Agri-Food Waste Valorisation. Tijd. Voor Econ. Soc. Geog. 2021, 113, 194–210. [Google Scholar] [CrossRef]
- Wietschel, L.; Thorenz, A.; Tuma, A. Spatially Explicit Forecast of Feedstock Potentials for Second Generation Bioconversion Industry from the EU Agricultural Sector until the Year 2030. J. Clean. Prod. 2019, 209, 1533–1544. [Google Scholar] [CrossRef]
- Brosowski, A.; Krause, T.; Mantau, U.; Mahro, B.; Noke, A.; Richter, F.; Raussen, T.; Bischof, R.; Hering, T.; Blanke, C.; et al. How to Measure the Impact of Biogenic Residues, Wastes and by-Products: Development of a National Resource Monitoring Based on the Example of Germany. Biomass Bioenergy 2019, 127, 105275. [Google Scholar] [CrossRef]
- Hatti-Kaul, R. Biorefineries—A Path to Sustainability? Crop Sci. 2010, 50, S152–S156. [Google Scholar] [CrossRef] [Green Version]
- Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. High Impact Biowastes from South European Agro-Industries as Feedstock for Second-Generation Biorefineries. Crit. Rev. Biotechnol. 2016, 36, 175–189. [Google Scholar] [CrossRef]
- Thorenz, A.; Wietschel, L.; Stindt, D.; Tuma, A. Assessment of Agroforestry Residue Potentials for the Bioeconomy in the European Union. J. Clean. Prod. 2018, 176, 348–359. [Google Scholar] [CrossRef]
- Mahro, B.; Gaida, B.; Schüttmann, I.; Zorn, H. Bestandsaufnahme zu Aufkommen und Nutzung biogener Reststoffe in der deutschen Lebensmittel- und Biotechnikindustrie. Chem. Ing. Tech. 2015, 87, 537–542. [Google Scholar] [CrossRef]
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The Future Agricultural Biogas Plant in Germany: A Vision. Energies 2019, 12, 396. [Google Scholar] [CrossRef] [Green Version]
- Rekleitis, G.; Haralambous, K.-J.; Loizidou, M.; Aravossis, K. Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy. Energies 2020, 13, 4428. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and Environmental Assessment of Residual Bio-Wastes Management Strategies. J. Clean. Prod. 2021, 285, 124815. [Google Scholar] [CrossRef]
- Zeng, A.-P.; Kaltschmitt, M. Green Electricity and Biowastes via Biogas to Bulk-Chemicals and Fuels: The next Move toward a Sustainable Bioeconomy. Eng. Life Sci. 2016, 16, 211–221. [Google Scholar] [CrossRef]
- Brunklaus, B.; Rex, E.; Carlsson, E.; Berlin, J. The Future of Swedish Food Waste: An Environmental Assessment of Existing and Prospective Valorization Techniques. J. Clean. Prod. 2018, 202, 1–10. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef]
- Raimondo, M.; Caracciolo, F.; Cembalo, L.; Chinnici, G.; Pecorino, B.; D’Amico, M. Making Virtue Out of Necessity: Managing the Citrus Waste Supply Chain for Bioeconomy Applications. Sustainability 2018, 10, 4821. [Google Scholar] [CrossRef] [Green Version]
- Peinemann, J.C.; Pleissner, D. Material Utilization of Organic Residues. Appl. Biochem. Biotechnol. 2018, 184, 733–745. [Google Scholar] [CrossRef]
- Angouria-Tsorochidou, E.; Teigiserova, D.A.; Thomsen, M. Limits to Circular Bioeconomy in the Transition towards Decentralized Biowaste Management Systems. Resour. Conserv. Recycl. 2021, 164, 105207. [Google Scholar] [CrossRef]
- Angouria-Tsorochidou, E.; Teigiserova, D.A.; Thomsen, M. Environmental and Economic Assessment of Decentralized Bioenergy and Biorefinery Networks Treating Urban Biowaste. Resour. Conserv. Recycl. 2021, 176, 105898. [Google Scholar] [CrossRef]
- Taffuri, A.; Sciullo, A.; Diemer, A.; Nedelciu, C.E. Integrating Circular Bioeconomy and Urban Dynamics to Define an Innovative Management of Bio-Waste: The Study Case of Turin. Sustainability 2021, 13, 6224. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Achillas, C.; Agnantiaris, I.; Michailidou, A.V.; Pallas, C.; Feleki, E.; Moussiopoulos, N. Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy. Energies 2020, 13, 2306. [Google Scholar] [CrossRef]
- Bastioli, C. Of Added Value Products in Europe: An Italian Perspective. Chim. Oggi 2013, 31, 4. [Google Scholar]
- Maack, J.; Lingenfelder, M.; Smaltschinski, T.; Jaeger, D.; Koch, B. Exploring the Regional Potential of Lignocellulosic Biomass for an Emerging Bio-Based Economy: A Case Study from Southwest Germany. Forests 2017, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Bezama, A.; Ingrao, C.; O’Keeffe, S.; Thrän, D. Resources, Collaborators, and Neighbors: The Three-Pronged Challenge in the Implementation of Bioeconomy Regions. Sustainability 2019, 11, 7235. [Google Scholar] [CrossRef]
- Attard, J.; McMahon, H.; Doody, P.; Belfrage, J.; Clark, C.; Anda Ugarte, J.; Pérez-Camacho, M.N.; Cuenca Martín, M.D.S.; Giráldez Morales, A.J.; Gaffey, J. Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland. Sustainability 2020, 12, 4595. [Google Scholar] [CrossRef]
- Brosowski, A.; Bill, R.; Thrän, D. Temporal and Spatial Availability of Cereal Straw in Germany—Case Study: Biomethane for the Transport Sector. Energy Sustain. Soc. 2020, 10, 42. [Google Scholar] [CrossRef]
- Vamza, I.; Kubule, A.; Zihare, L.; Valters, K.; Blumberga, D. Bioresource Utilization Index—A Way to Quantify and Compare Resource Efficiency in Production. J. Clean. Prod. 2021, 320, 128791. [Google Scholar] [CrossRef]
- Keegan, D.; Kretschmer, B.; Elbersen, B.; Panoutsou, C. Cascading Use: A Systematic Approach to Biomass beyond the Energy Sector. Biofuels Bioprod. Bioref. 2013, 7, 193–206. [Google Scholar] [CrossRef]
- Kalt, G.; Baumann, M.; Lauk, C.; Kastner, T.; Kranzl, L.; Schipfer, F.; Lexer, M.; Rammer, W.; Schaumberger, A.; Schriefl, E. Transformation Scenarios towards a Low-Carbon Bioeconomy in Austria. Energy Strategy Rev. 2016, 13–14, 125–133. [Google Scholar] [CrossRef]
- Nilsson, J.; Sundberg, C.; Tidåker, P.; Hansson, P.-A. Regional Variation in Climate Impact of Grass-Based Biogas Production: A Swedish Case Study. J. Clean. Prod. 2020, 275, 122778. [Google Scholar] [CrossRef]
- McDonagh, J. Rural Geography III: Do We Really Have a Choice? The Bioeconomy and Future Rural Pathways. Prog. Hum. Geogr. 2015, 39, 658–665. [Google Scholar] [CrossRef]
- O’Brien, M.; Schütz, H.; Bringezu, S. The Land Footprint of the EU Bioeconomy: Monitoring Tools, Gaps and Needs. Land Use Policy 2015, 47, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Höltinger, S.; Schmidt, J.; Schönhart, M.; Schmid, E. A Spatially Explicit Techno-Economic Assessment of Green Biorefinery Concepts. Biofuels Bioprod. Bioref 2014, 8, 325–341. [Google Scholar] [CrossRef]
- Shortall, O.K.; Raman, S.; Millar, K. Are Plants the New Oil? Responsible Innovation, Biorefining and Multipurpose Agriculture. Energy Policy 2015, 86, 360–368. [Google Scholar] [CrossRef]
- Dubois, J.-L. Requirements for the Development of a Bioeconomy for Chemicals. Curr. Opin. Environ. Sustain. 2011, 3, 11–14. [Google Scholar] [CrossRef]
- Fernández-Puratich, H.; Rebolledo-Leiva, R.; Hernández, D.; Gómez-Lagos, J.E.; Armengot-Carbo, B.; Oliver-Villanueva, J.V. Bi-Objective Optimization of Multiple Agro-Industrial Wastes Supply to a Cogeneration System Promoting Local Circular Bioeconomy. Appl. Energy 2021, 300, 117333. [Google Scholar] [CrossRef]
- Bennich, T.; Belyazid, S.; Kopainsky, B.; Diemer, A. Understanding the Transition to a Bio-Based Economy: Exploring Dynamics Linked to the Agricultural Sector in Sweden. Sustainability 2018, 10, 1504. [Google Scholar] [CrossRef] [Green Version]
- Falcone, P.M.; García, S.G.; Imbert, E.; Lijó, L.; Moreira, M.T.; Tani, A.; Tartiu, V.E.; Morone, P. Transitioning towards the Bio-economy: Assessing the Social Dimension through a Stakeholder Lens. Corp. Soc. Responsib. Environ. Manag. 2019, 26, 1135–1153. [Google Scholar] [CrossRef] [Green Version]
- Marty, P.; Dermine-Brullot, S.; Madelrieux, S.; Fleuet, J.; Lescoat, P. Transformation of Socioeconomic Metabolism Due to Development of the Bioeconomy: The Case of Northern Aube (France). Eur. Plan. Stud. 2021, 30, 1212–1229. [Google Scholar] [CrossRef]
- Paşnicu, D.; Ghenţa, M.; Matei, A. Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe. Amfiteatru Econ. 2019, 21, 9. [Google Scholar] [CrossRef]
- Winkler, B.; Maier, A.; Lewandowski, I. Urban Gardening in Germany: Cultivating a Sustainable Lifestyle for the Societal Transition to a Bioeconomy. Sustainability 2019, 11, 801. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Hernández, A.; Esteban, E.; Garrido, P. Transition to a Bioeconomy: Perspectives from Social Sciences. J. Clean. Prod. 2019, 224, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M.; Brunori, G.; Chiaramonti, D.; Matthews, R.; Panoutsou, C.; Fritsche, U.R. Bioeconomy and Green Recovery in a Post-COVID-19 Era. Sci. Total Environ. 2021, 808, 152180. [Google Scholar] [CrossRef]
- Ramcilovic-Suominen, S.; Pülzl, H. Sustainable Development—A ‘Selling Point’ of the Emerging EU Bioeconomy Policy Framework? J. Clean. Prod. 2018, 172, 4170–4180. [Google Scholar] [CrossRef]
- de Schutter, L.; Giljum, S.; Häyhä, T.; Bruckner, M.; Naqvi, A.; Omann, I.; Stagl, S. Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability 2019, 11, 5705. [Google Scholar] [CrossRef] [Green Version]
- Mattila, T.J.; Judl, J.; Macombe, C.; Leskinen, P. Evaluating Social Sustainability of Bioeconomy Value Chains through Integrated Use of Local and Global Methods. Biomass Bioenergy 2018, 109, 276–283. [Google Scholar] [CrossRef]
- Stern, T.; Ploll, U.; Spies, R.; Schwarzbauer, P.; Hesser, F.; Ranacher, L. Understanding Perceptions of the Bioeconomy in Austria—An Explorative Case Study. Sustainability 2018, 10, 4142. [Google Scholar] [CrossRef] [Green Version]
- Zabaniotou, A. Redesigning a Bioenergy Sector in EU in the Transition to Circular Waste-Based Bioeconomy-A Multidisciplinary Review. J. Clean. Prod. 2018, 177, 197–206. [Google Scholar] [CrossRef]
- Taufik, D.; Dagevos, H. Driving Public Acceptance (Instead of Skepticism) of Technologies Enabling Bioenergy Production: A Corporate Social Responsibility Perspective. J. Clean. Prod. 2021, 324, 129273. [Google Scholar] [CrossRef]
- Kristensen, I.; Dubois, A. Social Constructing of a Rural Bioeconomy Cluster: The Case of the Processum Biorefinery Complex in Northern Sweden. J. Rural Stud. 2021, 86, 87–96. [Google Scholar] [CrossRef]
- Pinto-Correia, T.; Rivera, M.; Guarín, A.; Grivins, M.; Tisenkopfs, T.; Hernández, P.A. Unseen Food: The Importance of Extra-Market Small Farm’s Production for Rural Households in Europe. Glob. Food Secur. 2021, 30, 100563. [Google Scholar] [CrossRef]
- Varela-Candamio, L.; Calvo, N.; Novo-Corti, I. The Role of Public Subsidies for Efficiency and Environmental Adaptation of Farming: A Multi-Layered Business Model Based on Functional Foods and Rural Women. J. Clean. Prod. 2018, 183, 555–565. [Google Scholar] [CrossRef]
- Vac, C.; Popita, G.-E. Biomass: Economical, social and environmental aspects in biogas plants implementation. J. Environ. Prot. Ecol. 2015, 16, 10. [Google Scholar]
- Korhonen, J.; Pätäri, S.; Toppinen, A.; Tuppura, A. The Role of Environmental Regulation in the Future Competitiveness of the Pulp and Paper Industry: The Case of the Sulfur Emissions Directive in Northern Europe. J. Clean. Prod. 2015, 108, 864–872. [Google Scholar] [CrossRef]
- San Martin, D.; Orive, M.; Martínez, E.; Iñarra, B.; Ramos, S.; González, N.; de Salas, A.G.; Vázquez, L.; Zufía, J. Decision Making Supporting Tool Combining AHP Method with GIS for Implementing Food Waste Valorisation Strategies. Waste Biomass Valor 2017, 8, 1555–1567. [Google Scholar] [CrossRef]
- Muradin, M.; Kulczycka, J. The Identification of Hotspots in the Bioenergy Production Chain. Energies 2020, 13, 5757. [Google Scholar] [CrossRef]
- Schröder, T.; Lauven, L.-P.; Geldermann, J. Improving Biorefinery Planning: Integration of Spatial Data Using Exact Optimization Nested in an Evolutionary Strategy. Eur. J. Oper. Res. 2018, 264, 1005–1019. [Google Scholar] [CrossRef]
- Ziemele, J.; Cilinskis, E.; Blumberga, D. Pathway and Restriction in District Heating Systems Development towards 4th Generation District Heating. Energy 2018, 152, 108–118. [Google Scholar] [CrossRef]
- Kirs, M.; Karo, E.; Ukrainski, K. Transformative Change and Policy-Making: The Case of Bioeconomy Policies in the EU Frontrunners and Lessons for Latecomers. Innov. Eur. J. Soc. Sci. Res. 2021, 1–33. [Google Scholar] [CrossRef]
- Töller, A.E.; Vogelpohl, T.; Beer, K.; Böcher, M. Is Bioeconomy Policy a Policy Field? A Conceptual Framework and Findings on the European Union and Germany. J. Environ. Policy Plan. 2021, 23, 152–164. [Google Scholar] [CrossRef]
- Muscat, A.; de Olde, E.M.; Kovacic, Z.; de Boer, I.J.M.; Ripoll-Bosch, R. Food, Energy or Biomaterials? Policy Coherence across Agro-Food and Bioeconomy Policy Domains in the EU. Environ. Sci. Policy 2021, 123, 21–30. [Google Scholar] [CrossRef]
- Moosmann, D.; Majer, S.; Ugarte, S.; Ladu, L.; Wurster, S.; Thrän, D. Strengths and Gaps of the EU Frameworks for the Sustainability Assessment of Bio-Based Products and Bioenergy. Energy Sustain. Soc. 2020, 10, 22. [Google Scholar] [CrossRef]
- Bößner, S.; Johnson, F.X.; Shawoo, Z. Governing the Bioeconomy: What Role for International Institutions? Sustainability 2020, 13, 286. [Google Scholar] [CrossRef]
- Bosman, R.; Rotmans, J. Transition Governance towards a Bioeconomy: A Comparison of Finland and The Netherlands. Sustainability 2016, 8, 1017. [Google Scholar] [CrossRef] [Green Version]
- Philp, J. Balancing the Bioeconomy: Supporting Biofuels and Bio-Based Materials in Public Policy. Energy Environ. Sci. 2015, 8, 3063–3068. [Google Scholar] [CrossRef]
- Thrän, D.; Schaubach, K.; Majer, S.; Horschig, T. Governance of Sustainability in the German Biogas Sector—Adaptive Management of the Renewable Energy Act between Agriculture and the Energy Sector. Energy Sustain. Soc. 2020, 10, 3. [Google Scholar] [CrossRef]
- Parra-López, C.; Holley, M.; Lindegaard, K.; Sayadi, S.; Esteban-López, G.; Durán-Zuazo, V.H.; Knauer, C.; von Engelbrechten, H.G.; Winterber, R.; Henriksson, A.; et al. Strengthening the Development of the Short-Rotation Plantations Bioenergy Sector: Policy Insights from Six European Countries. Renew. Energy 2017, 114, 781–793. [Google Scholar] [CrossRef]
- Morone, P.; Yilan, G.; Imbert, E. Using Fuzzy Cognitive Maps to Identify Better Policy Strategies to Valorize Organic Waste Flows: An Italian Case Study. J. Clean. Prod. 2021, 319, 128722. [Google Scholar] [CrossRef]
- Cavicchi, B.; Palmieri, S.; Odaldi, M. The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation. Sustainability 2017, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.; Kortelainen, J. Recoding of an Industrial Town: Bioeconomy Hype as a Cure from Decline? Eur. Plan. Stud. 2021, 29, 57–74. [Google Scholar] [CrossRef]
- Devaney, L.; Henchion, M. Consensus, Caveats and Conditions: International Learnings for Bioeconomy Development. J. Clean. Prod. 2018, 174, 1400–1411. [Google Scholar] [CrossRef]
- Gawel, E.; Pannicke, N.; Hagemann, N. A Path Transition Towards a Bioeconomy—The Crucial Role of Sustainability. Sustainability 2019, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Stupak, I.; Smith, C.T.; Clarke, N. Governing Sustainability of Bioenergy, Biomaterial and Bioproduct Supply Chains from Forest and Agricultural Landscapes. Energy Sustain. Soc. 2021, 11, 12. [Google Scholar] [CrossRef]
- Philippidis, G.; M’barek, R.; Ferrari, E. Is ‘Bio-Based’ Activity a Panacea for Sustainable Competitive Growth? Energies 2016, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Future 2019, 7, 43–57. [Google Scholar] [CrossRef]
- Vita, G.; Lundström, J.R.; Hertwich, E.G.; Quist, J.; Ivanova, D.; Stadler, K.; Wood, R. The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences. Ecol. Econ. 2019, 164, 106322. [Google Scholar] [CrossRef]
- Goven, J.; Pavone, V. The Bioeconomy as Political Project: A Polanyian Analysis. Sci. Technol. Hum. Values 2015, 40, 302–337. [Google Scholar] [CrossRef]
- Blumberga, A.; Bazbauers, G.; Davidsen, P.I.; Blumberga, D.; Gravelsins, A.; Prodanuks, T. System Dynamics Model of a Biotechonomy. J. Clean. Prod. 2018, 172, 4018–4032. [Google Scholar] [CrossRef]
- Jander, W.; Grundmann, P. Monitoring the Transition towards a Bioeconomy: A General Framework and a Specific Indicator. J. Clean. Prod. 2019, 236, 117564. [Google Scholar] [CrossRef]
- Juerges, N.; Hansjürgens, B. Soil Governance in the Transition towards a Sustainable Bioeconomy—A Review. J. Clean. Prod. 2018, 170, 1628–1639. [Google Scholar] [CrossRef]
- McCormick, K.; Kautto, N. The Bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- Lynch, D.H.J.; Klaassen, P.; van Wassenaer, L.; Broerse, J.E.W. Constructing the Public in Roadmapping the Transition to a Bioeconomy: A Case Study from the Netherlands. Sustainability 2020, 12, 3179. [Google Scholar] [CrossRef] [Green Version]
- Wohlfahrt, J.; Ferchaud, F.; Gabrielle, B.; Godard, C.; Kurek, B.; Loyce, C.; Therond, O. Characteristics of Bioeconomy Systems and Sustainability Issues at the Territorial Scale. A Review. J. Clean. Prod. 2019, 232, 898–909. [Google Scholar] [CrossRef]
- Takala, T.; Tikkanen, J.; Haapala, A.; Pitkänen, S.; Torssonen, P.; Valkeavirta, R.; Pöykkö, T. Shaping the Concept of Bioeconomy in Participatory Projects—An Example from the Post-Graduate Education in Finland. J. Clean. Prod. 2019, 221, 176–188. [Google Scholar] [CrossRef]
- Bruckner, M.; Häyhä, T.; Giljum, S.; Maus, V.; Fischer, G.; Tramberend, S.; Börner, J. Quantifying the Global Cropland Footprint of the European Union’s Non-Food Bioeconomy. Environ. Res. Lett. 2019, 14, 045011. [Google Scholar] [CrossRef]
- Pfennig, A. Sustainable Bio- or CO2 Economy: Chances, Risks, and Systems Perspective. ChemBioEng Rev. 2019, 6, 90–104. [Google Scholar]
- Nsanganwimana, F.; Pourrut, B.; Mench, M.; Douay, F. Suitability of Miscanthus Species for Managing Inorganic and Organic Contaminated Land and Restoring Ecosystem Services. A Review. J. Environ. Manag. 2014, 143, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Ciria, C.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. Sustainability 2019, 11, 1833. [Google Scholar] [CrossRef] [Green Version]
- Stoeglehner, G.; Abart-Heriszt, L. Integrated Spatial and Energy Planning in Styria—A Role Model for Local and Regional Energy Transition and Climate Protection Policies. Renew. Sustain. Energy Rev. 2022, 165, 112587. [Google Scholar] [CrossRef]
- Horak, D.; Hainoun, A.; Neugebauer, G.; Stoeglehner, G. A Review of Spatio-Temporal Urban Energy System Modeling for Urban Decarbonization Strategy Formulation. Renew. Sustain. Energy Rev. 2022, 162, 112426. [Google Scholar] [CrossRef]
Core Theme 1—Sustainable Settlement Development | ||
---|---|---|
Key Topic | Main Aspects/Arguments | Articles |
Reuse of building land | Usage of brownfields for Green Innovation Areas | [14] |
Cross-cutting approach in a bioeconomy framework for the reuse of contaminated, industrially used land | [15] |
Core Theme 2—Establishment of Agricultural Priority Zones | ||
---|---|---|
Key Topic | Main Aspects/Arguments | Articles |
Land use change | Creation of priority zones for the development of permanent grassland for biomass production. | [17] |
Pressure on farmland | Development of an index for calculating the potential threat Usage of spatial planning for soil protection | [18] |
Cultivation of raw materials for fibre, fuel and energy | Check of the potential of marginal farmland to produce raw materials | [19,20] |
Core Theme 3—Establishment of Ecological Priority Zones | ||
---|---|---|
Key Topic | Main Aspects/Arguments | Articles |
Preservation of Biodiversity | Applicating integrative spatial planning processes to preserve valuable habitats | [24] |
Ecosystem Services | Using spatial planning in combination with appropriate land management for the allocation of multifunctional areas | [25] |
Selecting specific measures to establish buffer zones around crops with a holistic approach | [26] | |
Using marginal land to avoid land use conflicts | [27] | |
Landscape Protection | Loss of landscape mosaics and of biodiversity through intensification of crop production | [28] |
Sustainable forest management at local level through consideration of the specific landscape conditions | [29] |
Core Theme 4—Optimisation of Resource Use | ||
---|---|---|
Key Topic | Main Aspects/Arguments | Articles |
Utilisation of By-products | Importance of waste prevention and utilisation | [31,32,33] |
Current methods on waste and by-product streams bioconversion | [34] | |
Valorisation of residual resource | [35,36,37] | |
The importance of knowledge about the existing raw material potentials. | [38,39,40,41,42] | |
Usage of biogenic by-products to produce energy | [43,44,45,46] | |
Usage of biogenic by-products to produce chemicals | [47,48,49] | |
The interest of producers in recycling agricultural waste and by-products | [50] | |
Decentral, Regional and Local Aspects | Decentralised and local processing | [51,52,53,54,55,56] |
Availability of bio resources and optimisation of transport distances | [57,58,59,60] | |
Resource Use and Management | Efficient use of bioresources | [61,62] |
Intensification of bioresource use and its consequences | [63,64,65,66] | |
Sustainable multipurpose biomass production | [67,68,69,70]) | |
Social Aspects | Social aspects of the transition to bioeconomy | [71,72,73,74,75] |
Social sustainability | [76,77,78,79,80] | |
Social acceptance | [30,81,82,83] | |
Multiple aspects | [84,85,86,87] | |
Transport, Infrastructure and Logistics | Optimisation of transport routes | [88,89,90] |
Optimisation of site selection for biorefineries | [89,90,91] | |
Advancement of district heating systems | [92] |
Core Theme 5—Planning Processes | ||
---|---|---|
Key topic | Main Aspects/Arguments/Topics | Articles |
Influence of Policy and Governance | International level | [93,94,95,96,97] |
National level | [10,98,99,100,101,102] | |
Regional level | [97] | |
Local level | [103,104] | |
Sustainable policy | [105,106,107,108,109,110] | |
Political Influences on BE implementation in general | [111,112,113,114] | |
Participatory Processes | Usage of participatory governance | [115] |
Consideration of the complexity and variety of participation | [116,117] | |
A consensus on sustainable development through participatory processes | [118] | |
Land Use Conflicts | Monitoring of land use change to support sustainable development | [119] |
Application of effective policy and ethical guidelines to prevent competition for arable land | [120] | |
Usage of marginal and contaminated land to avoid land use conflicts | [121,122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossauer, F.; Stoeglehner, G. Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda. Land 2023, 12, 234. https://doi.org/10.3390/land12010234
Grossauer F, Stoeglehner G. Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda. Land. 2023; 12(1):234. https://doi.org/10.3390/land12010234
Chicago/Turabian StyleGrossauer, Franz, and Gernot Stoeglehner. 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda" Land 12, no. 1: 234. https://doi.org/10.3390/land12010234
APA StyleGrossauer, F., & Stoeglehner, G. (2023). Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda. Land, 12(1), 234. https://doi.org/10.3390/land12010234