Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration
Abstract
:1. Introduction
2. Research Areas and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Landscape Metrics
2.3.3. Correlation Analysis Method
2.3.4. FLUS Model
3. Results and Analysis
3.1. Spatial–Temporal Evolution Characteristics of Built-Up Areas
3.2. Spatial–Temporal Evolution and Fragmentation Characteristics of Green Space
3.2.1. Spatial–Temporal Evolution Characteristics of Green Space
3.2.2. Fragmentation Characteristics of Green Space
3.3. Correlation Analysis and Simulation Prediction between Urban Expansion and Green Space Fragmentation
3.3.1. Correlation Analysis between Urban Expansion and Green Space Fragmentation
3.3.2. Forecast of Land Use in 2030 Based on FLUS Model
4. Discussion
5. Conclusions
- (1)
- From 2000 to 2020, the expansion of BTH urban agglomeration generally accelerated mainly in the eastern and southern plain areas, and the spreading trend has intensified over time. It presents the expansion mode that the central city leads the development of urban agglomeration and urban agglomeration drives regional development.
- (2)
- In the past 20 years, the overall area of green space in BTH urban agglomeration has decreased, fragmentation at the landscape level has increased, and the degree of landscape segmentation has intensified. Among them, farmland was continuously destroyed, becoming the most affected by urban expansion. There was less fragmentation of grassland and water, and the fragmentation of forestland was relatively stable.
- (3)
- There is a significant correlation between urban expansion and green space fragmentation. As a result of urban expansion, ecological resources such as farmland, forests, and grass gradually disappear, having a negative impact on the ecological environment. By 2030, built-up areas may continue to occupy other land types around cities and towns along the main traffic lines and development axis, intensifying the fragmentation of farmland, grassland, and water, but the impact on forestland is inapparent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN-Habitat. United Nations Human Settlements Programme World Cities Report 2020: The Value of Sustainable Urbanization; UN-Habitat: Nairobi, Kenya, 2020. [Google Scholar] [CrossRef]
- Xu, X.; Min, X. Quantifying spatiotemporal patterns of urban expansion in China using remote sensing data. Cities 2013, 35, 104–113. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; He, C.; Huang, G.; Yu, D. Urban landscape ecology: Past, present, and future. In Landscape Ecology for Sustainable Environment and Culture; Fu, B., Jones, K.B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 37–53. [Google Scholar] [CrossRef]
- Cheng, J.; Masser, I. Urban growth pattern modeling: A case study of Wuhan city, PR China. Landsc. Urban Plan. 2003, 62, 199–217. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic Growth and the Expansion of Urban Land in China. Urban Stud. 2009, 47, 813–843. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Tan, M.; Wang, Y. Influences of population pressure change on vegetation greenness in China’s mountainous areas. Ecol. Evol. 2017, 7, 9041–9053. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-five Global Cities using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Frumkin, H. Urban sprawl and public health. Public Health Rep. 2002, 117, 201–217. [Google Scholar] [CrossRef]
- Nuissl, H.; Haase, D.; Lanzendorf, M.; Wittmer, H. Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy 2009, 26, 414–424. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- National Research Council. Grand Challenges in Environmental Sciences; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Müller, K.; Steinmeier, C.; Ewald, K.C.; Ghazoul, J. Implementing Landscape Fragmentation as an Indicator in the Swiss Monitoring System of Sustainable Development (Monet). J. Environ. Manag. 2008, 88, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Breuste, J.; Feldmann, H.; Uhlmann, O. Urban Ecology; Springer: Berlin, Germany, 1998. [Google Scholar] [CrossRef]
- Kim, K.-H.; Pauleit, S. Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy 2007, 24, 264–274. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Che, L.; Wang, B. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Waddell, P. UrbanSim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning. J. Am. Plan. Assoc. 2002, 68, 297–314. [Google Scholar] [CrossRef]
- Gordon, P.; Richardson, H.W. Are Compact Cities a Desirable Planning Goal? J. Am. Plan. Assoc. 1997, 63, 95–106. [Google Scholar] [CrossRef]
- Dennis, C.; Marsland, D.; Cockett, T. Central place practice: Shopping centre attractiveness measures, hinterland boundaries and the UK retail hierarchy. J. Retail. Consum. Serv. 2002, 9, 185–199. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. In The Ecological Design and Planning Reader; Island Press: Washington, DC, USA, 1995. [Google Scholar]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Xu, C.; Liu, M.; Zhang, C.; An, S.; Yu, W.; Chen, J.M. The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc. Ecol. 2007, 22, 925–937. [Google Scholar] [CrossRef]
- Pham, H.M.; Yamaguchi, Y. Urban growth and change analysis using remote sensing and spatial metrics from 1975 to 2003 for Hanoi, Vietnam. Int. J. Remote Sens. 2011, 32, 1901–1915. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Tian, G.; Qiao, Z.; Zhang, Y. The investigation of relationship between rural settlement density, size, spatial distribution and its geophysical parameters of China using Landsat TM images. Ecol. Model. 2012, 231, 25–36. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Stern, P.C.; Druckman, D.; Young, O.R. Global Environmental Change Understanding the Human Dimensions; National Academy Press: Washington, DC, USA, 1992. [Google Scholar] [CrossRef]
- Allan, T.; Meyer, W.B.; Turner, B. Changes in Land Use and Land Cover: A Global Perspective. Geogr. J. 1996, 162, 107. [Google Scholar] [CrossRef]
- You, H.; Yang, X. Urban expansion in 30 megacities of China: Categorizing the driving force profiles to inform the urbanization policy. Land Use Policy 2017, 68, 531–551. [Google Scholar] [CrossRef]
- Magliocca, N.; McConnell, V.; Walls, M. Exploring sprawl: Results from an economic agent-based model of land and housing markets. Ecol. Econ. 2015, 113, 114–125. [Google Scholar] [CrossRef]
- Colantoni, A.; Grigoriadis, E.; Sateriano, A.; Venanzoni, G.; Salvati, L. Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment. Sci. Total Environ. 2016, 545–546, 329–339. [Google Scholar] [CrossRef]
- Tong, L.; Hu, S.; Frazier, A.E.; Liu, Y. Multi-order urban development model and sprawl patterns: An analysis in China, 2000–2010. Landsc. Urban Plan. 2017, 167, 386–398. [Google Scholar] [CrossRef]
- Long, Y. Redefining Chinese city system with emerging new data. Appl. Geogr. 2016, 75, 36–48. [Google Scholar] [CrossRef]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial Analysis of Horizontal and Vertical Urban Expansion Using Multi-Spatial Resolution Data: A Case Study of Surabaya, Indonesia. Remote Sens. 2018, 10, 1599. [Google Scholar] [CrossRef] [Green Version]
- White, R.; Engelen, G. Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns. Environ. Plan. A Econ. Space 1993, 25, 1175–1199. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Tian, G.; Ouyang, Y.; Quan, Q.; Wu, J. Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecol. Model. 2011, 222, 1129–1138. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Ngom, R.; Gosselin, P.; Blais, C. Reduction of disparities in access to green spaces: Their geographic insertion and recreational functions matter. Appl. Geogr. 2016, 66, 35–51. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Li, Y.; Xi, J.; Ge, Q.; Li, X. Urban green space, uneven development and accessibility: A case of Dalian’s Xigang District. Chin. Geogr. Sci. 2015, 25, 644–656. [Google Scholar] [CrossRef]
- Morris, K.I.; Chan, A.; Ooi, M.; Oozeer, Y.; Abakr, Y.A.; Morris, K.J.K. Effect of vegetation and waterbody on the garden city concept: An evaluation study using a newly developed city, Putrajaya, Malaysia. Comput. Environ. Urban Syst. 2016, 58, 39–51. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Y.; Xia, B. Spatial heterogeneity of urban land-cover landscape in Guangzhou from 1990 to 2005. J. Geogr. Sci. 2009, 19, 213–224. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Butlin, F.M.; Howard, E. To-morrow: A Peaceful Path to Real Reform. Econ. J. 1898, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Turner, T. Open space planning in London: From standards per 1000 to green strategy. Town Plan. Rev. 1992, 63, 365–386. [Google Scholar] [CrossRef]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Haq, S.M.A. Urban Green Spaces and an Integrative Approach to Sustainable Environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Sandstro¨m, U.G. Green Infrastructure Planning in Urban Sweden. Plan. Pract. Res. 2002, 17, 373–385. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landsc. Urban Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Botequilha-Leitao, A.; Ahern, J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc. Urban Plan. 2002, 59, 65–93. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. The capture of particulate pollution by trees at five contrasting urban sites. Arboric. J. 2000, 24, 209–230. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Cooper, D.S. Geographic associations of breeding bird distribution in an urban open space. Biol. Conserv. 2002, 104, 205–210. [Google Scholar] [CrossRef]
- Haire, S.; Bock, C.; Cade, B.; Bennett, B. The role of landscape and habitat characteristics in limiting abundance of grassland nesting songbirds in an urban open space. Landsc. Urban Plan. 2000, 48, 65–82. [Google Scholar] [CrossRef]
- Rubino, M.J.; Hess, G.R. Planning open spaces for wildlife 2: Modeling and verifying focal species habitat. Landsc. Urban Plan. 2003, 64, 89–104. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.; Tao, Y.; Shi, T. Landscape ecological assessment of green space fragmentation in Hong Kong. Urban For. Urban Green. 2011, 10, 79–86. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, D.; Wang, R.; Li, H.; He, Y.; Wang, M.; Wang, B. A GIS-based moving window analysis of landscape pattern in the Beijing metropolitan area, China. Int. J. Sustain. Dev. World Ecol. 2006, 13, 419–434. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol. Indic. 2018, 96, 23–37. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2018, 98, 228–238. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. In General Technical Report; PNW-GTR-351; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; pp. 1–122. [Google Scholar]
- Weng, Y.-C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- McDonald, R.I.; Urban, D.L. Spatially varying rules of landscape change: Lessons from a case study. Landsc. Urban Plan. 2006, 74, 7–20. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Jiao, L.M.; Xiao, F.T.; Xu, G. Spatial-temporal response of green land fragmentation patterns to urban expansion in Wuhan metropolitan area. Resour. Sci. 2015, 37, 1650–1660. (In Chinese) [Google Scholar]
- Wu, Z.F.; Li, D.Q.; Hu, Y.H. A quantitative analysis on the fragmentation of cultivated land on the two sides of the zhujiang estrary. Trop. Geogr. 2005, 25, 107–110. (In Chinese) [Google Scholar]
- Guneroglu, N.; Acar, C.; Dihkan, M.; Karsli, F.; Guneroglu, A. Green corridors and fragmentation in South Eastern Black Sea coastal landscape. Ocean Coast. Manag. 2013, 83, 67–74. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.H. The Current Situation, Problems and Innovation Mechanism of Land Management Integration in Beijing, Tianjin and Hebei. Reform Econ. Syst. 2020, 5, 80–85. (In Chinese) [Google Scholar]
- Zhu, G.F. The Research on Cultivated Land Transitions from the Perspective of Cultivated Land Protection. Master’s Thesis, Wuhan University, Wuhan, China, 2019. (In Chinese). [Google Scholar]
- Mehrotra, S.; Bardhan, R.; Ramamritham, K. Outdoor thermal performance of heterogeneous urban environment: An indicator-based approach for climate-sensitive planning. Sci. Total Environ. 2019, 669, 872–886. [Google Scholar] [CrossRef]
- Xu, X.G.; Cui, C.W.; Xu, L.F.; Ma, L.Y. Method study on relative assessment for ecosystem service: A case of green space in Beijing, China. Environ. Earth Sci. 2012, 68, 1913–1924. [Google Scholar] [CrossRef]
- Li, B.J.; Chen, D.X.; Wu, S.H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, J. Spatiotemporal Pattern and Driving Factors of Urban Sprawl in China. Land 2021, 10, 1275. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, N.; Wang, X. A Comparative Study of Urban Expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sens. 2016, 8, 496. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—a case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Fu, G.; Xiao, N.; Qiao, M.; Qin, Y.; Yan, B.; Liu, G.; Gao, X.; Li, J. Spatial-temporal changes of landscape fragmentation patterns in Beijing in the last two decades. Acta Ecol. Sin. 2017, 37, 2551–2562. (In Chinese) [Google Scholar]
- Zhou, L.; Dang, X.; Mu, H.; Wang, B.; Wang, S. Cities are going uphill: Slope gradient analysis of urban expansion and its driving factors in China. Sci. Total Environ. 2021, 775, 145836. [Google Scholar] [CrossRef] [PubMed]
Data | Sources |
---|---|
GlobeLand30 Land Cover Data (2000, 2010, 2020) | http://www.globallandcover.com |
DEM data | Shuttle radar topography mission (SRTM) data set |
Road network data | https://planet.openstreetmap.org |
Administrative division data | 1: 1 million national basic geographic database (https://www.webmap.cn) |
Coordinate data of the town government | 1: 1 million national basic geographic database (https://www.webmap.cn) |
Indicators | Formulas | Explanations |
---|---|---|
Number of Patches | NP = n | At the type level, it is equal to the total number of a certain patch type in the landscape; at the landscape level, it is equal to the total number of all patches in the landscape. |
Effective Mesh Size | Describe the landscape fragmentation by dividing the sum of squares of all patch areas in landscape type i by the total landscape area. Unit is hm2. | |
Aggregation Index | The number of similar adjacencies of the corresponding type divided by the maximum value when the type grows from a patch to the greatest extent. Unit is %. | |
Largest Patch Index | Describe landscape dominance using the proportion of the largest patch area of landscape type i to the total landscape area. Unit is %. |
Land Use Types | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Farmland | Forestland | Grassland | Built Up Areas | Water | Other Types | Sum | ||
2020 | farmland | 97,966.20 | 1450.50 | 3945.63 | 11,863.57 | 825.98 | 198.90 | 116,250.78 |
forestland | 751.90 | 34,152.84 | 6617.71 | 202.59 | 33.90 | 28.54 | 41,787.48 | |
grassland | 2756.69 | 6442.92 | 27,338.86 | 947.58 | 120.06 | 175.71 | 37,781.82 | |
built up areas | 1856.39 | 35.47 | 88.62 | 12,878.60 | 60.86 | 11.67 | 14,931.61 | |
water | 876.57 | 31.01 | 165.45 | 339.78 | 2442.29 | 109.07 | 3964.17 | |
other types | 87.38 | 4.85 | 80.54 | 281.59 | 375.95 | 471.70 | 1302.01 | |
sum | 104,295.13 | 42,117.68 | 38,236.81 | 26,513.71 | 3859.04 | 994.99 |
2000 | 2010 | 2020 | |
---|---|---|---|
NP | 325,191 | 336,947 | 331,369 |
MESH/hm2 | 3,929,543.33 | 3,712,420.49 | 2,881,932.20 |
AI/% | 86.16 | 85.72 | 85.12 |
LPI/% | 40.92 | 39.74 | 34.94 |
B-PLAND | B-MESH | B-P | |
---|---|---|---|
F1-MESH | −1.000 ** | −1.000 * | −1.000 ** |
F2-MESH | 0.827 | 0.844 | 1.000 ** |
G-MESH | −0.339 | −0.309 | 1.000 ** |
W-MESH | −0.176 | −0.208 | −1.000 ** |
F1-FG | −1.000 ** | −1.000 ** | −1.000 ** |
F2-FG | −1.000 ** | −1.000 ** | −1.000 ** |
G-FG | −1.000 ** | −1.000 ** | −1.000 ** |
W-FG | −1.000 ** | −1.000 ** | −1.000 ** |
Year | Area/km2 | NP | MESH/hm2 | AI/% | LPI/% | |
---|---|---|---|---|---|---|
Farmland | 2020 | 104,307.47 | 23,585 | 2,681,091 | 92.24 | 34.94 |
2030 | 98,170.91 | 31,555 | 2,210,118 | 90.71 | 31.70 | |
Forestland | 2020 | 42,123.39 | 102,913 | 178,350 | 79.78 | 8.99 |
2030 | 41,753.53 | 98,158 | 237,462 | 79.98 | 10.44 | |
Grassland | 2020 | 38,246.02 | 123,756 | 20,167 | 73.24 | 2.39 |
2030 | 38,003.35 | 127,926 | 23,261 | 72.90 | 2.66 | |
Built up areas | 2020 | 26,529.37 | 49,088 | 1868 | 83.17 | 0.76 |
2030 | 33,218.07 | 27,009 | 15,922 | 84.90 | 2.32 | |
Water | 2020 | 3907.96 | 10,288 | 423 | 86.43 | 0.29 |
2030 | 3899.30 | 14,301 | 608 | 85.42 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. https://doi.org/10.3390/land11020275
Chu M, Lu J, Sun D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land. 2022; 11(2):275. https://doi.org/10.3390/land11020275
Chicago/Turabian StyleChu, Mingruo, Jiayi Lu, and Dongqi Sun. 2022. "Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration" Land 11, no. 2: 275. https://doi.org/10.3390/land11020275
APA StyleChu, M., Lu, J., & Sun, D. (2022). Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land, 11(2), 275. https://doi.org/10.3390/land11020275