The Different Impacts of Airports on the Ecological Environment under Distinct Institutional Contexts
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Institutional Analysis Development Framework
2.2. The Mechanism of the Impact of the Airport on the Surrounding Ecological Environment
3. Date and Methodology
3.1. Overview of Airport Cases
3.2. Study Period and Study Area
3.3. Data and Preprocessing
3.4. Ecological Environment Quality
3.5. Buffer Analysis
4. Results
4.1. The Changes in Ecological Environment Quality around the Two Airports
4.2. Influence Scopes on the Surrounding Ecological Environment
4.3. The Impacts of the Two Airports on the Surrounding Ecological Environment
5. Discussion
5.1. Institutional Analysis Based on the IAD Framework
5.2. Comparison with Previous Studies
5.3. Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chin, M.; Ong, S.; Wai, C.; Kon, Y. The role of infrastructure on economic growth in belt and road participating countries. J. Chin. Econ. Foreign Trade Stud. 2021, 14, 169–186. [Google Scholar] [CrossRef]
- Cigu, E.; Agheorghiesei, D.T.; Toader, E. Transport infrastructure development, public performance and long-run economic growth: A case study for the Eu-28 countries. Sustainability 2019, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Owusu-Manu, D.; Edwards, D.J.; Mohammed, A.; Thwala, W.D.; Birch, T. Short run causal relationship between foreign direct investment (FDI) and infrastructure development. J. Eng. Des. Technol. 2019, 17, 1202–1221. [Google Scholar] [CrossRef]
- Duranton, G.; Turner, M.A. Urban Growth and Transportation. Rev. Econ. Stud. 2012, 79, 1407–1440. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.K.; Zhang, X.; Zhao, L.; Lee, P.T. Railway and road infrastructure in the Belt and Road Initiative countries: Estimating the impact of transport infrastructure on economic growth. Transp. Res. Part A Policy Pract. 2020, 134, 288–307. [Google Scholar] [CrossRef]
- Sharif, F.; Tauqir, A. The effects of infrastructure development and carbon emissions on economic growth. Environ. Sci. Pollut. Res. 2021, 28, 36259–36273. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, J.; Han, X.; Xie, Z.; Gao, X. Ecology. Three-Gorges Dam—Experiment in habitat fragmentation? Science 2003, 300, 1239–1240. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhang, Y.; Liu, X.; Luan, Q.; Wei, S. Urban vacant land in rapidly urbanized areas: Status, micro-level drivers, and implications. J. Chin. Gov. 2021, 6, 554–577. [Google Scholar] [CrossRef]
- Luo, Z.; Wan, G.; Wang, C.; Zhang, X. Urban pollution and road infrastructure: A case study of China. China Econ. Rev. 2018, 49, 171–183. [Google Scholar] [CrossRef]
- Garcia-López, M. Urban spatial structure, suburbanization and transportation in Barcelona. J. Urban Econ. 2012, 72, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Chen, H.; Hong, Y.; Hsiao, C. Do China’s high-speed-rail projects promote local economy?—New evidence from a panel data approach. China Econ. Rev. 2017, 44, 203–226. [Google Scholar] [CrossRef]
- Kasraian, D.; Maat, K.; Stead, D.; van Wee, B. Long-term impacts of transport infrastructure networks on land-use change: An international review of empirical studies. Transp. Rev. 2016, 36, 772–792. [Google Scholar] [CrossRef]
- Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst. 2015, 18, 209–222. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X. Assessment on heat island effect based on urban regulatory planning. Chin. J. Appl. Ecol. 2016, 27, 3631–3640. [Google Scholar] [CrossRef]
- Addie, J.D. Flying high (in the competitive sky): Conceptualizing the role of airports in global city-regions through “aero-regionalism”. Geoforum 2014, 55, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Kasarda, J.D. Airport cities: The evolution. Airpt. World 2013, 18, 24–27. [Google Scholar]
- Graham, A. Airport benchmarking: A review of the current situation. Benchmarking Int. J. 2005, 12, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Pestana Barros, C.; Dieke, P.U.C. Performance evaluation of Italian airports: A data envelopment analysis. J. Air Transp. Manag. 2007, 13, 184–191. [Google Scholar] [CrossRef]
- Hersperger, A.; Gennaio, M.; Verburg, P.; Bürgi, M. Linking land change with driving forces and actors: Four conceptual models. Ecol. Soc. 2010, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Beckmann, V.; Tan, R. Effects of Infrastructure on Land Use and Land Cover Change (LUCC): The Case of Hangzhou International Airport, China. Sustainability 2018, 10, 2013. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Qin, F. Innovation in construction of local eco-civilized cities in China: Cooperative construction mechanism with multi-element objects. J. Chin. Gov. 2021, 6, 375–395. [Google Scholar] [CrossRef]
- Song, W.; Shi, Y.; Zhu, Q.; Zhang, W.; Ding, J. Evaluation on Planning of High-Speed Rail Station Area Based on Node-Place Model in Yangtze River Delta Area. Econ. Geogr. 2016, 36, 18–25. [Google Scholar] [CrossRef]
- Mokhele, M. Spatial economic attributes of OR Tambo and Cape Town airport-centric developments in South Africa. J. Transp. Supply Chain Manag. 2018, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Williamson, O.E. The new institutional economics: Taking stock, looking ahead. J. Econ. Lit. 2000, 38, 595–613. [Google Scholar] [CrossRef] [Green Version]
- Ho, P. The discipline of form: Why the premise of institutional form does not apply to Chinese capital, technology, land and labor. J. Chin. Gov. 2021, 6, 175–197. [Google Scholar] [CrossRef]
- Tan, R.; Wang, R.; Sedlin, T. Land-Development Offset Policies in the Quest for Sustainability: What Can China Learn from Germany? Sustainability 2014, 6, 3400–3430. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Hu, R.; Vatn, A. What does sustainability demand? An institutionalist analysis with applications to China. J. Chin. Gov. 2021, 6, 486–514. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change. Environ. Sci. Pollut. Res. 2019, 26, 5381–5393. [Google Scholar] [CrossRef]
- McCusker, B.; Carr, E.R. The co-production of livelihoods and land use change: Case studies from South Africa and Ghana. Geoforum 2006, 37, 790–804. [Google Scholar] [CrossRef]
- Ostrom, E.; Gardner, R.; Walker, J. Rules, Games, and Common-Pool Resources; University of Michigan Press: Ann Arbor, MI, USA, 1993. [Google Scholar]
- Ostrom, E. Understanding Institutional Diversity; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Gibson, C.C.; Mckean, M.A.; Ostrom, E. People and Forests: Communities, Institutions, and Governance; MIT Press: Cambridge, UK, 2000. [Google Scholar]
- Clement, F.; Amezaga, J.M. Linking reforestation policies with land use change in northern Vietnam: Why local factors matter. Geoforum 2008, 39, 265–277. [Google Scholar] [CrossRef]
- McGinnis, M.D. An introduction to IAD and the language of the Ostrom workshop: A simple guide to a complex framework. Policy Stud. J. 2011, 39, 169–183. [Google Scholar] [CrossRef]
- Swangjang, K.; Iamaram, V. Change of Land Use Patterns in the Areas Close to the Airport Development Area and Some Implicating Factors. Sustainability 2011, 3, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Cidell, J.L. Scales of Airport Expansion: Globalization, Regionalization, and Local Land Use; The University of Minnesota Digital Conservancy: Minneapolis, MN, USA, 2004; p. 313. [Google Scholar]
- Onasch, T.B.; Jayne, J.T.; Herndon, S.; Worsnop, D.R.; Miakelye, R.C. Chemical Properties of Aircraft Engine Particulate Exhaust Emissions. J. Propuls. Power 2009, 5, 1121–1137. [Google Scholar] [CrossRef]
- Standing Committee of the National People’s Congress in China. The Civil Aviation Law of People’ Republic of China; Standing Committee of the National People’s Congress in China: Beijing, China, 1995; pp. 596–616. (In Chinese) [Google Scholar]
- Brueckner, J.K. Airline Traffic and Urban Economic Development. Urban Stud. 2016, 40, 1455–1469. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, S. Spatial structure of Zhengzhou Airport Economy Zone: Its evolution and drivers. Arab. J. Geosci. 2021, 14, 1–20. [Google Scholar] [CrossRef]
- Reiss, B. Maximising non-aviation revenue for airports: Developing airport cities to maximise real estate and capitalise on land development opportunities. J. Airpt. Manag. 2007, 1, 284–293. [Google Scholar]
- Works, P.T.A.A. Clearance Area of an Airfield. Available online: http://www.planete-tp.com/en/clearance-area-of-an-airfield-a44.html (accessed on 12 January 2022).
- Zhu, Y.; Fanning, E.; Yu, R.C.; Zhang, Q.; Froines, J.R. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atmos. Environ. 2011, 45, 6526–6533. [Google Scholar] [CrossRef]
- Einig, K.; Schubert, J.A. Flughäfen als Agglomeration: Zur Aerotropolisbildung in Deutschland. Eur. Reg. 2010, 16, 102–112. Available online: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-48070-8 (accessed on 12 January 2022).
- Franssen, E.A.M.; Lebret, E. Aircraft noise around a large international airport and its impact on general health and medication use. Occup. Environ. Med. 2004, 61, 405. [Google Scholar] [CrossRef] [Green Version]
- Kasarda, J.D. Shopping in the airport city and aerotropolis. Res. Rev. 2008, 15, 50–56. [Google Scholar]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, X.; Zhao, Z.; Ma, Y.; Yang, Y. Dynamic monitoring of ecology and environment in the agro-pastral ecotone based on remote sensing: A case of Yanchi County in Ningxia Hui Autonomous Region. Arid Land Geogr. 2017, 15, 1070–1078. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M. Responses of Spectral Indices to Variations in Vegetation Cover and Soil Background. Photogramm. Eng. Remote Sens. 1998, 64, 915–921. [Google Scholar]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 5, pp. 3014–3016. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. In Earth Observing Systems X; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5882, p. 58820E. [Google Scholar] [CrossRef]
- Qin, Z.; Li, W.; Xu, B.; Chen, Z.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Land Resour. 2004, 16, 28–32. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Tong, S.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, X.; Lin, H.; Hong, T.; Hong, W. Impact of expressways on land use changes, landscape patterns, and ecosystem services value in Nanping City, China. Pol. J. Env. Stud. 2021, 30, 2935–2946. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Gholz, H.L. Land use dynamics and landscape history in La Montaña, Campeche, Mexico. Landsc. Urban Plan. 2007, 82, 198–207. [Google Scholar] [CrossRef]
- Tan, R. Understanding the Efficiency of Farmland Conversion: Resource Allocation, Governance Structure and Institutional Environment. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2008. [Google Scholar]
- Liu, L.; Liu, Z.; Gong, J.; Wang, L.; Hu, Y. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy 2019, 81, 256–266. [Google Scholar] [CrossRef]
- Kunzmann, K.R. State planning: A German success story? Int. Plan. Stud. 2001, 6, 153–166. [Google Scholar] [CrossRef]
- Needham, P.D.B. Planning Law and Economics—The Rules We Make for Using Land; Routledge: New York, NY, USA, 2006. [Google Scholar]
- Rose, S. Environmental Policy and Federal Structure: A Comparison of the United States and Germany. Vanderbilt Law Rev. 1994, 47, 1587–1622. [Google Scholar]
- Wolfgang, W.; Wera, W.; Ilke, M.; Stefan, H.; Torsten, L.; Markus, R.; Peter, S.; Catrin, S. Putting the Plan into Practice: Implementation of Proposals for Measures of Local Landscape Plans. Landsc. Res. 2012, 37, 483–500. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, J.; Rose, A.Z.; Haynes, K.E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transp. Res. Part A Policy Pract. 2016, 92, 232–245. [Google Scholar] [CrossRef]
- Topalovic, P.; Carter, J.; Topalovic, M.; Krantzberg, G. Light rail transit in Hamilton: Health, environmental and economic impact analysis. Soc. Indic. Res. 2012, 108, 329–350. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Liu, X.; Chen, Y.; Ou, J.; Niu, N.; Jin, Y.; Shi, H. Will the development of a high-speed railway have impacts on land use patterns in China? Ann. Am. Assoc. Geogr. 2019, 109, 979–1005. [Google Scholar] [CrossRef]
- Mejia-Dorantes, L.; Paez, A.; Vassallo, J.M. Transportation infrastructure impacts on firm location: The effect of a new metro line in the suburbs of Madrid. J. Transp. Geogr. 2012, 22, 236–250. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Gan, C.; Perl, A.; Wang, D. What caused differential impacts on high-speed railway station area development? Evidence from global nighttime light data. Cities 2020, 97, 102568. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Deng, L.; Liu, Q.; Zhao, H.; Dong, S. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley. Ecol. Indic. 2014, 36, 160–168. [Google Scholar] [CrossRef]
Ecological Environment Index | HXIA | BBIA | ||
---|---|---|---|---|
2006 | 2016 | 2005 | 2016 | |
RSEI | 0.689 | 0.598 | 0.580 | 0.583 |
Heat | 0.346 | 0.467 | 0.581 | 0.602 |
Greenness | 0.692 | 0.480 | 0.533 | 0.557 |
Wetness | 0.785 | 0.813 | 0.707 | 0.757 |
Dryness | 0.376 | 0.435 | 0.338 | 0.382 |
RSEI | 2 km of Influence Range | 9 km of Influence Range | 10 km of Influence Range |
---|---|---|---|
Average Change | Average Change | Average Change | |
HXIA | −0.063 | −0.047 | −0.048 |
BBIA | −0.004 | 0.014 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Tian, Y.; Liu, X.; Tan, R.; Luan, Q. The Different Impacts of Airports on the Ecological Environment under Distinct Institutional Contexts. Land 2022, 11, 291. https://doi.org/10.3390/land11020291
Xiong C, Tian Y, Liu X, Tan R, Luan Q. The Different Impacts of Airports on the Ecological Environment under Distinct Institutional Contexts. Land. 2022; 11(2):291. https://doi.org/10.3390/land11020291
Chicago/Turabian StyleXiong, Changsheng, Yu Tian, Xue Liu, Rong Tan, and Qiaolin Luan. 2022. "The Different Impacts of Airports on the Ecological Environment under Distinct Institutional Contexts" Land 11, no. 2: 291. https://doi.org/10.3390/land11020291
APA StyleXiong, C., Tian, Y., Liu, X., Tan, R., & Luan, Q. (2022). The Different Impacts of Airports on the Ecological Environment under Distinct Institutional Contexts. Land, 11(2), 291. https://doi.org/10.3390/land11020291