Urban Expansion in China: Spatiotemporal Dynamics and Determinants
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.1.1. Data of Urban Areas
2.1.2. Natural and Socioeconomic Data
2.2. Methodology
2.2.1. Exploratory Space–Time Data Analysis (ESTDA)
2.2.2. Multiscale Geographically Weighted Regression (MGWR)
3. Results
3.1. Spatiotemporal Pattern of Urban Expansion across China
3.2. Dynamics of the Local Spatial Dependence of Urban Expansion
3.3. Transition of Local Spatial Dependence of Urban Expansion
3.4. Coevolution of Urban Expansion among Cities
3.5. Factors Influencing Urban Expansion
4. Discussion
4.1. Contributions of This Study
4.2. Mechanisms of Urban Expansion
4.3. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wei, Y.D.; Liao, F.H.; Huang, Z. Administrative Hierarchy and Urban Land Expansion in Transitional China. Appl. Geogr. 2015, 56, 177–186. [Google Scholar] [CrossRef]
- Wei, Y.D.; Li, H.; Yue, W. Urban Land Expansion and Regional Inequality in Transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- UN-HABITAT (Ed.) Enhancing Urban Safety and Security: Global Report on Human Settlements 2007; Earthscan: London, UK; Sterling, VA, USA, 2007. [Google Scholar]
- Van Vliet, J. Direct and Indirect Loss of Natural Area from Urban Expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Ke, X.; van Vliet, J.; Zhou, T.; Verburg, P.H.; Zheng, W.; Liu, X. Direct and Indirect Loss of Natural Habitat Due to Built-up Area Expansion: A Model-Based Analysis for the City of Wuhan, China. Land Use Policy 2018, 74, 231–239. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, Y.; Liu, Z.; Zhang, D.; Sun, Y. Direct and Indirect Losses of Natural Habitat Caused by Future Urban Expansion in the Transnational Area of Changbai Mountain. Sustain. Cities Soc. 2020, 63, 102487. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Li, X.; Suoerdahan, G.; Shi, Z.; Xing, Z.; Ren, Y.; Yang, R. Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization. Land 2021, 10, 1210. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Urban Land Expansion and Air Pollution: Evidence from China. J. Urban Plan. Dev. 2018, 144, 05018017. [Google Scholar] [CrossRef]
- Hien, P.; Men, N.; Tan, P.; Hangartner, M. Impact of Urban Expansion on the Air Pollution Landscape: A Case Study of Hanoi, Vietnam. Sci. Total Environ. 2020, 702, 134635. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Y.; Chen, J. Will Urban Expansion Lead to an Increase in Future Water Pollution Loads?—A Preliminary Investigation of the Haihe River Basin in Northeastern China. Environ. Sci. Pollut. Res. Int. 2014, 21, 7024–7034. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.G.; Clarke, K.C.; Frei, A. Impact of Urban Sprawl on Water Quality in Eastern Massachusetts, USA. Environ. Manag. 2007, 40, 183–200. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between Urban Heat Island and Urban Pollution Island during Summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Kaza, N. The Changing Urban Landscape of the Continental United States. Landsc. Urban Plan. 2013, 110, 74–86. [Google Scholar] [CrossRef]
- Getis, A.; Ord, K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Yuill, R.S. The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geogr. Ann. Ser. Hum. Geogr. 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Wu, R.; Li, Z.; Wang, S. The Varying Driving Forces of Urban Land Expansion in China: Insights from a Spatial-Temporal Analysis. Sci. Total Environ. 2021, 766, 142591. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Y.; Zhong, K.; Zhang, F.; Liu, X.; Sun, C. Measuring Spatio-Temporal Dynamics of Impervious Surface in Guangzhou, China, from 1988 to 2015, Using Time-Series Landsat Imagery. Sci. Total Environ. 2018, 627, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Rey, S.J.; Janikas, M.V. STARS: Space–Time Analysis of Regional Systems. Geogr. Anal. 2006, 38, 67–86. [Google Scholar] [CrossRef]
- Rey, S.J.; Ye, X. Comparative Spatial Dynamics of Regional Systems. In Progress in Spatial Analysis: Methods and Applications; Páez, A., Gallo, J., Buliung, R.N., Dall’erba, S., Eds.; Advances in Spatial Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 441–463. [Google Scholar] [CrossRef]
- Ye, X.; Rey, S. A Framework for Exploratory Space-Time Analysis of Economic Data. Ann. Reg. Sci. 2013, 50, 315–339. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X.; Wu, F. Multidimensional Measurement of Poverty and Its Spatio-Temporal Dynamics in China from the Perspective of Development Geography. J. Geogr. Sci. 2021, 31, 130–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, J.; Zhang, Y.; Xu, J. Spatial-Temporal Characteristics and Decoupling Effects of China’s Carbon Footprint Based on Multi-Source Data. J. Geogr. Sci. 2021, 31, 327–349. [Google Scholar] [CrossRef]
- Liu, X.J.; Xia, S.Y.; Yang, Y.; Wu, J.f.; Zhou, Y.N.; Ren, Y.W. Spatiotemporal Dynamics and Impacts of Socioeconomic and Natural Conditions on PM2.5 in the Yangtze River Economic Belt. Environ. Pollut. 2020, 263, 114569. [Google Scholar] [CrossRef]
- Li, M.; Zhang, G.; Liu, Y.; Cao, Y.; Zhou, C. Determinants of Urban Expansion and Spatial Heterogeneity in China. Int. J. Environ. Res. Public Health 2019, 16, 3706. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Sun, S.; Fang, C. The Varying Driving Forces of Urban Expansion in China: Insights from a Spatial-Temporal Analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Li, G.; Li, F. Urban Sprawl in China: Differences and Socioeconomic Drivers. Sci. Total Environ. 2019, 673, 367–377. [Google Scholar] [CrossRef]
- Chenery, H.B.; Robinson, S.; Syrquin, M. Industrialization and Growth: A Comparative Study; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) Human Settlement Changes in China Reflected by Impervious Surfaces from Satellite Remote Sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Fang, C. Progress and the Future Direction of Research into Urban Agglomeration in China. Acta Geogr. Sin. 2014, 69, 1130–1144. [Google Scholar] [CrossRef]
- Hong, I.; Frank, M.R.; Rahwan, I.; Jung, W.S.; Youn, H. The Universal Pathway to Innovative Urban Economies. Sci. Adv. 2020, 6, eaba4934. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Peng, L.; Chen, H.; Driskell, L.; Zheng, X. Cities Evolution Tree and Applications to Predicting Urban Growth. Popul. Environ. 2012, 33, 186–201. [Google Scholar] [CrossRef]
- Krugman, P.R. First Nature, Second Nature, and Metropolitan Location; Working Paper 3740; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.R.; Venables, A. The Spatial Economy: Cities, Regions and International Trade; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Wang, J.; Du, D.; Huang, J. Inter-City Connections in China: High-speed Train vs. Inter-City Coach. J. Transp. Geogr. 2020, 82, 102619. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Political Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Tian, L.; Wang, H.H.; Chen, Y. Spatial Externalities in China Regional Economic Growth. China Econ. Rev. 2010, 21, S20–S31. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Yan, Y.; Wang, B. Measuring Urban Sprawl and Exploring the Role Planning Plays: A Shanghai Case Study. Land Use Policy 2017, 67, 426–435. [Google Scholar] [CrossRef]
- Yeh, A.G.O.; Chen, Z. From Cities to Super Mega City Regions in China in a New Wave of Urbanization and Economic Transition: Issues and Challenges. Urban Stud. 2020, 57, 636–654. [Google Scholar] [CrossRef]
- Fang, C. Important Progress and Prospects of China’s Urbanization and Urban Agglomeration in the Past 40 Years of Reform and Opening-Up. Econ. Geogr. 2018, 38, 1–9. [Google Scholar]
- Fang, C.; Li, G.; Wang, S. Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces. Environ. Sci. Technol. 2016, 50, 2217–2227. [Google Scholar] [CrossRef] [PubMed]
Category | Variable | Description | Sources |
---|---|---|---|
Physical factors | Elevation | The dataset has a 1 km resolution, and the unit is the meter. | The dataset is provided by China Resources and Environmental Science Data Center (http://www.resdc.cn/, accessed on 24 February 2022). |
Topography | The standard error of elevation. | ||
Slope | The dataset has a 1.8 km resolution, and the unit is the degree. | The dataset is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 24 February 2022). | |
Socioeconomic factors | Population | The dataset has a 1 km resolution at 1995, 2005, and 2015, and the unit is 10,000 people/km2. | The dataset is provided by China Resources and Environmental Science Data Center (http://www.resdc.cn/, accessed on 24 February 2022). |
GDP | The dataset has a 1 km resolution at 1995, 2005, and 2015, and the unit is RMB 10,000/km2. | The dataset is provided by China Resources and Environmental Science Data Center (http://www.resdc.cn/, accessed on 24 February 2022). |
Types | Description | Transitions |
---|---|---|
I | Self-transition with neighborhood stabilization | |
II | Self-stabilization with neighborhood transition | |
III | Self-transition with neighborhood transition | |
IV | Self-stabilization with neighborhood stabilization |
ID | Correlation Coefficient | Coevolution Strength |
---|---|---|
1 | −1∼−0.5 | Strong decoupling |
2 | −0.5∼0 | Low decoupling |
3 | 0.1∼0.5 | Low coevolution |
4 | 0.5∼0.8 | Moderate coevolution |
5 | 0.8∼1 | Strong coevolution |
1990–2000 | 2000–2010 | 2010–2017 | |
---|---|---|---|
Average rate (%) | 4.5 | 5.6 | 8.8 |
Area (km2)/year | 1599 | 3346 | 7427 |
Period | t/t+1 | HH | HL | LH | LL | Type | Type | SHTI |
---|---|---|---|---|---|---|---|---|
2000/2010 | HH | 0.61 | 0.05 | 0.13 | 0.2 | I | 0.2 | 0.32 |
HL | 0.17 | 0.48 | 0.06 | 0.29 | II | 0.14 | ||
LH | 0.32 | 0.06 | 0.38 | 0.23 | III | 0.09 | ||
LL | 0.03 | 0.08 | 0.11 | 0.78 | IV | 0.56 | ||
2010/2017 | HH | 0.36 | 0.08 | 0.21 | 0.35 | I | 0.28 | 0.37 |
HL | 0.13 | 0.38 | 0.02 | 0.47 | II | 0.14 | ||
LH | 0.36 | 0.02 | 0.36 | 0.26 | III | 0.14 | ||
LL | 0.15 | 0.09 | 0.1 | 0.66 | IV | 0.44 |
Model Index | 1995 | 2005 | 2015 |
---|---|---|---|
R-squared | 0.55 | 0.62 | 0.7 |
AICc | 715.33 | 656.98 | 573.68 |
RSS | 155.5 | 131.11 | 102.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, S.; Yan, Y.; Niu, F.; Song, W. Urban Expansion in China: Spatiotemporal Dynamics and Determinants. Land 2022, 11, 356. https://doi.org/10.3390/land11030356
Jing S, Yan Y, Niu F, Song W. Urban Expansion in China: Spatiotemporal Dynamics and Determinants. Land. 2022; 11(3):356. https://doi.org/10.3390/land11030356
Chicago/Turabian StyleJing, Shengqiang, Yueguan Yan, Fangqu Niu, and Wenhui Song. 2022. "Urban Expansion in China: Spatiotemporal Dynamics and Determinants" Land 11, no. 3: 356. https://doi.org/10.3390/land11030356
APA StyleJing, S., Yan, Y., Niu, F., & Song, W. (2022). Urban Expansion in China: Spatiotemporal Dynamics and Determinants. Land, 11(3), 356. https://doi.org/10.3390/land11030356