Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Land-Use Scenarios for 2030
2.4. Land-Use Simulation in 2030
2.5. Habitat Quality Assessment
3. Results and Discussion
3.1. Changes in Habitat Quality from 2000 to 2019
3.2. Land-Use Distribution in 2030
3.3. Potential Mitigating Strategies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. VEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- Cabral, H.N.; Fonseca, V.F.; Gamito, R.; Gonçalves, C.I.; Costa, J.L.; Erzini, K.; Gonçalves, J.; Martins, J.; Leite, L.; Andrade, J.P.; et al. Ecological quality assessment of transitional waters based on fish assemblages in Portuguese estuaries: The Estuarine Fish Assessment Index (EFAI). Ecol. Indic. 2012, 19, 144–153. [Google Scholar] [CrossRef]
- Meunier, F.D.; Verheyden, C.; Jouventin, P. Bird communities of highway verges: Influence of adjacent habitat and roadside management. Acta Oecologica 1999, 20, 1–13. [Google Scholar] [CrossRef]
- Parris, K.M. Distribution, habitat requirements and conservation of the cascade treefrog (Litoria pearsoniana, Anura: Hylidae). Biol. Conserv. 2001, 99, 285–292. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Sillero, N. Cross-scale monitoring of habitat suitability changes using satellite time series and ecological niche models. Sci. Total Environ. 2021, 784, 147172. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, G.; Cao, Y.; Wang, J.; Fang, X.; Zhou, L.; Liu, Y. Distinct types of restructuring scenarios for rural settlements in a heterogeneous rural landscape: Application of a clustering approach and ecological niche modeling. Habitat Int. 2020, 104, 102248. [Google Scholar] [CrossRef]
- Mwakapeje, E.R.; Ndimuligo, S.A.; Mosomtai, G.; Ayebare, S.; Nyakarahuka, L.; Nonga, H.E.; Mdegela, R.H.; Skjerve, E. Ecological niche modeling as a tool for prediction of the potential geographic distribution of Bacillus anthracis spores in Tanzania. Int. J. Infect. Dis. 2019, 79, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Fish, U.; Service, W. Habitat Evaluation Procedures; Fish & Wildlife Services: Washington, DC, USA, 1976. [Google Scholar]
- Zeng, X.; Tanaka, K.R.; Chen, Y.; Wang, K.; Zhang, S. Gillnet data enhance performance of rockfishes habitat suitability index model derived from bottom-trawl survey data: A case study with Sebasticus marmoratus. Fish. Res. 2018, 204, 189–196. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, F.; Zhang, Y.; Han, S.; Liu, Y. Spatial and temporal changes of habitat quality in Jiangsu Yancheng Wetland National Nature Reserve-Rare birds of China. Appl. Ecol. Environ. Res. 2019, 17, 4807–4821. [Google Scholar] [CrossRef]
- Chen, M.; Bai, Z.; Wang, Q.; Shi, Z. Habitat quality effect and driving mechanism of land use transitions: A case study of Henan water source area of the middle route of the south-to-north water transfer project. Land 2021, 10, 796. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model—A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Y.; Xiao, P.; Tian, Y.; Huang, H.; Xiao, L. Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model. Land 2021, 10, 857. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and prediction of landscape pattern and habitat quality based on CA-Markov and InVEST model in Hubei section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, S.S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the Taihu Lake Basin. Sustainability 2019, 11, 3513. [Google Scholar] [CrossRef] [Green Version]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Castella, J.-C.; Kam, S.P.; Quang, D.D.; Verburg, P.H.; Hoanh, C.T. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy 2007, 24, 531–545. [Google Scholar] [CrossRef]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change. Global Change—The IGBP Series; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. [Google Scholar]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Env. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Lippe, M.; Hilger, T.; Sudchalee, S.; Wechpibal, N.; Jintrawet, A.; Cadisch, G. Simulating stakeholder-based land-use change scenarios and their implication on above-ground carbon and environmental management in northern Thailand. Land 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.K.; Mohanasundaram, S.; Shrestha, S. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environ. Res. 2020, 185, 109440. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.-T.; Shen, Y. Land-use and land-cover changes in dong trieu district, vietnam, during past two decades and their driving forces. Land 2021, 10, 798. [Google Scholar] [CrossRef]
- Henríquez-Dole, L.; Usón, T.J.; Vicuña, S.; Henríquez, C.; Gironás, J.; Meza, F. Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile. Land Use Policy 2018, 78, 353–366. [Google Scholar] [CrossRef]
- Lü, D.; Gao, G.; Lü, Y.; Ren, Y.; Fu, B. An effective accuracy assessment indicator for credible land use change modelling: Insights from hypothetical and real landscape analyses. Ecol. Indic. 2020, 117, 106552. [Google Scholar] [CrossRef]
- Otto, C.R.; Roth, C.L.; Carlson, B.L.; Smart, M.D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA 2016, 113, 10430–10435. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Sil, I.; Dhar, A.; Debsarkar, A.; Das, P.; Kar, A. Future scenarios of land-use suitability modeling for agricultural sustainability in a river basin. J. Clean. Prod. 2018, 205, 313–328. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, B.; Dong, P.; Zhang, D.; Yu, W.; Hu, W.; Ma, Z.; Chen, G.; Liu, Z.; Chen, B. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 2021, 788, 147914. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Lindenmayer, D.; Hobbs, R.J.; Montague-Drake, R.; Alexandra, J.; Bennett, A.; Burgman, M.; Cale, P.; Calhoun, A.; Cramer, V.; Cullen, P. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 2008, 11, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Ruzicka, M.; Misovicova, R. The general and special principles in landscape ecology. Ekologia 2009, 28, 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Qiu, Q.; Chen, H. Assessing the impacts of urban expansion on habitat quality by combining the concepts of land use, landscape, and habitat in two urban agglomerations in China. Sustainability 2020, 12, 4346. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Impact of land use and land cover changes on urban ecosystem service value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Do, V. Fruit tree-based agroforestry systems for smallholder farmers in Northwest Vietnam—A quantitative and qualitative assessment. Land 2020, 9, 451. [Google Scholar] [CrossRef]
- Nguyen, P.; Nguyen, S. Southern Provinces Promote Sustainable Development of Fruit Tree Farming. Available online: https://en.nhandan.vn/business/item/10717702-southern-provinces-promote-sustainable-development-of-fruit-tree-farming.html (accessed on 12 December 2021).
- Nongnghiep.vn. Dong Trieu Custard-Apples. Available online: http://www.en.trithuckhoahoc.vn/default.aspx?tabid=230&NDID=14257 (accessed on 12 December 2021).
- Nhandan.vn. Vietnamese Fruits Reach Out to the World. Available online: https://www.agroberichtenbuitenland.nl/actueel/nieuws/2020/07/30/vietnamese-fruits-reach-out-to-the-world (accessed on 12 December 2021).
- Vietnamnews.vn. Dak Lak Farmers Boost Income with Fruit Trees. Available online: https://vietnamnews.vn/society/274507/dak-lak-farmers-boost-income-with-fruit-trees.html (accessed on 12 December 2021).
- Le, Q.B. What Has Made Vietnam a Poverty Reduction Success Story; Oxfam International: Nairobi, Kenya, 2008; Volume 29. [Google Scholar]
- Mbow, C.; van Noordwijk, M.; Prabhu, R.; Simons, T. Knowledge gaps and research needs concerning agroforestry’s contribution to sustainable development goals in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Montagnini, F.; Metzel, R.N. The Contribution of Agroforestry to Sustainable Development Goal 2: End Hunger, Achieve Food Security and Improved Nutrition, and Promote Sustainable Agriculture; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 11–45. [Google Scholar]
- Sok, S. Pro-poor growth development and income inequality: Poverty-related Millennium Development Goal (MDG 1) on banks of the Lower Mekong Basin in Cambodia. World Dev. Perspect. 2017, 7–8, 1–8. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. COP26: More challenges than achievements. Environ. Sustain. 2021, 4, 585–588. [Google Scholar] [CrossRef]
- Issa, R.; Krzanowski, J. Finding Hope in COP26. Available online: https://www.bmj.com/content/375/bmj.n2940.full (accessed on 30 November 2021).
- Mountford, H.; Waskow, D.; Srouji, J.; Seymour, F.; Gonzalez, L.; Gajjar, C. Top Takeaways from the UN World Leaders Summit at COP26. Available online: https://www.wri.org/insights/top-takeaways-un-world-leaders-summit-cop26 (accessed on 20 November 2021).
- Quang Ninh Provincial People’s Committee. Land Use Planning for 2021–2030 Period in Dong Trieu District. Available online: https://www.quangninh.gov.vn/so/sokhdt/Trang/ChiTietTinTuc.aspx?nid=1229 (accessed on 21 May 2021).
- Minister, P. Decision No. 1679/QD-TTg 2019 Approving Vietnam’s Strategy for Population toward 2030; National Political Publishing House: Hanoi, Vietnam, 2019. [Google Scholar]
- Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environ. Res. Lett. 2019, 14, 124077. [Google Scholar] [CrossRef] [Green Version]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Huchche, A.D.; Ram, L.; Singh, S. Yield prediction in intercropped versus monocropped citrus orchards. Sci. Hortic. 2007, 114, 67–70. [Google Scholar] [CrossRef]
- Zhu, L.; He, J.; Tian, Y.; Li, X.; Li, Y.; Wang, F.; Qin, K.; Wang, J. Intercropping wolfberry with gramineae plants improves productivity and soil quality. Sci. Hortic. 2022, 292, 110632. [Google Scholar] [CrossRef]
- Ng, L.S.; Campos-Arceiz, A.; Sloan, S.; Hughes, A.C.; Tiang, D.C.F.; Li, B.V.; Lechner, A.M. The scale of biodiversity impacts of the belt and road initiative in Southeast Asia. Biol. Conserv. 2020, 248, 108691. [Google Scholar] [CrossRef]
- Kuah, K.E. Traditional Chinese herbal medicine as cultural power along the Southeast Asian belt and road corridor. Asian J. Soc. Sci. 2021, 49, 225–233. [Google Scholar] [CrossRef]
Case | Forest | Cropland | Orchards | Waterbody | Built-Up | Barren Land | Scenarios Simulated * |
---|---|---|---|---|---|---|---|
1 | −100.0 | −105.0 | −35.0 | −5.0 | 250.0 | −5.0 | DAU+ALC1 |
2 | −20.0 | −165.0 | −55.0 | −5.0 | 250.0 | −5.0 | FPE1+ALC1 |
3 | 0.0 | −180.0 | −60.0 | −5.0 | 250.0 | −5.0 | FPE2+ALC1 |
4 | 20.0 | −195.0 | −65.0 | −5.0 | 250.0 | −5.0 | FPE3+ALC1 |
5 | −100.0 | −70.0 | −70.0 | −5.0 | 250.0 | −5.0 | DAU+ALC2 |
6 | −20.0 | −110.0 | −110.0 | −5.0 | 250.0 | −5.0 | FPE1+ALC2 |
7 | 0.0 | −120.0 | −120.0 | −5.0 | 250.0 | −5.0 | FPE2+ALC2 |
8 | 20.0 | −130.0 | −130.0 | −5.0 | 250.0 | −5.0 | FPE3+ALC2 |
9 | −100.0 | −67.5 | −22.5 | −5.0 | 200.0 | −5.0 | BES1+ALC1 |
10 | −100.0 | −30.0 | −10.0 | −5.0 | 150.0 | −5.0 | BES2+ALC1 |
11 | −100.0 | 2.5 | 7.5 | −5.0 | 100.0 | −5.0 | BES3+ALC1 |
12 | −100.0 | 15.0 | 45.0 | −5.0 | 50.0 | −5.0 | BES4+ALC1 |
13 | −100.0 | 27.5 | 82.5 | −5.0 | 0.0 | −5.0 | BES5+ALC1 |
14 | −100.0 | −45.0 | −45.0 | −5.0 | 200.0 | −5.0 | BES1+ALC2 |
15 | −100.0 | −20.0 | −20.0 | −5.0 | 150.0 | −5.0 | BES2+ALC2 |
16 | −100.0 | 5.0 | 5.0 | −5.0 | 100.0 | −5.0 | BES3+ALC2 |
17 | −100.0 | 30.0 | 30.0 | −5.0 | 50.0 | −5.0 | BES4+ALC2 |
18 | −100.0 | 55.0 | 55.0 | −5.0 | 0.0 | −5.0 | BES5+ALC2 |
19 | −20.0 | −127.5 | −42.5 | −5.0 | 200.0 | −5.0 | BES1+FPE1+ALC1 |
20 | 0.0 | −142.5 | −47.5 | −5.0 | 200.0 | −5.0 | BES1+FPE2+ALC1 |
21 | 20.0 | −157.5 | −52.5 | −5.0 | 200.0 | −5.0 | BES1+FPE3+ALC1 |
22 | −20.0 | −85.0 | −85.0 | −5.0 | 200.0 | −5.0 | BES1+FPE1+ALC2 |
23 | 0.0 | −95.0 | −95.0 | −5.0 | 200.0 | −5.0 | BES1+FPE2+ALC2 |
24 | 20.0 | −105.0 | −105.0 | −5.0 | 200.0 | −5.0 | BES1+FPE3+ALC2 |
25 | −20.0 | −90.0 | −30.0 | −5.0 | 150.0 | −5.0 | BES2+FPE1+ALC1 |
26 | 0.0 | −105.0 | −35.0 | −5.0 | 150.0 | −5.0 | BES2+FPE2+ALC1 |
27 | 20.0 | −120.0 | −40.0 | −5.0 | 150.0 | −5.0 | BES2+FPE3+ALC1 |
28 | −20.0 | −60.0 | −60.0 | −5.0 | 150.0 | −5.0 | BES2+FPE1+ALC2 |
29 | 0.0 | −70.0 | −70.0 | −5.0 | 150.0 | −5.0 | BES2+FPE2+ALC2 |
30 | 20.0 | −80.0 | −80.0 | −5.0 | 150.0 | −5.0 | BES2+FPE3+ALC2 |
31 | −20.0 | −52.5 | −17.5 | −5.0 | 100.0 | −5.0 | BES3+FPE1+ALC1 |
32 | 0.0 | −67.5 | −22.5 | −5.0 | 100.0 | −5.0 | BES3+FPE2+ALC1 |
33 | 20.0 | −82.5 | −27.5 | −5.0 | 100.0 | −5.0 | BES3+FPE3+ALC1 |
34 | −20.0 | −35.0 | −35.0 | −5.0 | 100.0 | −5.0 | BES3+FPE1+ALC2 |
35 | 0.0 | −45.0 | −45.0 | −5.0 | 100.0 | −5.0 | BES3+FPE2+ALC2 |
36 | 20.0 | −55.0 | −55.0 | −5.0 | 100.0 | −5.0 | BES3+FPE3+ALC2 |
37 | −20.0 | −15.0 | −5.0 | −5.0 | 50.0 | −5.0 | BES4+FPE1+ALC1 |
38 | 0.0 | −30.0 | −10.0 | −5.0 | 50.0 | −5.0 | BES4+FPE2+ALC1 |
39 | 20.0 | −45.0 | −15.0 | −5.0 | 50.0 | −5.0 | BES4+FPE3+ALC1 |
40 | −20.0 | −10.0 | −10.0 | −5.0 | 50.0 | −5.0 | BES4+FPE1+ALC2 |
41 | 0.0 | −20.0 | −20.0 | −5.0 | 50.0 | −5.0 | BES4+FPE2+ALC2 |
42 | 20.0 | −30.0 | −30.0 | −5.0 | 50.0 | −5.0 | BES4+FPE3+ALC2 |
43 | −20.0 | 7.5 | 22.5 | −5.0 | 0.0 | −5.0 | BES5+FPE1+ALC1 |
44 | 0.0 | 2.5 | 7.5 | −5.0 | 0.0 | −5.0 | BES5+FPE2+ALC1 |
45 | 20.0 | −7.5 | −2.5 | −5.0 | 0.0 | −5.0 | BES5+FPE3+ALC1 |
46 | −20.0 | 15.0 | 15.0 | −5.0 | 0.0 | −5.0 | BES5+FPE1+ALC2 |
47 | 0.0 | 5.0 | 5.0 | −5.0 | 0.0 | −5.0 | BES5+FPE2+ALC2 |
48 | 20.0 | −5.0 | −5.0 | −5.0 | 0.0 | −5.0 | BES5+FPE3+ALC2 |
Forest | Cropland | Orchards | Waterbody | Built-Up | Barren Land | |
---|---|---|---|---|---|---|
Forest | 1 * | 1 | 1 | 0 | 1 | 1 |
Cropland | 1 | 1 | 1 | 1 | 1 | 0 |
Orchards | 1 | 1 | 1 | 0 | 1 | 0 |
Waterbody | 0 | 1 | 1 | 1 | 1 | 0 |
Built-up | 0 | 0 | 0 | 0 | 1 | 0 |
Barren land | 1 | 1 | 1 | 1 | 1 | 1 |
Threat Factors | Maximum Impact Distance (km) | Weight | Decay Type |
---|---|---|---|
Barren land | 8.8 | 0.5 | Linear |
Built-up | 2.0 | 1.0 | Exponential |
Cropland | 7.6 | 0.7 | Linear |
Main road | 11.9 | 1.0 | Linear |
Road | 3.7 | 0.7 | Linear |
Urban | 12.2 | 1.0 | Exponential |
LULC | Habitat Suitability | Threats | |||||
---|---|---|---|---|---|---|---|
Barren Land | Built-Up | Cropland | Main Road | Road | Urban | ||
Forest | 0.90 | 0.55 | 0.90 | 0.85 | 0.75 | 0.65 | 1.00 |
Cropland | 0.60 | 0.30 | 0.35 | 0.65 | 0.60 | 0.50 | 0.60 |
Orchards | 0.85 | 0.50 | 0.35 | 0.90 | 0.75 | 0.65 | 1.00 |
Waterbody | 0.70 | 0.45 | 0.75 | 0.85 | 0.70 | 0.40 | 0.85 |
Built-up | 0.15 | 0.60 | 1.00 | 0.78 | 0.80 | 0.70 | 0.68 |
Barren land | 0.33 | 0.50 | 0.42 | 0.29 | 0.70 | 0.60 | 0.61 |
HQ | 2000 | 2010 | 2019 | 2000–2010 (ha) | 2010–2019 (ha) | 2000–2019 (ha) | |||
---|---|---|---|---|---|---|---|---|---|
(ha) | (%) | (ha) | (%) | (ha) | (%) | ||||
>0.8 | 21,091.2 | 53.6 | 21,949.3 | 55.8 | 23,398.2 | 59.4 | 858.1 | 1448.9 | 2307.0 |
0.6–0.8 | 3398.2 | 8.6 | 3339.5 | 8.5 | 2250.5 | 5.7 | −58.7 | −1089.0 | −1147.7 |
0.4–0.6 | 6310.4 | 16.0 | 6463.5 | 16.4 | 5560.9 | 14.1 | 153.1 | −902.6 | −749.5 |
0.2–0.4 | 4050.4 | 10.3 | 1930.5 | 4.9 | 473.9 | 1.2 | −2119.9 | −1456.6 | −3576.5 |
0.0–0.2 | 4510.3 | 11.5 | 5677.7 | 14.4 | 7677.1 | 19.5 | 1167.4 | 1999.3 | 3166.8 |
Overall | 0.684 | 0.691 | 0.683 |
Case | Forest | Cropland | Orchards | Water Body | Built-Up | Barren-Land | Scenarios Simulated |
---|---|---|---|---|---|---|---|
1 | 14,758.9 | 4427.1 | 7154.6 | 2198.4 | 10,418.2 | 403.4 | DAU+ALC1 |
2 | 15,660.2 | 3684.6 | 6934.3 | 2187.8 | 10,478.7 | 416.3 | FPE1+ALC1 |
3 | 15,876.3 | 3619.6 | 6858.9 | 2166.1 | 10,432.8 | 406.9 | FPE2+ALC1 |
4 | 16,117.0 | 3419.8 | 6855.4 | 2213.2 | 10,341.2 | 415.3 | FPE3+ALC1 |
5 | 14,759.0 | 4811.5 | 6755.3 | 2209.2 | 10,414.4 | 412.6 | DAU+ALC2 |
6 | 15,650.7 | 4342.8 | 6308.1 | 2212.9 | 10,431.4 | 416.1 | FPE1+ALC2 |
7 | 15,868.1 | 4234.6 | 6151.9 | 2211.7 | 10,479.5 | 416.2 | FPE2+ALC2 |
8 | 16,073.6 | 4139.9 | 6057.1 | 2215.4 | 10,451.7 | 424.3 | FPE3+ALC2 |
9 | 14,757.0 | 4762.5 | 7328.3 | 2224.0 | 9869.0 | 421.0 | BES1+ALC1 |
10 | 14,759.0 | 5249.2 | 7386.0 | 2227.9 | 9319.0 | 420.8 | BES2+ALC1 |
11 | 14,762.3 | 5563.4 | 7610.9 | 2233.4 | 8775.4 | 416.5 | BES3+ALC1 |
12 | 14,807.1 | 5728.8 | 7970.5 | 2188.2 | 8243.9 | 423.5 | BES4+ALC1 |
13 | 14,750.3 | 5861.3 | 8423.8 | 2220.6 | 7677.0 | 427.6 | BES5+ALC1 |
14 | 14,762.3 | 4969.4 | 7095.5 | 2187.4 | 9926.4 | 420.9 | BES1+ALC2 |
15 | 14,768.8 | 5332.3 | 7305.0 | 2211.7 | 9333.3 | 410.8 | BES2+ALC2 |
16 | 14,777.5 | 5623.3 | 7612.3 | 2226.4 | 8699.6 | 422.9 | BES3+ALC2 |
17 | 14,820.7 | 5862.7 | 7872.2 | 2163.1 | 8223.2 | 420.1 | BES4+ALC2 |
18 | 14,747.6 | 6164.7 | 8094.6 | 2233.6 | 7699.8 | 421.6 | BES5+ALC2 |
19 | 15,658.2 | 4117.6 | 7114.1 | 2217.4 | 9837.0 | 417.6 | BES1+FPE1+ALC1 |
20 | 15,841.8 | 3936.4 | 7033.8 | 2211.7 | 9865.8 | 472.4 | BES1+FPE2+ALC1 |
21 | 16,092.5 | 3823.6 | 7015.6 | 2211.7 | 9746.2 | 472.4 | BES1+FPE3+ALC1 |
22 | 15,622.3 | 4604.9 | 6633.6 | 2216.9 | 9813.2 | 471.1 | BES1+FPE1+ALC2 |
23 | 15,797.2 | 4517.8 | 6561.3 | 2212.9 | 9856.4 | 416.3 | BES1+FPE2+ALC2 |
24 | 16,087.6 | 4420.5 | 6349.8 | 2224.0 | 9861.1 | 418.9 | BES1+FPE3+ALC2 |
25 | 15,486.2 | 4573.9 | 7240.1 | 2222.2 | 9366.4 | 473.1 | BES2+FPE1+ALC1 |
26 | 15,852.0 | 4360.5 | 7141.2 | 2222.0 | 9363.9 | 422.4 | BES2+FPE2+ALC1 |
27 | 16,078.8 | 4261.4 | 7093.4 | 2211.7 | 9300.8 | 415.9 | BES2+FPE3+ALC1 |
28 | 15,659.3 | 4873.8 | 6864.0 | 2209.2 | 9339.8 | 415.8 | BES2+FPE1+ALC2 |
29 | 15,868.7 | 4774.0 | 6790.6 | 2215.4 | 9242.7 | 470.5 | BES2+FPE2+ALC2 |
30 | 16,085.4 | 4640.9 | 6667.0 | 2215.4 | 9338.4 | 414.8 | BES2+FPE3+ALC2 |
31 | 15,653.5 | 5011.7 | 7395.6 | 2211.7 | 8670.0 | 419.4 | BES3+FPE1+ALC1 |
32 | 15,868.4 | 4786.8 | 7348.7 | 2211.7 | 8724.0 | 422.4 | BES3+FPE2+ALC1 |
33 | 16,076.0 | 4626.5 | 7279.4 | 2219.2 | 8742.2 | 418.8 | BES3+FPE3+ALC1 |
34 | 15,636.6 | 5195.4 | 7178.8 | 2219.7 | 8707.2 | 424.3 | BES3+FPE1+ALC2 |
35 | 15,859.2 | 5077.1 | 7052.5 | 2216.2 | 8744.1 | 412.8 | BES3+FPE2+ALC2 |
36 | 16,090.6 | 4998.6 | 6957.1 | 2218.2 | 8677.0 | 420.5 | BES3+FPE3+ALC2 |
37 | 15,638.1 | 5401.5 | 7492.5 | 2226.6 | 8177.6 | 425.6 | BES4+FPE1+ALC1 |
38 | 15,842.4 | 5236.7 | 7424.3 | 2235.5 | 8200.4 | 422.6 | BES4+FPE2+ALC1 |
39 | 16,063.4 | 5057.6 | 7402.6 | 2226.6 | 8195.8 | 416.0 | BES4+FPE3+ALC1 |
40 | 15,582.1 | 5454.7 | 7442.9 | 2241.8 | 8216.8 | 423.6 | BES4+FPE1+ALC2 |
41 | 15,878.3 | 5350.1 | 7318.6 | 2218.5 | 8171.0 | 425.3 | BES4+FPE2+ALC2 |
42 | 16,060.6 | 5253.7 | 7183.4 | 2215.4 | 8233.0 | 415.9 | BES4+FPE3+ALC2 |
43 | 15,680.8 | 5599.4 | 7801.6 | 2161.6 | 7695.0 | 423.5 | BES5+FPE1+ALC1 |
44 | 15,864.5 | 5562.6 | 7595.1 | 2215.8 | 7654.7 | 469.3 | BES5+FPE2+ALC1 |
45 | 16,041.9 | 5502.7 | 7521.7 | 2209.9 | 7672.0 | 413.9 | BES5+FPE3+ALC1 |
46 | 15,618.1 | 5672.5 | 7716.2 | 2233.6 | 7701.1 | 420.4 | BES5+FPE1+ALC2 |
47 | 15,877.7 | 5563.1 | 7578.2 | 2235.1 | 7686.4 | 421.6 | BES5+FPE2+ALC2 |
48 | 16,052.9 | 5496.2 | 7507.5 | 2216.5 | 7674.1 | 414.7 | BES5+FPE3+ALC2 |
Forest | Cropland | Orchards | Waterbody | Built-Up | Barren Land | |
---|---|---|---|---|---|---|
2019 | 15,849.6 | 5560.9 | 7548.6 | 2250.5 | 7677.1 | 473.9 |
Case 1, 2030 | ||||||
Forest | 14,670.4 | 10.5 | 12.9 | 0.0 | 1150.5 | 5.3 |
Cropland | 22.2 | 4366.6 | 81.5 | 0.7 | 1089.9 | 0.0 |
Orchards | 40.8 | 33.5 | 7033.5 | 0.0 | 440.8 | 0.0 |
Waterbody | 0.0 | 5.9 | 19.2 | 2197.7 | 27.7 | 0.0 |
Built-up | 0.0 | 0.0 | 0.0 | 0.0 | 7677.1 | 0.0 |
Barren land | 25.5 | 10.6 | 7.5 | 0.0 | 32.2 | 398.1 |
Total | 14,758.9 | 4427.1 | 7154.6 | 2198.4 | 10,418.2 | 403.4 |
Case 3, 2030 | ||||||
Forest | 15,843.6 | 4.1 | 1.8 | 0.0 | 0.0 | 0.0 |
Cropland | 15.7 | 3596.3 | 74.1 | 5.6 | 1869.1 | 0.0 |
Orchards | 2.3 | 8.9 | 6735.3 | 0.0 | 802.1 | 0.0 |
Waterbody | 0.0 | 5.5 | 39.6 | 2151.3 | 54.1 | 0.0 |
Built-up | 0.0 | 0.0 | 0.0 | 0.0 | 7677.1 | 0.0 |
Barren land | 14.6 | 4.7 | 8.2 | 9.1 | 30.4 | 406.9 |
Total | 15,876.3 | 3619.6 | 6858.9 | 2166.1 | 10,432.8 | 406.9 |
Case 13, 2030 | ||||||
Forest | 14,731.2 | 269.1 | 845.7 | 0.0 | 0.0 | 3.6 |
Crop land | 5.7 | 5529.8 | 25.4 | 0.0 | 0.0 | 0.0 |
Orchard | 4.7 | 1.6 | 7531.5 | 10.8 | 0.0 | 0.0 |
Waterbody | 0.0 | 38.8 | 2.4 | 2209.3 | 0.0 | 0.0 |
Built-up | 0.1 | 0.0 | 0.0 | 0.0 | 7677.0 | 0.0 |
Barren land | 8.6 | 22.0 | 18.8 | 0.5 | 0.0 | 424.0 |
Total | 14,750.3 | 5861.3 | 8423.8 | 2220.6 | 7677.0 | 427.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.T.; Shen, Y.; Lai, H.-Y. Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam. Land 2022, 11, 305. https://doi.org/10.3390/land11020305
Vu TT, Shen Y, Lai H-Y. Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam. Land. 2022; 11(2):305. https://doi.org/10.3390/land11020305
Chicago/Turabian StyleVu, Thi Thu, Yuan Shen, and Hung-Yu Lai. 2022. "Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam" Land 11, no. 2: 305. https://doi.org/10.3390/land11020305
APA StyleVu, T. T., Shen, Y., & Lai, H. -Y. (2022). Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam. Land, 11(2), 305. https://doi.org/10.3390/land11020305