Impact of Local Grasslands on Wild Grass Pollen Emission in Bavaria, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pollen Data
2.2. Grass Pollen Sources
2.2.1. Area of Agricultural Grassland Derived from InVeKos
2.2.2. OpenStreetMap
2.3. Potential Source Areas for Grassland Pollen Emission
2.4. Sensitivity Analysis
3. Results
3.1. Grass Pollen Calendar
3.2. Potential Pollen Source Areas PSACI+wind
3.3. Concentric Ring Correlations
3.4. Impact of Ring Size and Weighting Technique on the Variability in Grassland Percentages
4. Discussion
4.1. High Variability in Grass Pollen Concentrations
4.2. Low Influence of Grass Pollen Source Areas
4.3. Potential Impacts of Ring Size and Weighting Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emberlin, J. Temporal and geographical variations in grass pollen seasons in areas of western Europe: An analysis of season dates at sites of the European pollen information system. Aerobiologia 2000, 16, 373–379. [Google Scholar] [CrossRef]
- Burbach, G.J.; Heinzerling, L.M.; Edenharter, G.; Bachert, C.; Bindslev-Jensen, C.; Bonini, S.; Bousquet, J.; Bousquet-Rouanet, L.; Bousquet, P.J.; Bresciani, M.; et al. GA(2)LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy 2009, 64, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Robert Koch Institute. Gesundheit in Deutschland 2015; Robert Koch Institute: Berlin, Germany, 2015. [Google Scholar]
- Gilmour, M.I.; Jaakkola, M.S.; London, S.J.; Nel, A.E.; Rogers, C.A. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ. Health Perspect. 2006, 114, 627–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchi, L.; D’Amato, G.; Ayres, J.G.; Galan, C.; Forastiere, F.; Forsberg, B.; Gerritsen, J.; Nunes, C.; Behrendt, H.; Akdis, C.; et al. Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy 2010, 65, 1073–1081. [Google Scholar] [CrossRef]
- Poethko-Müller, C.; Thamm, M.; Thamm, R. Allergic rhinitis and asthma among children and adolescents in Germany. Results of the cross-sectional KiGGS Wave 2 study and trends. J. Health Monitor. 2018, 3, 52–56. [Google Scholar] [CrossRef]
- White, J.F.; Bernstein, D.I. Key pollen allergens in North America. Ann. Allergy Asthma Immunol. 2003, 91, 425–435. [Google Scholar] [CrossRef]
- Haftenberger, M.; Laußmann, D.; Ellert, U.; Kalcklösch, M.; Langen, U.; Schlaud, M.; Schmitz, R.; Thamm, M. Prevalence of sensitisation to aeraoallergens and food allergens: Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 687–697. [Google Scholar] [CrossRef] [Green Version]
- D‘Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Weger, L.A.; Beerthuizen, T.; Gast-Strookman, J.M.; van der Plas, D.T.; Terreehorst, I.; Hiemstra, P.S.; Sont, J.K. Difference in symptom severity between early and late grass pollen season in patients with seasonal allergic rhinitis. Clin. Transl. Allergy 2011, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Caillaud, D.M.; Martin, S.; Segala, C.; Besancenot, J.P.; Clot, B.; Thibaudon, M.; French Aerobiology Network. Nonlinear short-term effects of airborne Poaceae levels on hay fever symptoms. J. Allergy Clin. Immunol. 2012, 130, 812–814.e1. [Google Scholar] [CrossRef]
- Friedman, J.; Barrett, S.C.H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 2009, 103, 1515–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Emberlin, J.; Kress, A. Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia 2005, 21, 85–94. [Google Scholar] [CrossRef]
- Sofiev, M.; Bergmann, K.-C. (Eds.) Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4881-1. [Google Scholar]
- Andersen, S.T. Identification of wild grass and cereal pollen [fossil pollen, Annulus diameter, surface sculpturing]. In Danmarks Geol. Undersoegelse (Denmark); Aarbog: Copenhagen, Denmark, 1979. [Google Scholar]
- Menzel, A.; Ghasemifard, H.; Yuan, Y.; Estrella, N. A first pre-season pollen transport climatology to Bavaria, Germany. Front. Allergy 2021, 2, 1507. [Google Scholar] [CrossRef]
- Sofiev, M. On impact of transport conditions on variability of the seasonal pollen index. Aerobiologia 2017, 33, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrig, R.; Peeters, A.G. Pollen distribution at elevations above 1000 m inSwitzerland. Aerobiologia 2000, 16, 69–74. [Google Scholar] [CrossRef]
- García-Mozo, H.; Oteros, J.A.; Galán, C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci. Total Environ. 2016, 548–549, 221–228. [Google Scholar] [CrossRef]
- Rojo, J.; Oteros, J.; Pérez-Badia, R.; Cervigón, P.; Ferencova, Z.; Gutiérrez-Bustillo, A.M.; Bergmann, K.-C.; Oliver, G.; Thibaudon, M.; Albertini, R.; et al. Near-ground effect of height on pollen exposure. Environ. Res. 2019, 174, 160–169. [Google Scholar] [CrossRef]
- Damialis, A.; Kaimakamis, E.; Konoglou, M.; Akritidis, I.; Traidl-Hoffmann, C.; Gioulekas, D. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: How high can they fly? Sci. Rep. 2017, 7, 44535. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.D. Phenology: An Integrative Environmental Science; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6924-3. [Google Scholar]
- Ziska, L.H.; Caulfield, F.A. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: Implications for public health. Funct. Plant Biol. 2000, 27, 893. [Google Scholar] [CrossRef]
- Rojo, J.; Picornell, A.; Oteros, J.; Werchan, M.; Werchan, B.; Bergmann, K.-C.; Smith, M.; Weichenmeier, I.; Schmidt-Weber, C.B.; Buters, J. Consequences of climate change on airborne pollen in Bavaria, Central Europe. Reg. Environ. Chang. 2021, 21, 17. [Google Scholar] [CrossRef]
- Menzel, A. The allergen riddle. Nat. Ecol. Evol. 2019, 3, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Oteros, J.; Picornell, A.; Ruëff, F.; Werchan, B.; Werchan, M.; Bergmann, K.-C.; Schmidt-Weber, C.B.; Buters, J. Land-use and height of pollen sampling affect pollen exposure in Munich, Germany. Atmosphere 2020, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Emberlin, J.; Norris-Hill, J. Spatial variation of pollen deposition in north london. Grana 1991, 30, 190–195. [Google Scholar] [CrossRef]
- Hyde, H.A. Atmospheric pollen in relation to land use. Nature 1959, 183, 1694–1695. [Google Scholar] [CrossRef]
- Haberle, S.G.; Bowman, D.M.J.S.; Newnham, R.M.; Johnston, F.H.; Beggs, P.J.; Buters, J.; Campbell, B.; Erbas, B.; Godwin, I.; Green, B.J.; et al. The macroecology of airborne pollen in Australian and New Zealand urban areas. PLoS ONE 2014, 9, e97925. [Google Scholar] [CrossRef] [PubMed]
- Emberlin, J. The effects of patterns in climate and pollen abundance on allergy. Allergy 1994, 49 (Suppl. S18), 15–20. [Google Scholar] [CrossRef]
- European Environment Agency. Land Cover 2012; European Environment Agency: København, Denmark, 2012. [Google Scholar]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk, I. Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiologia 2006, 22, 185–195. [Google Scholar] [CrossRef]
- Sikoparija, B.; Radisic, P.; Pejak, T.; Simic, S. Airborne grass and ragweed pollen in the southern Panonnian Valley—consideration of rural and urban environment. Ann. Agric. Environ. Med. 2006, 13, 263–266. [Google Scholar]
- Rodríguez-Rajo, F.J.; Fdez-Sevilla, D.; Stach, A.; Jato, V. Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia 2010, 26, 1–14. [Google Scholar] [CrossRef]
- Majkowska-Wojciechowska, B.; Pełka, J.; Korzon, L.; Kozłowska, A.; Kaczała, M.; Jarzebska, M.; Gwardys, T.; Kowalski, M.L. Prevalence of allergy, patterns of allergic sensitization and allergy risk factors in rural and urban children. Allergy 2007, 62, 1044–1050. [Google Scholar] [CrossRef]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; van Weel, C.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008, 63 (Suppl. S86), 8–160. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Cano, F.; Bernard, N.; Sudre, B.; Gillet, F.; Thibaudon, M.; Richard, H.; Badot, P.M.; Ruffaldi, P. Human exposure to allergenic pollens: A comparison between urban and rural areas. Environ. Res. 2011, 111, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damialis, A.; Konstantinou, G.N. Cereal pollen sensitisation in pollen allergic patients: To treat or not to treat? Eur. Ann. Allergy Clin. Immunol. 2011, 43, 36–44. [Google Scholar] [PubMed]
- Skjøth, C.A.; Ørby, P.V.; Becker, T.; Geels, C.; Schlünssen, V.; Sigsgaard, T.; Bønløkke, J.H.; Sommer, J.; Søgaard, P.; Hertel, O. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 2013, 10, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Vuorela, I. Relative Pollen Rain around Cultivated Fields; Societas pro Fauna et Flora Fennica: Helsinki, Finland, 1973; ISBN 951-661-010-2. [Google Scholar]
- Theuerkauf, M.; Dräger, N.; Kienel, U.; Kuparinen, A.; Brauer, A. Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 2015, 25, 733–744. [Google Scholar] [CrossRef]
- Ciani, F.; Dell’Olmo, L.; Foggi, B.; Mariotti Lippi, M. The effect of urban green areas on pollen concentrations at ground level: A study in the city of Florence (Italy). Urban For. Urban Green. 2021, 60, 127045. [Google Scholar] [CrossRef]
- Oteros, J.; Sofiev, M.; Smith, M.; Clot, B.; Damialis, A.; Prank, M.; Werchan, M.; Wachter, R.; Weber, A.; Kutzora, S.; et al. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Sci. Total Environ. 2019, 688, 1263–1274. [Google Scholar] [CrossRef]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Diepolder, R. Bestimmung der Wichtigsten Gräser des Wirtschaftsgrünlands; LfL Agraökologie: Freising, Germany, 2007. [Google Scholar]
- Hart, M.L.; Wentworth, J.E.; Bailey, J.P. The effects of trap height and weather variables on recorded pollen concentration at Leicester. Grana 1994, 33, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Rojo, J.; Picornell, A.; Oteros, J.; Price, S. AeRobiology: The computational tool for biological data in the air. Methods Ecol. Evol. 2019, 10, 1371–1376. [Google Scholar] [CrossRef] [Green Version]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Alcázar, P.; Belmonte, J.; Bermejo, D.; Boi, M.; Cariñanos, P.; Díaz de la Guardia, C.; Fernández-González, D.; González-Minero, F.; et al. A new method for determining the sources of airborne particles. J. Environ. Manag. 2015, 155, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Aylor, D.E. Settling speed of corn (Zea mays) pollen. J. Aerosol Sci. 2002, 33, 1601–1607. [Google Scholar] [CrossRef]
- Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten. Bayerischer Agrarbericht 2018; Bayarisches Staatsministerium für Ernährung, Landwirtschaft und Forsten: Munich, Germany, 2018. [Google Scholar]
- Menzel, A.; Vopelius, J.; Estrella, N.; Schleip, C.; Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 2006, 32, 201–207. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 January 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98141-3. [Google Scholar]
- Ghasemifard, H.; Ghada, W.; Estrella, N.; Lüpke, M.; Oteros, J.; Traidl-Hoffmann, C.; Damialis, A.; Buters, J.; Menzel, A. High post-season Alnus pollen loads successfully identified as long-range transport of an alpine species. Atmos. Environ. 2020, 231, 117453. [Google Scholar] [CrossRef]
- Andersson, K.; Lidholm, J. Characteristics and immunobiology of grass pollen allergens. Int. Arch. Allergy Immunol. 2003, 130, 87–107. [Google Scholar] [CrossRef]
- Jung, S.; Estrella, N.; Pfaffl, M.W.; Hartmann, S.; Ewald, F.; Menzel, A. Impact of elevated air temperature and drought on pollen characteristics of major agricultural grass species. PLoS ONE 2021, 16, e0248759. [Google Scholar] [CrossRef]
- Raynor, G.S.; Ogden, E.C.; Hayes, J.V. Dispersion and deposition of corn pollen from experimental Sources 1. Agron. J. 1972, 64, 420–427. [Google Scholar] [CrossRef]
- Hofmann, F.; Otto, M.; Wosniok, W. Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation—Results of 10 years of monitoring (2001 to 2010). Environ. Sci. Eur. 2014, 26, 539. [Google Scholar] [CrossRef] [Green Version]
- Eder, J. Bericht zum Erprobungsanbau mit gentechnisch verändertem Mais in Bayern 2005. In Landesanst. Landwirtsch. (LfL); Bayer: Bayerische Landesanstalt für Landwirtschaft (LfL): Freising, Germany, 2006. [Google Scholar]
- Bundessortenamt. Beschreibende Sortenliste Futtergräser Beschreibende Sortenliste—Esparsette, Klee, Luzerne; Bundessortenamt: Hannover, Germany, 2013. [Google Scholar]
- Hjort, J.; Hugg, T.T.; Antikainen, H.; Rusanen, J.; Sofiev, M.; Kukkonen, J.; Jaakkola, M.S.; Jaakkola, J.J.K. Fine-scale exposure to allergenic pollen in the urban environment: Evaluation of land use regression approach. Environ. Health Perspect. 2016, 124, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Estrella, N.; Pfaffl, M.W.; Hartmann, S.; Handelshauser, E.; Menzel, A. Grass pollen production and group V allergen content of agriculturally relevant species and cultivars. PLoS ONE 2018, 13, e0193958. [Google Scholar] [CrossRef] [PubMed]
- Rantio-Lehtimäki, A.; Koivikko, A.; Kupias, R.; Mäkinen, Y.; Pohjola, A. Significance of sampling height of airborne particles for aerobiological information. Allergy 1991, 46, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Mazier, F.; Gaillard, M.-J.; Kuneš, P.; Sugita, S.; Trondman, A.-K.; Broström, A. Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev. Palaeobot. Palynol. 2012, 187, 38–49. [Google Scholar] [CrossRef]
- Li, F.; Gaillard, M.-J.; Sugita, S.; Mazier, F.; Xu, Q.; Zhou, Z.; Zhang, Y.; Li, Y.; Laffly, D. Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China. Veget Hist. Archaeobot. 2017, 26, 587–605. [Google Scholar] [CrossRef] [Green Version]
Station ID | Station Name | Altitude | T | P | Overall Ring, Averaged PSACI+wind |
---|---|---|---|---|---|
[m a.s.l.] | [°C] | [mm] | |||
DEALTO | Altötting | 398 | 19.7 | 37.6 | 5.68 |
DEAUGS | Augsburg | 497 | 16.8 | 164.9 | 6.09 |
DEBAMB | Bamberg | 238 | 18.0 | 127.9 | 7.48 |
DEBAYR | Bayreuth | 419 | 15.7 | 104.9 | 9.72 |
DEBERC | Berchtesgaden | 573 | 15.9 | 125.5 | – |
DEBIED | München-Biederstein | 510 | 19.4 | 276.0 | 8.67 |
DEDONA | Donaustauf | 425 | 17.2 | 147.9 | 6.41 |
DEFEUC | Feucht | 365 | 17.8 | 140.8 | 6.80 |
DEFREI | Freising | 448 | 18.1 | 213.3 | 11.13 |
DEGAIS | Gaissach | 717 | 17.1 | 458.9 | 15.56 |
DEGARM | Garmisch-Partenkirchen | 821 | 16.0 | 130.2 | – |
DEHOF | Hof | 531 | 16.5 | 146.0 | – |
DEKITZ | Kitzingen | 246 | 16.1 | 15.9 | 4.64 |
DEKOES | Kösching | 391 | 18.6 | 120.4 | 5.87 |
DELAND | Landshut | 397 | 18.7 | 212.5 | 5.24 |
DEMARK | Marktheidenfeld | 216 | 18.1 | 93.0 | 7.01 |
DEMIND | Mindelheim | 610 | 17.3 | 359.6 | 13.38 |
DEMUNC | München_Thalkirchen | 538 | 19.2 | 258.8 | 8.20 |
DEMUST | Münnerstadt | 347 | 16.0 | 8.1 | 9.02 |
DEOBER | Oberjoch | 870 | 16.3 | 409.5 | 19.57 |
DEOETT | Oettingen | 431 | 17.8 | 178.4 | 7.18 |
DEPASS | Passau | 318 | 18.9 | 276.3 | 6.46 |
DETROS | Trostberg | 483 | 18.2 | 375.1 | 9.00 |
DEUFS | Schneefernerhaus | 2650 | 5.9 | 43.5 | – |
DEVIEC | Viechtach | 459 | 14.4 | 166.7 | 9.41 |
DEWEID | Weiden | 403 | 17.4 | 142.2 | 5.09 |
DEZUSM | Zusmarshausen | 483 | 17.7 | 292.7 | 5.63 |
(A) InVeKos | |||||
Land-Use Type | Proportion | Description | <0.3 CI | 0.3–1.4 CI | ≥1.4 CI |
451 | 54.33 | Meadow (including meadow orchard) | 16.47 | 23.97 | 59.56 |
452 | 16.80 | Mowing pasture | 2.80 | 51.98 | 45.22 |
453 | 2.88 | Pasture | 6.97 | 64.31 | 28.72 |
62 | 2.52 | Fallow (ecological compensation conservation areas) | 64.50 | 12.77 | 22.73 |
455 | 2.12 | Alpine pasture | 41.77 | 56.45 | 1.79 |
441 | 1.86 | Newly sown grassland | 44.71 | 24.69 | 30.60 |
424 | 1.55 | Agricultural grassland (due to crop rotation) | 22.09 | 17.82 | 60.09 |
460 | 1.30 | Sheep grazing | 2.89 | 95.88 | 1.23 |
458 | 0.74 | Litter meadow | 16.57 | 63.27 | 20.15 |
560 | 0.66 | Arable land; set aside (due to agri-environmental schemes) | 77.65 | 14.20 | 8.15 |
592 | 0.41 | Permanent grassland; set aside | 81.81 | 10.30 | 7.89 |
930 | 0.35 | Fish farming pond area | 74.17 | 14.14 | 11.70 |
591 | 0.34 | Cropland; set aside | 82.25 | 11.46 | 6.28 |
941 | 0.22 | Fallow under organic farming (permanent grassland) | 80.00 | 17.94 | 2.06 |
454 | 0.21 | Rough pastures | 3.88 | 90.63 | 5.49 |
852 | 0.12 | Miscanthus (Silvergrass) | 70.10 | 15.07 | 14.83 |
58 | 0.11 | Field margin (ecological compensation conservation areas) | 59.18 | 10.29 | 30.53 |
853 | 0.11 | Tall Wheatgrass Cultivar Szarvasi-1 (Elymus elongatus ssp. ponticus cv. Szarvasi-1) | 67.29 | 18.81 | 13.90 |
803 | 0.09 | Sudangrass (Sorghum × drummondii or Sorghum sudanense) | 56.16 | 28.66 | 15.18 |
912 | 0.09 | Seed production for grasses according to Seed law | 72.79 | 12.73 | 14.48 |
958 | 0.09 | Nature conservation area (without agricultural management) | 61.95 | 27.53 | 10.51 |
428 | 0.06 | Temporary grassland | 19.62 | 13.76 | 66.62 |
429 | 0.04 | Other fodder plant | 49.04 | 28.52 | 22.44 |
56 | 0.04 | Buffer strips along cropland (ecological compensation conservation area) | 60.79 | 7.87 | 31.34 |
870 | 0.03 | Energy crop in mixed culture | 55.66 | 36.38 | 7.96 |
940 | 0.03 | Uncultivated pond area | 80.59 | 6.39 | 13.01 |
54 | 0.01 | Buffer strips along woodland edges (ecological compensation conservation area) | 34.45 | 11.89 | 53.66 |
546 | 0.01 | Inoperative permanent grassland (FELEG) | 99.65 | 0.35 | |
567 | 0.01 | Inoperative permanent grassland (agri-environmental measures) | 53.20 | 30.47 | 16.33 |
57 | <0.01 | Buffer stripe (ecological compensation conservation areas, permanent greenspace) | 40.42 | 9.11 | 50.47 |
835 | <0.01 | Other nuts | 100 | ||
854 | <0.01 | Ribbon grass | 39.39 | 60.61 | |
920 | <0.01 | Home or kitchen garden (without agricultural use) | 71.59 | 13.88 | 14.53 |
(B) OpenStreetMap | |||||
Land-Use Type | Proportion | Description | 0 CI | 0.3 CI | 1.4 CI |
Meadow | 7.94 | Meadow, possibly used for grazing cattle | 100 | ||
Grass | 1.76 | Areas with grass | 100 | ||
Park | 1.61 | Park | 100 | ||
Allotments | 0.56 | Small private gardens | 100 | ||
Graveyard | 0.37 | Cemetery or graveyard | 100 | ||
Recreation ground | 0.34 | Open green space for general recreation | 100 | ||
Heath | 0.30 | Heath areas | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Yuan, Y.; Stange Del Carpio, M.; Pawlik, T.; Hartmann, S.; Estrella, N.; Oteros, J.; Traidl-Hoffmann, C.; Damialis, A.; Buters, J.; et al. Impact of Local Grasslands on Wild Grass Pollen Emission in Bavaria, Germany. Land 2022, 11, 306. https://doi.org/10.3390/land11020306
Jung S, Yuan Y, Stange Del Carpio M, Pawlik T, Hartmann S, Estrella N, Oteros J, Traidl-Hoffmann C, Damialis A, Buters J, et al. Impact of Local Grasslands on Wild Grass Pollen Emission in Bavaria, Germany. Land. 2022; 11(2):306. https://doi.org/10.3390/land11020306
Chicago/Turabian StyleJung, Stephan, Ye Yuan, Maria Stange Del Carpio, Thomas Pawlik, Stephan Hartmann, Nicole Estrella, Jose Oteros, Claudia Traidl-Hoffmann, Athanasios Damialis, Jeroen Buters, and et al. 2022. "Impact of Local Grasslands on Wild Grass Pollen Emission in Bavaria, Germany" Land 11, no. 2: 306. https://doi.org/10.3390/land11020306
APA StyleJung, S., Yuan, Y., Stange Del Carpio, M., Pawlik, T., Hartmann, S., Estrella, N., Oteros, J., Traidl-Hoffmann, C., Damialis, A., Buters, J., & Menzel, A. (2022). Impact of Local Grasslands on Wild Grass Pollen Emission in Bavaria, Germany. Land, 11(2), 306. https://doi.org/10.3390/land11020306