Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection
2.2.1. Remote-Sensing Image Classification
2.2.2. Analyzing Land-Cover Change
2.3. Human–Elephant Conflicts (HEC)
2.4. Habitat Suitability Modeling
2.5. Habitat Fragmentation Analysis
2.6. Statistical Analysis
3. Results
3.1. Accuracy Assessment
3.2. Land-Use/Cover Change in the WMS Wildlife Corridor over the Last 20 Years
3.3. Habitat Suitability Change for Elephants
3.4. Landscape Metrics Analysis
3.5. Human–Elephant Conflict and Hotspot Locations
4. Discussion
4.1. Forest Loss and Agricultural Expansion in the Corridor
4.2. Habitat Suitability and Quality Decline over Time
4.3. Elephant Distributions and HEC Hotspots
4.4. Overall Landscape Fragmentation in WMS Wildlife Corridor
5. Conclusions
6. Implication for Conservation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Year | Path/Row | Resolution |
---|---|---|---|
Landsat TM | 1998 | 167/065. 167/064. 166/064 and 166/065 | 30 m |
Landsat TM | 2008 | 167/065. 167/064. 166/064. and 166/065 | 30 m |
Landsat 8 | 2018 | 167/065. 167/064. 166/064. and 166/065 | 30 m |
Metrics | CA (m2) | PLAND (%) | NP (#/100 ha) | PD (km2) | ||||||||
Land Use | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 |
Forest | 113,074 | 106,702 | 32,900 | 55.0 | 51.9 | 16.0 | 597 | 524 | 1582 | 0.3 | 0.3 | 0.8 |
Bushland | 69,742 | 60,164 | 65,036 | 33.9 | 29.3 | 31.6 | 1026 | 1218 | 1161 | 0.5 | 0.6 | 0.6 |
Agriculture | 14,342 | 23,769 | 54,227 | 7.0 | 11.6 | 26.4 | 527 | 870 | 1524 | 0.3 | 0.4 | 0.7 |
Grassland | 7588 | 12,928 | 51,722 | 3.7 | 6.3 | 25.2 | 408 | 524 | 1674 | 0.2 | 0.3 | 0.8 |
Bare soil | 0.0 | 1124 | 1183 | 0.0 | 0.5 | 0.6 | 0 | 145 | 160 | 0.0 | 0.1 | 0.1 |
Water | 866 | 549 | 247 | 0.4 | 0.3 | 0.1 | 94 | 63 | 36 | 0.0 | 0.0 | 0.0 |
Urban | 16 | 188 | 307 | 0.0 | 0.1 | 0.1 | 1 | 7 | 16 | 0.0 | 0.0 | 0.0 |
Metrics | LPI | ED (m/ha) | LSI (n/a) | IJI (%) | ||||||||
Land Use | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 | 1998 | 2008 | 2018 |
Forest | 30.8 | 46.7 | 3.2 | 24.6 | 25.1 | 15.8 | 39.2 | 41.0 | 45.3 | 40.0 | 50.3 | 64.2 |
Bushland | 12.3 | 9.1 | 16.0 | 25.9 | 24.4 | 24.5 | 51.4 | 52.2 | 50.5 | 44.6 | 50.5 | 64.2 |
Agriculture | 1.0 | 1.0 | 5.6 | 6.8 | 11.4 | 27.8 | 29.5 | 38.9 | 62.5 | 52.8 | 54.3 | 61.1 |
Grassland | 0.4 | 0.4 | 6.8 | 3.9 | 6.3 | 27.9 | 23.2 | 29.0 | 64.1 | 58.7 | 59.8 | 60.5 |
Bare soil | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.9 | 0.0 | 12.6 | 13.2 | 0.0 | 79.4 | 75.5 |
Water | 0.0 | 0.0 | 0.0 | 0.6 | 0.4 | 0.2 | 10.2 | 8.5 | 6.1 | 58.6 | 65.8 | 77.3 |
Urban | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 1.0 | 3.5 | 4.3 | 41.1 | 72.2 | 74.1 |
References
- Singh, S.K.; Srivastava, P.K.; Szabó, S.; Petropoulos, G.P.; Gupta, M.; Islam, T. Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto Int. 2017, 32, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S. Landscape metrics for assessment of land cover change and fragmentation of a heterogeneous watershed. Remote Sens. Appl. Soc. Environ. 2018, 10, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Saikia, A.; Hazarika, R.; Sahariah, D. Land-use/land-cover change and fragmentation in the Nameri Tiger Reserve, India. Geogr. Tidsskr. J. Geogr. 2013, 113, 1–10. [Google Scholar] [CrossRef]
- Karlson, M.; Mörtberg, U.; Balfors, B. Road ecology in environmental impact assessment. Environ. Impact Assess. Rev. 2014, 48, 10–19. [Google Scholar] [CrossRef]
- Jones, T.; Bamford, A.J.; Ferrol-Schulte, D.; Hieronimo, P.; McWilliam, N.; Rovero, F. Vanishing Wildlife Corridors and Options for Restoration: A Case Study from Tanzania. Trop. Conserv. Sci. 2012, 5, 463–474. [Google Scholar] [CrossRef]
- Hefty, K.L.; Koprowski, J.L. Multiscale effects of habitat loss and degradation on occurrence and landscape connectivity of a threatened subspecies. Conserv. Sci. Pract. 2021, 3, e547. [Google Scholar] [CrossRef]
- Serieys, L.E.K.; Rogan, M.S.; Matsushima, S.S.; Wilmers, C.C. Road-crossings, vegetative cover, land use and poisons interact to influence corridor effectiveness. Biol. Conserv. 2021, 253, 108930. [Google Scholar] [CrossRef]
- Thatte, P.; Joshi, A.; Vaidyanathan, S.; Landguth, E.; Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Conserv. 2018, 218, 181–191. [Google Scholar] [CrossRef]
- Ebenezeri Kileo, L.; Emmanuel Mbije, N. Land Use Practices along Saadani-Wami-Mbiki Wildlife Corridor and their Implications to Wildlife Conservation. Asian J. Environ. Ecol. 2021, 16, 126–143. [Google Scholar] [CrossRef]
- Ghent, C. Mitigating the effects of transport infrastructure development on ecosystems. Consilience 2018, 19, 58–68. [Google Scholar]
- Erena, M.G.; Yesus, T.G. Mapping potential wildlife habitats around Haro Abba Diko controlled hunting area, Western Ethiopia. Ecol. Evol. 2021, 11, 11282–11294. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.C.; Walker, F.M.; Goldingay, R.L.; Ball, T.; Van Der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a Gliding mammal. PLoS ONE 2011, 6, e26651. [Google Scholar] [CrossRef] [PubMed]
- Brashares, J.S.; Arcese, P.; Sam, M. Human demography and reserve size predict wildlife extinction in West Africa. Biol. Sci. 2001, 268, 2473–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craigie, I.D.; Baillie, J.E.M.; Balmford, A.; Carbone, C.; Collen, B.; Green, R.E.; Hutton, J.M. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 2010, 143, 2221–2228. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Piepho, H.-P.; Said, M.Y.; Ojwang, G.O.; Njino, L.W.; Kifugo, S.C.; Wargute, P.W. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: What are the causes? PLoS ONE 2016, 11, e0163249. [Google Scholar] [CrossRef]
- Van Eeden, L.M.; Eklund, A.; Miller, J.R.B.; López-Bao, J.V.; Chapron, G.; Cejtin, M.R.; Crowther, M.S.; Dickman, C.R.; Frank, J.; Krofel, M. Carnivore conservation needs evidence-based livestock protection. PLoS Biol. 2018, 16, e2005577. [Google Scholar] [CrossRef]
- Bolger, D.T.; Newmark, W.D.; Morrison, T.A.; Doak, D.F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 2008, 11, 63–77. [Google Scholar] [CrossRef]
- Kinnaird, M.F.; O’brien, T.G. Effects of private-land use, livestock management, and human tolerance on diversity, distribution, and abundance of large African mammals. Conserv. Biol. 2012, 26, 1026–1039. [Google Scholar] [CrossRef]
- Schüßler, D.; Lee, P.C.; Stadtmann, R. Analyzing land use change to identify migration corridors of African elephants (Loxodonta africana) in the Kenyan-Tanzanian borderlands. Landsc. Ecol. 2018, 33, 2121–2136. [Google Scholar] [CrossRef]
- Newmark, W.D. Isolation of African protected areas. Front. Ecol. Environ. 2008, 6, 321–328. [Google Scholar] [CrossRef]
- Shauri, V.; Hitchcock, L. Wildlife Corridors and Buffer Zones in Tanzania; LEAT: Dar Es Salaam, Tanzania, 1999; Volume 7, pp. 583–596. [Google Scholar] [CrossRef]
- Kideghesho, J.R. The Elephant Poaching Crisis in Tanzania: A Need to Reverse the Trend and the Way Forward. Trop. Conserv. Sci. 2016, 9, 369–388. [Google Scholar] [CrossRef]
- Caro, T.; Jones, T.; Davenport, T.R.B. Realities of documenting wildlife corridors in tropical countries. Biol. Conserv. 2009, 142, 2807–2811. [Google Scholar] [CrossRef]
- Aini, S.; Sood, A.M.; Saaban, S. Analysing elephant habitat parameters using GIS, remote sensing and analytic hierarchy process in peninsular Malaysia. Pertanika J. Sci. Technol. 2015, 23, 37–50. [Google Scholar]
- Naha, D.; Dash, S.K.; Chettri, A.; Roy, A.; Sathyakumar, S. Elephants in the neighborhood: Patterns of crop-raiding by Asian elephants within a fragmented landscape of Eastern India. PeerJ 2020, 8, e9399. [Google Scholar] [CrossRef]
- Kushwaha, C.P.; Tripathi, S.K.; Singh, K.P. Tree specific traits affect flowering time in Indian dry tropical forest. Plant Ecol. 2011, 212, 985–998. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Vierling, L.A.; Gould, W.A.; Falkowski, M.J.; Evans, J.S.; Hudak, A.T.; Vierling, K.T. Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 2009, 113, 2533–2546. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, P.; Farfán, M.Á.; Márquez, A.L.; Delibes-Mateos, M.; Real, R.; Vargas, J.M. Past, present and future of wild ungulates in relation to changes in land use. Landsc. Ecol. 2011, 26, 19–31. [Google Scholar] [CrossRef]
- Beca, G.; Vancine, M.H.; Carvalho, C.S.; Pedrosa, F.; Alves, R.S.C.; Buscariol, D.; Peres, C.A.; Ribeiro, M.C.; Galetti, M. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 2017, 210, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Gayo, L. Contribution of Wildilife Management Area on Wildlife Conservation and Livelihood: A Case of Wami-Mbiki Wildlife Management Area. Ph.D. Thesis, The University of Dodoma, Dodoma, Tanzania, 2013. [Google Scholar]
- Mutaka, M.M. Examining Conservation Conflicts in Tanzania’s National Parks: A Case Study of Saadani National Park. Ph.D. Thesis, Ghent University, Faculty of Political and Social Science, Ghent, Belgium, 2016. [Google Scholar]
- Riggio, J.; Mbwilo, F.; Van de Perre, F.; Caro, T. The forgotten link between northern and southern Tanzania. Afr. J. Ecol. 2018, 56, 1012–1016. [Google Scholar] [CrossRef]
- Beale, C.M.; Hauenstein, S.; Mduma, S.; Frederick, H.; Jones, T.; Bracebridge, C.; Maliti, H.; Kija, H.; Kohi, E.M. Spatial analysis of aerial survey data reveals correlates of elephant carcasses within a heavily poached ecosystem. Biol. Conserv. 2018, 218, 258–267. [Google Scholar] [CrossRef]
- Mariki, S.B. Successes, threats, and factors influencing the performance of a community-based wildlife management approach: The case of Wami Mbiki WMA, Tanzania. In Wildlife Management-Failures, Successes and Prospects; IntechOpen: London, UK, 2018. [Google Scholar]
- Debonnet, G.; Nindi, S. Technical Study on Land Use and Tenure Options and Status of Wildlife Corridors in Tanzania: An Input to the Preparation of Corridor; USAID: Washington, DC, USA, 2017.
- Nobert, J.; Jeremiah, J. Hydrological response of watershed systems to land use/cover change. a case of Wami River Basin. Open Hydrol. J. 2012, 6, 78–87. [Google Scholar] [CrossRef]
- Riggio, J.; Caro, T. Structural connectivity at a national scale: Wildlife corridors in Tanzania. PLoS ONE 2017, 12, e0187407. [Google Scholar] [CrossRef] [Green Version]
- Van de Perre, F.; Adriaensen, F.; Songorwa, A.N.; Leirs, H. Locating elephant corridors between Saadani National Park and the Wami-Mbiki Wildlife Management Area, Tanzania. Afr. J. Ecol. 2014, 52, 448–457. [Google Scholar] [CrossRef]
- Kikoti, A. Where Are the Conservation Corridors for Elephants in Saadani National Park and the Lower Wami-Ruvu River Basin of Eastern Tanzania? Summary Report of Elephant Collaring Operation; Coastal Resources Cwnter, University of Rhodes Island: Washington, DC, USA, 2010. [Google Scholar]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Thieme, A.; Yadav, S.; Oddo, P.C.; Fitz, J.M.; McCartney, S.; King, L.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sens. Environ. 2020, 248, 111943. [Google Scholar] [CrossRef]
- Horning, N.; Robinson, J.A.; Sterling, E.J.; Turner, W.; Spector, S. Remote Sensing for Ecology and Conservation: A Handbook of Techniques; Oxford University Press: New York, NY, USA, 2010; ISBN 0199219958. [Google Scholar]
- MacDicken, K.G. Global forest resources assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Twisa, S.; Kazumba, S.; Kurian, M.; Buchroithner, M.F. Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania. Hydrology 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Theodory, L. Impacts of Climate Variability and Land Use Land Cover Change on Stream Flow in the Little Ruaha River Catchment, Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2014. [Google Scholar]
- Talukdar, N.R.; Choudhury, P.; Ahmad, F.; Ahmed, R.; Al-Razi, H. Habitat suitability of the Asiatic elephant in the trans-boundary Patharia Hills Reserve Forest, northeast India. Model. Earth Syst. Environ. 2020, 6, 1951–1961. [Google Scholar] [CrossRef]
- Areendran, G.; Krishna, R.; Sraboni, M.; Madhushree, M.; Himanshu, G.; Sen, P.K. Geospatial modeling to assess elephant habitat suitability and corridors in northern Chhattisgarh, India. Trop. Ecol. 2011, 52, 275–283. [Google Scholar]
- Sanare, J.E.; Ganawa, E.S.; Abdelrahim, A.M.S. Wildlife Habitat Suitability Analysis at Serengeti National Park (SNP), Tanzania Case Study Loxodonta sp. J. Ecosys. Ecograph. 2015, 2, 164. [Google Scholar] [CrossRef] [Green Version]
- Boitani, L.; Sinibaldi, I.; Corsi, F.; De Biase, A.; Carranza, I.; Ravagli, M.; Reggiani, G.; Rondinini, C.; Trapanese, P. Distribution of medium-to large-sized African mammals based on habitat suitability models. Biodivers. Conserv. 2008, 17, 605–621. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Modell. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Hurley, M.V.; Rapaport, E.K.; Johnson, C.J. Utility of Expert-Based Knowledge for Predicting Wildlife–Vehicle Collisions. J. Wildl. Manage. 2009, 73, 278–286. [Google Scholar] [CrossRef]
- Poor, E.E.; Loucks, C.; Jakes, A.; Urban, D.L. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLoS ONE 2012, 7, e49390. [Google Scholar] [CrossRef]
- Guy, P.R. The feeding behaviour of elephant (Loxodonta africana) in the Sengwa area Rhodesia. S. Afr. J. Wildl. Res. 1976, 6, 55–63. [Google Scholar]
- Guy, P.R. Diurnal activity patterns of elephant in the Sengwa Area, Rhodesia. Afr. J. Ecol. 1976, 14, 285–295. [Google Scholar] [CrossRef]
- Graham, M.D.; Notter, B.; Adams, W.M.; Lee, P.C.; Ochieng, T.N. Patterns of crop-raiding by elephants, Loxodonta africana, in Laikipia, Kenya, and the management of human–elephant conflict. Syst. Biodivers. 2010, 8, 435–445. [Google Scholar] [CrossRef]
- Wind, Y.; Saaty, T.L. Marketing applications of the analytic hierarchy process. Manage. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1–128; R Core Team: Waltham, MA, USA, 2016. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Goepel, K.D. Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises—A new AHP excel template with multiple inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 19–23 June 2013; Creative Decisions Foundation Kuala Lumpur: Kuala Lumpur, Malaysia; Volume 2, pp. 1–10. [Google Scholar]
- Sharma, R.; Nehren, U.; Rahman, S.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: http//www.umass.edu/landeco/research/fragstats/fragstats (accessed on 18 August 2021).
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Jorge, L.A.B.; Garcia, G.J. Management A study of habitat fragmentation in Southeastern Brazil using remote sensing and geographic information systems (GIS). For. Ecol. Manage. 1997, 98, 35–47. [Google Scholar] [CrossRef]
- Kakembo, V.; Smith, J.; Kerley, G. A temporal analysis of elephant-induced thicket degradation in Addo Elephant National Park, Eastern Cape, South Africa. Rangel. Ecol. Manag. 2015, 68, 461–469. [Google Scholar] [CrossRef]
- del Castillo, E.M.; García-Martin, A.; Aladrén, L.A.L.; de Luis, M. Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Appl. Geogr. 2015, 62, 247–255. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure; Forest Science Department, Oregon State University: Corvallis, OR, USA, 1995. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Austria, S. R Core Team (2016) Nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-127; R Core Team: Waltham, MA, USA, 2016. [Google Scholar]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Monserud, R. Methods for Comparing Global Vegetation Maps; Report WP-90-40 1990; IIASA: Laxenburg, Austria, 1990. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.J.; Baetens, J.M.; De Baets, B. Ecological Diversity: Measuring the Unmeasurable. Mathematics 2018, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Riggio, J.; Jacobson, A.P.; Hijmans, R.J.; Caro, T. How effective are the protected areas of East Africa? Glob. Ecol. Conserv. 2019, 17, e00573. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M.F. Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Twisa, S.; Mwabumba, M.; Kurian, M.; Buchroithner, M.F. Impact of Land-Use/Land-Cover Change on Drinking Water Ecosystem Services in Wami River Basin, Tanzania. Land 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Ngondo, J.; Mango, J.; Liu, R.; Nobert, J.; Dubi, A.; Cheng, H. Land-Use and Land-Cover (LULC) Change Detection and the Implications for Coastal Water Resource Management in the Wami–Ruvu Basin, Tanzania. Sustainability 2021, 13, 4092. [Google Scholar] [CrossRef]
- URT 2019 Tanzania in Figures. Natl. Bur. Stat. United Repub. Tanzania 2019, 7.
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Morales-Hidalgo, D.; Oswalt, S.N.; Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manage. 2015, 352, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Estes, A.B.; Kuemmerle, T.; Kushnir, H.; Radeloff, V.C.; Shugart, H.H. Land-cover change and human population trends in the greater Serengeti ecosystem from 1984–2003. Biol. Conserv. 2012, 147, 255–263. [Google Scholar] [CrossRef]
- Massawe, G.M. Impacts of Human Activities on the Conservation of Igando-Igawa Wildlife Corridor in Njombe and Mbarali districts, Tanzania. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2010. [Google Scholar]
- McNally, C.G.; Uchida, E.; Gold, A.J. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl. Acad. Sci. USA 2011, 108, 13945–13950. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Andrade, A.; Ewers, R.M.; Harms, K.E.; Luizao, R.C.C.; Ribeiro, J.E. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2007, 2, e1017. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. For. Ecol. 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Janecka, J.E.; Tewes, M.E.; Davis, I.A.; Haines, A.M.; Caso, A.; Blankenship, T.L.; Honeycutt, R.L. Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv. Genet. 2016, 17, 1093–1108. [Google Scholar] [CrossRef]
- Kohi, E.M.; Lobora, A. Ecology and Behavioral Studies of Elephant in the Selous-Mikumi A; Tanzania Wildlife Research Institute: Arusha, Tanzania, 2018; pp. 1–52. [Google Scholar]
- Lohay, G.G.; Weathers, T.C.; Estes, A.B.; McGrath, B.C.; Cavener, D.R. Genetic connectivity and population structure of African savanna elephants (Loxodonta africana) in Tanzania. Ecol. Evol. 2020, 10, 11069–11089. [Google Scholar] [CrossRef]
- Burgess, N.D.; Butynski, T.M.; Cordeiro, N.J.; Doggart, N.H.; Fjeldså, J.; Howell, K.M.; Kilahama, F.B.; Loader, S.P.; Lovett, J.C.; Mbilinyi, B. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol. Conserv. 2007, 134, 209–231. [Google Scholar] [CrossRef]
- Burgess, N.; Doggart, N.; Lovett, J.C. The Uluguru Mountains of eastern Tanzania: The effect of forest loss on biodiversity. Oryx 2002, 36, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Kacholi, D.S.; Whitbread, A.M.; Worbes, M. Diversity, abundance, and structure of tree communities in the Uluguru forests in the Morogoro region, Tanzania. J. For. Res. 2015, 26, 557–569. [Google Scholar] [CrossRef]
- Wilfred, P. Towards sustainable wildlife management areas in Tanzania. Trop. Conserv. Sci. 2010, 3, 103–116. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Cisneros-Araujo, P.; Ramirez-Lopez, M.; Juffe-Bignoli, D.; Fensholt, R.; Muro, J.; Mateo-Sánchez, M.C.; Burgess, N.D. Remote sensing of wildlife connectivity networks and priority locations for conservation in the Southern Agricultural Growth Corridor (SAGCOT) in Tanzania. Remote Sens. Ecol. Conserv. 2021, 7, 430–444. [Google Scholar] [CrossRef]
- Epps, C.W.; Mutayoba, B.M.; Gwin, L.; Brashares, J.S. An empirical evaluation of the African elephant as a focal species for connectivity planning in East Africa. Divers. Distrib. 2011, 17, 603–612. [Google Scholar] [CrossRef]
- Nandy, S.; Kushwaha, S.P.S.; Mukhopadhyay, S. Monitoring the Chilla–Motichur wildlife corridor using geospatial tools. J. Nat. Conserv. 2007, 15, 237–244. [Google Scholar] [CrossRef]
- Woodroffe, R.; Thirgood, S.; Rabinowitz, A. (Eds.) Socio-ecological factors shaping local support for wildlife: Crop-raiding by elephants and other wildlife in Africa. In People and Wildlife: Conflict or Coexistance? Cambridge University: Cambridge, UK, 2005; Volume 9, pp. 252–277. [Google Scholar]
- Naughton-Treves, L. Farming the Forest Edge: Vulnerable Places and People Around Kibale National Park, Uganda. Geogr. Rev. 1997, 87, 27–46. [Google Scholar] [CrossRef]
- Harich, F.K. Conflicts of human land-use and conservation areas: The case of Asian elephants in rubber-dominated landscapes of Southeast Asia. Ph.D. Thesis, University of Hohenheim Agrarwissenscha, Hohenheim, Germany, 2017. [Google Scholar]
- Hargis, C.D.; Bissonette, J.A.; Turner, D.L. The influence of forest fragmentation and landscape pattern on American martens. J. Appl. Ecol. 1999, 36, 157–172. [Google Scholar] [CrossRef]
- Rutledge, D.T. Landscape Indices as Measures of the Effects of Fragmentation: Can Pattern Reflect Process? Doc Science International Series 98; Department of Conservation: Wellington, New Zealand, 2003; p. 27.
- Liu, S.; Dong, Y.; Deng, L.; Liu, Q.; Zhao, H.; Dong, S. Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley. Ecol. Indic. 2014, 36, 160–168. [Google Scholar] [CrossRef]
- Rocha, E.C.; Brito, D.; Silva, J.; Bernardo, P.V.D.S.; Juen, L. Effects of habitat fragmentation on the persistence of medium and large mammal species in the Brazilian Savanna of Goiás State. Biota Neotrop. 2018, 18. [Google Scholar] [CrossRef]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Wenguang, Z.; Yuanman, H.; Jinchu, H.; Yu, C.; Jing, Z.; Miao, L. Impacts of land-use change on mammal diversity in the upper reaches of Minjiang River, China: Implications for biodiversity conservation planning. Landsc. Urban Plan. 2008, 85, 195–204. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Ndaimani, H.; Tagwireyi, P.; Gara, T.W.; Zvidzai, M.; Madhlamoto, D. Missing in action: Species competition is a neglected predictor variable in species distribution modelling. PLoS ONE 2017, 12, e0181088. [Google Scholar] [CrossRef]
LULC Types | Description |
---|---|
Agriculture with scattered settlements | Land actively used to grow crops (seasonal and permanent) |
Bare ground | No vegetation (exposed rock outcrops and bare soil) |
Bushland | Dominated by multi-stemmed plants from a single root base and woody cover |
Forest | >50% canopy cover of woody plants of ≥5 m height |
Grassland | <10% cover of sparse woody plants, dominated by continuous herbaceous cover |
Urban area | Urban and rural settlements (houses, roads, infrastructure) |
Water | Water bodies, mostly permanent (inland water) |
Factor | Class (Unit) | AR |
---|---|---|
Land-use/land-cover change | Agriculture | 1 |
Bushland | 7 | |
Forest | 9 | |
Proximity to permanent water | Grassland | 3 |
<100 m | 5 | |
100–200 m | 3 | |
>200 m | 1 | |
Proximity to road | <100 m | 1 |
100–200 m | 2 | |
>200 m | 3 | |
NDVI | 0.4–0.5 | 3 |
0.5–0.6 | 2 | |
<0.4 and >0.6 | 1 |
(a) | |||||
Habitat Parameters | LULC | Pw | Pr | NDVI | |
LULC | 1.00 | 9.00 | 9.00 | 9.00 | |
Pw | 0.11 | 1.00 | 5.00 | 5.00 | |
Pr | 0.11 | 0.20 | 1.00 | 0.25 | |
NDVI | 9.00 | 5.00 | 0.25 | 1.00 | |
SUM | 19.11 | 15.20 | 15.25 | 15.25 | |
(b) | |||||
Habitat Parameters | LULC | Pw | Pr | NDVI | %Priority |
LULC | 0.05 | 0.59 | 0.59 | 0.59 | 45.6 |
Pw | 0.47 | 0.07 | 0.33 | 0.33 | 29.8 |
Pr | 0.01 | 0.01 | 0.07 | 0.02 | 2.5 |
NDVI | 0.47 | 0.33 | 0.02 | 0.07 | 22 |
SUM | 1.00 | 1.00 | 1.00 | 1.00 | 100 |
Fragstat Metrics | Abbreviation | Unit | Description |
---|---|---|---|
Total area | CA | m2 | Sum of areas (m2) of all patches for each patch type |
Percentage of landscape | PLAND | % | Proportional abundance for each patch type (habitat) across the landscape |
Largest patch index | LPI | % | Percentage of total landscape area characterized by the largest patch |
Edge density | ED | m/ha | Edge length per unit area |
Patch density | PD | km2 | Measures the number of all patches per unit area increases with heterogeneity |
Landscape shape index | LSI | n/a | Measures the total edge or edge densitywhile adjusting for the size of an area. Themetric increases with increasing heterogeneity |
Patch number | NP | n/a | Number of patches within each class |
Interspersion and Juxtaposition Index | IJI | % | The adjacency of each patch with all other forest types |
Shannon Diversity Index | SHDI | n/a | Relative index for comparing different landscapes or the same landscape at different times |
1998 | 2008 | 2018 | ||||
---|---|---|---|---|---|---|
LULC | PA | UA | PA | UA | PA | UA |
Forest | 81 | 81 | 71 | 64 | 77 | 92 |
Grassland | 82 | 69 | 76 | 97 | 79 | 68 |
Bushland | 61 | 44 | 95 | 76 | 77 | 71 |
Urban | 75 | 91 | 65 | 65 | 67 | 60 |
Water | 87 | 91 | 62 | 81 | 74 | 90 |
Agriculture | 79 | 88 | 71 | 84 | 78 | 60 |
Bare Soil | 0 | 0 | 76 | 85 | 71 | 93 |
Over all | 79 | 77 | 75 | |||
Kappa | 0.75 | 0.72 | 0.71 |
Year | 1998 | 2008 | 2018 | 1998–2008 | 2008–2018 | 1998–2008 | 2008–2018 | 1998–2008 | 2008–2018 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Cover | Area (ha) | Area (%) | Area (ha) | Area (%) | Area (ha) | Area (%) | Area (%) | Area (%) | km2/year | km2/year | (%/year) | (%/year) |
Agriculture | 14,330 | 7 | 23,749 | 11.6 | 32,873 | 16 | −4.6 | −4.4 | −9.4 | −9.1 | −6.6 | −3.8 |
Bare soil | 0 | 0 | 1123 | 0.6 | 1182 | 0.6 | −0.5 | 0 | −1.1 | −0.1 | 0 | −0.5 |
Bushland | 69,684 | 34 | 60,115 | 29.3 | 51,679 | 25.2 | 4.7 | 4.1 | 9.6 | 8.4 | 1.4 | 1.4 |
Forest | 112,981 | 55 | 106,614 | 51.9 | 64,983 | 31.6 | 3.1 | 20.3 | 6.4 | 41.6 | 0.6 | 3.9 |
Grassland | 7581 | 3.7 | 12,917 | 6.3 | 54,183 | 26.4 | −2.6 | −20.1 | −5.3 | −41.3 | −7 | −31.9 |
Urban area | 16 | 0 | 188 | 0.1 | 306 | 0.2 | −0.1 | −0.1 | −0.2 | −0.1 | −107.5 | −6.3 |
Water | 865 | 0.4 | 548 | 0.3 | 247 | 0.1 | 0.2 | 0.1 | 0.3 | 0.3 | 3.7 | 5.5 |
Total | 205,457 | 100 | 205,254 | 100 | 205,453 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntukey, L.T.; Munishi, L.K.; Kohi, E.; Treydte, A.C. Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania. Land 2022, 11, 307. https://doi.org/10.3390/land11020307
Ntukey LT, Munishi LK, Kohi E, Treydte AC. Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania. Land. 2022; 11(2):307. https://doi.org/10.3390/land11020307
Chicago/Turabian StyleNtukey, Lucas Theodori, Linus Kasian Munishi, Edward Kohi, and Anna Christina Treydte. 2022. "Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania" Land 11, no. 2: 307. https://doi.org/10.3390/land11020307
APA StyleNtukey, L. T., Munishi, L. K., Kohi, E., & Treydte, A. C. (2022). Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania. Land, 11(2), 307. https://doi.org/10.3390/land11020307