Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China
Abstract
:1. Introduction
2. Literature Review and Analytical Framework
2.1. Literature Review
2.2. Analytical Framework
3. Data and Methods
3.1. Study Area
3.2. Index System and Data Sources
3.2.1. Compactness Index System
3.2.2. Land-Use Efficiency Index System
3.2.3. Selection of Influencing Factors of Coupling Coordination Degree
3.2.4. Data Sources
3.3. Research Methods
3.3.1. Compactness Measurement Method
3.3.2. Land-Use Efficiency Measurement Method
3.3.3. Coordination Measurement Methods for Compactness and Land-Use Efficiency
3.3.4. Measurement Model of Coordination Influence Factors
4. Results
4.1. Evolutionary Characteristics of Compactness and Land-Use Efficiency in Shrinking Cities
4.1.1. Evolutionary Characteristics of Compactness in Shrinking Cities
4.1.2. The Evolutionary Characteristics of Land-Use Efficiency in Shrinking Cities
4.2. Coordination of Compactness and Land-Use Efficiency in Shrinking Cities
4.2.1. The Overall Change in the Coupled Coordination between the Compactness and Land-Use Efficiency
4.2.2. The Spatial and Temporal Divergence Pattern of the Coordination Degree between Compactness and Land-Use Efficiency
4.2.3. The Changes in the Coordinated Relationship between the Compactness and Land-Use Efficiency
4.3. The Mechanisms Influencing the Coordination Degree of Compactness and Land-Use Efficiency in Shrinking Cities
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, H.; Zhang, K.; Wang, F.; Dang, A. Compact or disperse? Evolution patterns and coupling of urban land expansion and population distribution evolution of major cities in China, 1998–2018. Habitat Int. 2021, 108, 102324. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Urban land expansion and air pollution: Evidence from China. J. Urban Plan. Dev. 2018, 144, 5018017. [Google Scholar] [CrossRef]
- Yang, D.; Long, Y.; Yang, W.; Sun, H. Losing population with expanding space: Paradox of urban shrinkage in China. Mod. Urban Res. 2015, 9, 20–25. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Deng, T. Expansion in the shrinking cities: Does place-based policy help to curb urban shrinkage in China? Cities 2021, 113, 103188. [Google Scholar] [CrossRef]
- Suen, I.-S. The impact of compact and mixed development on land value: A case study of Richmond, Virginia. Urban Sci. 2018, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Burton, E. Measuring urban compactness in UK towns and cities. Environ. Plan. B 2002, 29, 219–250. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Sun, L. Measuring urban compactness based on functional characterization and human activity intnsity by integrating multiple geospatial data sources. Ecol. Indic. 2021, 121, 107177. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, S.; Bai, Y. Spatial-temporal features of relationship between urban compactness and urban efficiency in China. China Popul. Resour. Environ. 2015, 25, 64–73. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Song, X. An empirical study on the relationship between urban compactness and CO2 efficiency in China. Habitat Int. 2014, 41, 92–98. [Google Scholar] [CrossRef]
- Steurer, M.; Bary, C. Measuring urban sprawl using land use data. Land Use Policy 2020, 97, 104799. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, L.; Qiu, Q.; Wu, G. The compactness of spatial structure in Chinese cities: Measurement, clustering patterns and influencing factors. Ecosyst. Health Sustain. 2020, 6, 1743763. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, S.; Pradhan, B.; Mansor, S.; Shariff, A.R.M. GIS-based modeling for the spatial measurement and evaluation of mixed land use development for a compact city. Gisci. Remote Sens. 2015, 52, 18–39. [Google Scholar] [CrossRef]
- Fang, C.; Qi, W.; Song, J. Researches on comprehensive measurement of compactness of urban agglomerations in China. Acta Geogr. Sin. 2008, 63, 1011–1021. [Google Scholar] [CrossRef]
- Meng, X.; Wang, D.; Li, H. Correlation between urban shrink and urban compactness ratio in old industrial city: Taking Siping city in Jilin Province as an example. Econ. Geogr. 2019, 39, 67–74. [Google Scholar] [CrossRef]
- Hamidi, S.; Zandiatashbar, A.; Bonakdar, A. The relationship between regional compactness and regional innovation capacity (RIC): Empirical evidence from a national study. Technol. Forecast. Soc. Chang. 2018, 142, 394–402. [Google Scholar] [CrossRef]
- Liu, R.; Ba, D. The relationship between urban compactness and urbanization level in capital cities of China. J. Nat. Resour. 2020, 35, 586–600. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Appl. Energ. 2020, 261, 114409. [Google Scholar] [CrossRef]
- Wang, M.; Madden, M.; Liu, X. Exploring the relationship between urban forms and CO2 emissions in 104 Chinese cities. J. Urban Plan. Dev. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, Z.; Jiao, L.; Zhao, R. Compact urban form and expansion pattern slow down the decline in urban densities: A global perspective. Land Use Policy 2020, 94, 104563. [Google Scholar] [CrossRef]
- Dong, T.; Jiao, L.; Xu, G.; Yang, L.; Liu, J. Towards sustainability? Analyzing changing urban form patterns in the United States, Europe, and China. Sci. Total Environ. 2019, 671, 632–643. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, A.; Shah, S.A.A.; Solangi, Y.A.; Chandio, A.A.; Jabeen, G. Stylized heterogeneous dynamic links among healthcare expenditures, land urbanization, and CO2 emissions across economic development levels. Sci. Total Environ. 2021, 753, 142228. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Liu, C.; Zhang, J. Comprehensive appraise to the efficiency of urban land use. Urban Probl. 2009, 165, 46–50. [Google Scholar]
- Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and spatial-temporal evolution analysis of urban land use efficiency under green development orientation: Case of the Yangtze River Delta urban agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X. Dynamic interactive effects of urban land-use efficiency, industrial transformation, and carbon emissions. J. Clean. Prod. 2020, 270, 122547. [Google Scholar] [CrossRef]
- Ge, X.; Liu, X. Urban land use efficiency under resource-based economic transformation—A case study of Shanxi Province. Land 2021, 10, 850. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Ning, S.; Liu, E.; Zhou, X.; Wang, Y.; Zhao, M. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, H.X.H.; Zhang, Z. Off-farm employment and agricultural land use efficiency in China. Land Use Policy 2021, 101, 105097. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, C.; Wang, R.; Xue, M.; Dou, W. Coupling research on urban expansion and land use efficiency based on smart development: A case of Jinan’s core area. Human Geogr. 2020, 35, 91–98. [Google Scholar] [CrossRef]
- Tian, L.; Chen, J.; Gao, J. Research of coupling relationship of urban spatial structure compactness and land use efficiency: A case study of Nanjing. Resour. Environ. Yangtze Basin 2017, 26, 26–34. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S. Urban spatial structure and land use fragmentation: The case of Milan FUA. Aestimum 2016, 69, 153–164. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2019, 90, 104329. [Google Scholar] [CrossRef]
- He, H.; Peng, C. The spatial-temporal evolution and the interactive effect between urban industrial structure transformation and land use efficiency. Geogr. Res. 2017, 36, 1271–1282. [Google Scholar] [CrossRef]
- Gong, Q.; Guo, G.; Li, S.; Liang, X. Examining the coupling coordinated relationship between urban industrial co-agglomeration and intensive land use. Land 2021, 10, 499. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between urban land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q. Urban land use efficiency and influencing factors of shrinking cities in China. Human Geogr. 2021, 36, 108–116. [Google Scholar] [CrossRef]
- Abdullahi, S.; Pradhan, B. Land use change modeling and the effect of compact city paradigms: Integration of gis-based cellular automata and weights-of-evidence techniques. Environ. Earth Sci. 2018, 77, 251. [Google Scholar] [CrossRef]
- Cortinovis, C.; Haase, D.; Zanon, B.; Geneletti, D. Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landsc. Urban Plan. 2019, 181, 22–37. [Google Scholar] [CrossRef]
- Tang, H.; Chen, S. Coupling analysis of urban compactness and land use efficiency in Anhui Province. J. Subtrop. Resour. Environ. 2019, 14, 71–80. [Google Scholar] [CrossRef]
- Lin, S.; Liu, S.; Lu, R.; Ye, Z.; Wang, X.; Wang, J. Spatial and temporal characteristics of relationship between urban compactness and land application efficiency in Guangxi Zhuang Autonomous Region during 2003–2018. Bull. Soil Water Conserv. 2021, 41, 300–309. [Google Scholar] [CrossRef]
- Hoekveld, J. Time-space relations and the differences between shrinking regions. Built Environ. 2012, 38, 179–195. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Li, T.; Liao, W. Analysis of spatial pattern evolution and influencing factors of regional land use efficiency in China based on ESDA-GWR. Sci. Rep. 2019, 9, 520. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xu, Z.; Liu, C. Coupling analysis of land intensive use efficiency and ecological well-being performance of cities in the Yellow River Basin. J. Nat. Resour. 2021, 36, 114–130. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Liang, Y.; Huang, Z.; Ge, J. Spatiotemporal pattern and coordination relationship between urban residential land price and land use intensity in 31 provinces and cities in China. PLoS ONE 2021, 6, e0254846. [Google Scholar] [CrossRef]
- Jiang, H. Spatial–temporal differences of industrial land use efficiency and its influencing factors for China’s central region: Analyzed by SBM model. Environ. Technol. Innov. 2021, 22, 101489. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Sun, D.; Li, T.; Liu, Y. Spatial responses of ecosystem service value during the development of urban agglomerations. Land 2022, 11, 165. [Google Scholar] [CrossRef]
- You, H.; Yang, J.; Xue, B.; Xiao, X.; Li, X. Spatial evolution of population change in northeast China during 1992–2018. Sci. Total Environ. 2021, 776, 146023. [Google Scholar] [CrossRef]
- Cen, Y.; Yan, Y.; Zhang, P.; Zhang, Y. Analysis on the coordination of urban compactness and land use intensity under the background of new-type urbanization: A case study of Henan Province. J. Henan Univ. Nat. Sci. 2019, 49, 282–293, 302. [Google Scholar] [CrossRef]
- Eraydin, A.; Ozatagan, G. Pathways to a resilient future: A review of policy agendas and governance practices in shrinking cities. Cities 2021, 115, 103226. [Google Scholar] [CrossRef]
City | Population (104 Persons) | Construction Land (km2) | ||||
---|---|---|---|---|---|---|
2008 | 2018 | Changes | 2008 | 2018 | Changes | |
Fushun | 139.6 | 136 | −3.6 | 124 | 141 | 17 |
Benxi | 95.7 | 89 | −6.7 | 70 | 92 | 22 |
Fuxin | 77.9 | 74 | −3.9 | 69 | 77 | 8 |
Tieling | 44.6 | 43 | −1.6 | 44 | 75 | 31 |
Liaoyuan | 47.73 | 45 | −2.73 | 42 | 46 | 4 |
Tonghua | 45.27 | 43 | −2.27 | 41 | 57 | 16 |
Baishan | 59.32 | 53 | −6.32 | 32 | 43 | 11 |
Baicheng | 50.86 | 49 | −1.86 | 34 | 45 | 11 |
Qiqihar | 142.5 | 132 | −10.5 | 139 | 141 | 2 |
Jixi | 88.5 | 78 | −10.5 | 97 | 79 | −18 |
Hegang | 68 | 61 | −7 | 70 | 53 | −17 |
Yichun | 81 | 73 | −8 | 156 | 152 | −4 |
Jiamusi | 82.4 | 76 | −6.4 | 62 | 90 | 28 |
Qitaihe | 53.5 | 47 | −6.5 | 62 | 68 | 6 |
Suihua | 89.7 | 84 | −5.7 | 27 | 37 | 10 |
Target Layer | Guideline Layer | Index Layer | Index Meaning | Weight |
---|---|---|---|---|
Compactness | Population compactness | Residential population density | Urban population/Residential land area | 0.0606 |
Employment population density | Number of employees in the city/Area of the city | 0.0893 | ||
Urban population density | Urban population/Urban area | 0.0724 | ||
Population growth elasticity | Urban population growth rate/Urban construction land growth rate | 0.0574 | ||
Economic compactness | GDP density | Urban GDP/Urban area | 0.0984 | |
Fixed investment intensity | Urban fixed asset investment/Urban area | 0.1262 | ||
Business vitality | Total retail sales of consumer goods/Urban population | 0.0484 | ||
Economic growth elasticity | Urban GDP growth rate/Urban construction land growth rate | 0.0769 | ||
Land compactness | Urban development and utilization intensity | Built-up area/Urban area | 0.0960 | |
Land utilization | Construction land area/Built-up area | 0.0355 | ||
Mixed land index | Commercial land + industrial land/Commercial land + industrial land + residential land | 0.0382 | ||
Land use structure entropy | Entropy of residential, commercial, and industrial land | 0.0312 | ||
Public service compactness | Road area per capita index | Urban road area/Urban population | 0.0361 | |
Public transport efficiency | Total number of urban bus passengers/Actual number of buses | 0.0480 | ||
Educational services | Number of teachers enrolled/Number of students enrolled | 0.0534 | ||
Centralized sewage treatment rate | Wastewater treatment volume/Wastewater discharge volume | 0.0320 |
Category | Element | Index |
---|---|---|
Inputs | Land | Built-up area |
Labor force | Number of employees in secondary and tertiary industries | |
Capital | Total investment in fixed assets | |
Outputs | Economic benefits | Value added of secondary and tertiary industries |
Social benefits | Average salary of urban employees | |
Ecological benefits | Green coverage rate |
Coupled Coordination Degree | Coordination Level | Coordination of Relationships | The Degree of Deviation |
---|---|---|---|
0 ≤ D < 0.1 | Extreme imbalance | ZP > ZQ Lagging land-use efficiency | |
0.1 ≤ D < 0.2 | Serious imbalance | 0 ≤ N ≤ 0.5 Low deviation | |
0.2 ≤ D < 0.3 | Moderate imbalance | 0.5 < N ≤ 1 Moderate deviation | |
0.3 ≤ D < 0.4 | Mild imbalance | N > 1 High deviation | |
0.4 ≤ D < 0.5 | On the verge of imbalance | ||
0.5 ≤ D < 0.6 | Barely coordination | ZP < ZQ Lagging compactness | |
0.6 ≤ D < 0.7 | Primary coordination | 0 ≤ N ≤ 0.5 Low deviation | |
0.7 ≤ D < 0.8 | Intermediate coordination | 0.5 < N ≤ 1 Moderate deviation | |
0.8 ≤ D < 0.9 | Good coordination | N > 1 High deviation | |
0.9 ≤ D < 1 | High-quality coordination |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fushun | 0.913 | 0.871 | 0.891 | 0.866 | 0.843 | 0.806 | 0.868 | 0.869 | 0.914 | 0.924 | 0.987 | 0.887 |
Benxi | 0.810 | 0.813 | 0.832 | 0.862 | 0.841 | 0.790 | 0.857 | 0.868 | 0.819 | 0.843 | 0.840 | 0.834 |
Fuxin | 0.759 | 0.730 | 0.784 | 0.815 | 0.799 | 0.774 | 0.838 | 0.967 | 0.888 | 0.868 | 0.843 | 0.824 |
Tieling | 0.787 | 0.859 | 0.796 | 0.873 | 0.862 | 0.859 | 0.794 | 0.817 | 0.841 | 0.911 | 0.887 | 0.844 |
Liaoyuan | 0.835 | 0.887 | 0.866 | 0.951 | 0.925 | 0.930 | 0.948 | 0.916 | 0.931 | 0.932 | 0.934 | 0.914 |
Tonghua | 0.765 | 0.781 | 0.787 | 0.793 | 0.827 | 0.788 | 0.811 | 0.873 | 0.767 | 0.780 | 0.751 | 0.793 |
Baishan | 0.558 | 0.707 | 0.688 | 0.773 | 0.756 | 0.679 | 0.766 | 0.739 | 0.688 | 0.763 | 0.709 | 0.711 |
Baicheng | 0.571 | 0.610 | 0.657 | 0.664 | 0.670 | 0.646 | 0.635 | 0.703 | 0.707 | 0.800 | 0.722 | 0.671 |
Qiqihar | 0.660 | 0.615 | 0.576 | 0.684 | 0.678 | 0.690 | 0.689 | 0.708 | 0.687 | 0.702 | 0.648 | 0.667 |
Jixi | 0.576 | 0.614 | 0.636 | 0.671 | 0.658 | 0.637 | 0.654 | 0.659 | 0.598 | 0.627 | 0.661 | 0.636 |
Hegang | 0.662 | 0.689 | 0.711 | 0.687 | 0.671 | 0.614 | 0.721 | 0.722 | 0.780 | 0.725 | 0.705 | 0.699 |
Yichun | 0.511 | 0.524 | 0.530 | 0.550 | 0.577 | 0.601 | 0.590 | 0.659 | 0.601 | 0.631 | 0.590 | 0.579 |
Jiamusi | 0.826 | 0.817 | 0.825 | 0.863 | 0.856 | 0.849 | 0.821 | 0.852 | 0.824 | 0.841 | 0.822 | 0.836 |
Qitaihe | 0.618 | 0.617 | 0.622 | 0.695 | 0.682 | 0.643 | 0.602 | 0.718 | 0.644 | 0.699 | 0.697 | 0.658 |
Suihua | 0.839 | 0.866 | 0.854 | 0.960 | 0.918 | 0.809 | 0.830 | 0.831 | 0.759 | 0.793 | 0.705 | 0.833 |
Mean | 0.713 | 0.733 | 0.737 | 0.780 | 0.771 | 0.741 | 0.762 | 0.793 | 0.763 | 0.789 | 0.767 | |
Std. | 0.122 | 0.114 | 0.110 | 0.114 | 0.104 | 0.099 | 0.104 | 0.094 | 0.104 | 0.096 | 0.110 |
Variables | Coefficient | t-Value |
---|---|---|
Economic development | 0.052 *** (0.008) | 6.85 |
Population size | 0.058 *** (0.007) | 8.20 |
External openness | −0.006 (0.007) | −0.86 |
Technological development | −0.013 ** (0.006) | −2.22 |
Industrial Structure | −0.036 *** (0.007) | −4.95 |
Government regulation | −0.013 ** (0.006) | −2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Zhou, G.; Ma, Z.; Sun, H.; Fu, H. Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China. Land 2022, 11, 366. https://doi.org/10.3390/land11030366
Wang Y, Liu Y, Zhou G, Ma Z, Sun H, Fu H. Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China. Land. 2022; 11(3):366. https://doi.org/10.3390/land11030366
Chicago/Turabian StyleWang, Yangyang, Yanjun Liu, Guolei Zhou, Zuopeng Ma, Hongri Sun, and Hui Fu. 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China" Land 11, no. 3: 366. https://doi.org/10.3390/land11030366
APA StyleWang, Y., Liu, Y., Zhou, G., Ma, Z., Sun, H., & Fu, H. (2022). Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China. Land, 11(3), 366. https://doi.org/10.3390/land11030366