The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Layout
2.2. Estimation of Plant Water Content
2.3. Gas Exchange Attributes
2.4. Determination of Osmoprotectants
2.5. Grain and Biological Yield
2.6. Statistical Analysis
3. Results
3.1. Water Relation and Gas Exchange Parameters
3.2. Osmoprotectants
3.3. Grain and Biological Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pequeno, D.N.L.; Hernández-Ochoa, I.M.; Reynolds, M.; Sonder, K.; Moleromilan, A.; Robertson, R.D.; Lopes, M.S.; Xiong, W.; Kropff, M.; Asseng, S. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ. Res. Lett. 2021, 16, 054070. [Google Scholar] [CrossRef]
- Laskowski, W.; Hanna, G.-W.; Rejman, K.; Czeczotko, M.; Zwolińska, J. How important are cereals and cereal products in the average polish diet? Nutrients 2019, 11, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Alghabari, F.; Ihsan, M.Z. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.). Bangladesh J. Bot. 2018, 47, 421–428. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Raza, M.A.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekaera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 43. [Google Scholar] [CrossRef]
- Sattar, A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Rizwan, M.S.; Hussain, M.; Jabran, K.; Cheema, M.A. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 2020, 15, e0232974. [Google Scholar] [CrossRef]
- Aslam, M.U.; Raza, M.A.S.; Saleem, M.F.; Waqas, M.; Iqbal, R.; Ahmad, S.; Haider, I. Improving Strategic Growth Stage-based Drought Tolerance in Quinoa by Rhizobacterial Inoculation. Commun. Soil Sci. Plant Anal. 2020, 51, 853–868. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Alam, M.M.; Rahman, A.; Hasanuzzaman, M.; Nahar, K.; Fujita, M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res. Int. 2014, 2014, 757219. [Google Scholar] [CrossRef] [Green Version]
- Weston, D.P.; Lentz, R.D.; Cahn, M.D.; Ogle, R.S.; Rothert, A.K.; Lydy, M.J. Toxicity of Anionic Polyacrylamide Formulations when Used for Erosion Control in Agriculture. J. Environ. Qual. 2009, 38, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent polymers used for agricultural water retention. Polym. Test. 2021, 94, 107021. [Google Scholar] [CrossRef]
- Dabhi, R.; Bhatt, N.; Pandit, B. Super absorbent polymers—An innovative water saving technique for optimizing crop yield. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 5333–5340. [Google Scholar]
- Mao, S.; Robiul Islam, M.; Xue, X.; Yang, X.; Zhao, X.; Hu, Y. Evaluation of a water-saving superabsorbent polymer for corn (Zea mays L.) production in arid regions of Northern China. Afr. J. Agric. Res. 2011, 6, 4108–4115. [Google Scholar] [CrossRef]
- Riad, G.; Youssef, S.; Abu El-Azm, N.; Ahmed, E. Amending Sandy Soil with Biochar or/and Superabsorbent Polymer Mitigates the Adverse Effects of Drought Stress on Green Pea. Egypt. J. Hortic. 2018, 45, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Chattha, M.U.; Arif, W.; Khan, I.; Soufan, W.; Chattha, M.B.; Hassan, M.U.; Ullah, N.; Sabagh, A.E.; Qari, S.H. Mitigation of Cadmium Induced Oxidative Stress by Using Organic Amendments to Improve the Growth and Yield of Mash Beans [Vigna mungo (L.)]. Agronomy 2021, 11, 2152. [Google Scholar] [CrossRef]
- Li, Y.; Shi, H.; Zhang, H.; Chen, S. Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer. PeerJ 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A sustainable approach for improving plant growth and soil properties. In Biochar—An Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Kalderis, D.; Massas, I. Selenium Biofortification of Lettuce Plants (Lactuca sativa L.) as Affected by Se Species, Se Rate, and a Biochar Co-Application in a Calcareous Soil. Agronomy 2022, 12, 131. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. The trends in research on the effects of biochar on soil. Sustainability 2020, 12, 23. [Google Scholar] [CrossRef]
- Shareef, T.M.E.; Zhao, B. Review Paper: The Fundamentals of Biochar as a Soil Amendment Tool and Management in Agriculture Scope: An Overview for Farmers and Gardeners. J. Agric. Chem. Environ. 2017, 6, 38–61. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, H.; Hussain, N.; Anjum, M.A.; Rehman, H.; Jamil, M.; Raza, M.A.S.; Farooq, O. Biochar Application Improves the Wheat Productivity under Different Irrigation Water-Regimes. Int. J. Agric. Biol. 2019, 21, 936–942. [Google Scholar] [CrossRef]
- Järvan, M.; Vettik, R.; Tamm, K. The importance and profitability of farmyard manure application to an organically managed crop rotation. Zemdirbyste-Agriculture 2017, 104, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Batool, A.; Taj, S.; Rashid, A.; Khalid, A.; Qadeer, S.; Saleem, A.R.; Ghufran, M.A. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front. Plant Sci. 2015, 6, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karrou, M.; Maranville, J.W. Response of wheat cultivars to different soil nitrogen and moisture regimes: III leaf water content, conductance, and photosynthesis. J. Plant Nutr. 1995, 18, 777–791. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrogh, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Hamilton, P.B. Aminoacids determination with ninhydrin. J. Biol. Chem. 1973, 150, 231–233. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Steel, R.; Torri, J.; Dickey, D. Principles and Procedures of Statistics A Biometrical Approach, 3rd ed.; McGraw Hill: New York, NY, USA, 1997; 666p. [Google Scholar]
- Afshar, R.K.; Hashemi, M.; DaCosta, M.; Spargo, J.; Sadeghpour, A. Biochar Application and Drought Stress Effects on Physiological Characteristics of Silybum marianum. Commun. Soil Sci. Plant Anal. 2016, 47, 743–752. [Google Scholar] [CrossRef]
- Suresh, R. Increas the crop water use efficiency using super absorbent polymers. J. Appl. Microbiol. 2015, 119, 859–867. [Google Scholar]
- Tomášková, I.; Svatoš, M.; Macků, J.; Vanická, H.; Resnerová, K.; Čepl, J.; Holuša, J.; Hosseini, S.M.; Dohrenbusch, A. Effect of different soil treatments with hydrogel on the performance of drought-sensitive and tolerant tree species in a semi-arid region. Forests 2020, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.A.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, M.A.; Ahmad, Z.; Ashraf, M.Y.; Afzal, M.; Nawaz, F.; Nafees, M.; Jatoi, W.N.; Malghani, N.A.; Shah, A.N.; Manan, A. Silicon Mitigates Drought Stress in Wheat (Triticum aestivum L.) Through Improving Photosynthetic Pigments, Biochemical and Yield Characters. Silicon 2020, 13, 4757–4772. [Google Scholar] [CrossRef]
- Lou, Y.; Joseph, S.; Li, L.; Graber, E.R.; Liu, X.; Pan, G. Water extract from straw biochar used for plant growth promotion: An initial test. BioResources 2016, 11, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Hammad, S.A.R.; Ali, O.A.M. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann. Agric. Sci. 2014, 59, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Aranjuelo, I.; Molero, G.; Erice, G.; Avice, J.C.; Nogués, S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 2011, 62, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lou, R.; Li, Y.; Bian, Z.; Zhu, Y. Effect of continuous drought on winter wheat yield in pot planting. Paiguan Jixie Gongcheng Xuebao J. Drain. Irrig. Mach. Eng. 2020, 38, 1051–1056. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; He, Q.; Zhou, H. Quantitative response of maize vcmax25 to persistent drought stress at different growth stages. Water 2021, 13, 1971. [Google Scholar] [CrossRef]
- Ali, Z.; Merrium, S.; Habib-Ur-Rahman, M.; Hakeem, S.; Saddique, M.A.B.; Sher, M.A. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop—A review. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Habib-Ur-Rahman, M.; Raza, A.; Ahrends, H.E.; Hüging, H.; Gaiser, T. Impact of in-field soil heterogeneity on biomass and yield of winter triticale in an intensively cropped hummocky landscape under temperate climate conditions. Precis. Agric. 2021. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-Ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, S.; Ali, Z.; Saddique, M.A.B.; Habib-Ur-Rahman, M.; Trethowan, R. Leaf prickle hairs and longitudinal grooves help wheat plants capture air moisture as a water-smart strategy for a changing climate. Planta 2021, 254, 18. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Ali, H.H.; Soufan, W.; Iqbal, R.; Habib-ur-Rahman, M.; Iqbal, J.; Israr, M.; El Sabagh, A. Potential Effects of Biochar Application for Improving Wheat (Triticum aestivum L.) Growth and Soil Biochemical Properties under Drought Stress Conditions. Land 2021, 10, 1125. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghaffar, A.; Rahman, M.H.U.; Hussain, I.; Iqbal, R.; Haider, G.; Khan, M.A.; Ikram, R.M.; Hussnain, H.; Bashir, M.S. Effect of Application of Biochar, Poultry and Farmyard Manures in Combination with Synthetic Fertilizers on Soil Fertility and Cotton Productivity under Arid Environment. Commun. Soil Sci. Plant Anal. 2021, 52, 2018–2031. [Google Scholar] [CrossRef]
- Rahman, M.H.; Ahmad, A.; Wang, X.; Wajid, A.; Nasim, W.; Hussain, M.; Ahmad, B.; Ahmad, I.; Ali, Z.; Ishaque, W.; et al. Multi-Model Projections of Future Climate and Climate Change Impacts Uncertainty Assessment for Cotton Production in Pakistan. Agric. For. Meteorol. 2018, 253, 94–113. [Google Scholar] [CrossRef]
- Saleem, M.F.; Ghaffar, A.; Rahman, M.H.U.; Imran, M.; Iqbal, R.; Soufan, W.; Danish, S.; Datta, R.; Rajendran, K.; EL Sabagh, A. Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate. Land 2022, 11, 289. [Google Scholar] [CrossRef]
- Rahman, M.H.; Ahmad, A.; Wajid, A.; Hussain, M.; Rasul, F.; Ishaque, W.; Islam, M.A.; Shelia, V.; Awais, M.; Ullah, A.; et al. Application of CSM-CROPGRO-Cotton Model for Cultivars and Optimum Planting Dates: Evaluation in Changing Semi-AridClimate. Field Crop. Res. 2019, 238, 139–152. [Google Scholar] [CrossRef]
- Khan, Z.; Rahman, M.H.U.; Haider, G.; Amir, R.; Ikram, R.M.; Ahmad, S.; Schofield, H.K.; Riaz, B.; Iqbal, R.; Fahad, S.; et al. Chemical and Biological Enhancement Effects of Biochar on Wheat Growth and Yield under Arid Field Conditions. Sustainability 2021, 13, 5890. [Google Scholar] [CrossRef]
- Grabiński, J.; Wyzińska, M. The effect of superabsorbent polymer application on yielding of winter wheat (Triticum aestivum L.). Res. Rural Dev. 2018, 2, 55–61. [Google Scholar] [CrossRef]
- Moosavi, S.A.; Shokuhfar, A.; Lak, S.; Mojaddam, M.; Alavifazel, M. Integrated application of biochar and bio-fertilizer improves yield and yield components of cowpea under water-deficient stress. Ital. J. Agron. 2020, 15, 94–101. [Google Scholar] [CrossRef]
- Manzoor, S.; Habib-ur-Rahman, M.; Haider, G.; Ghafoor, I.; Ahmad, S.; Afzal, M.; Nawaz, F.; Iqbal, R.; Yasin, M.; Tanveer-ul-Haq; et al. Biochar and slow-releasing nitrogen fertilizers improved growth, nitrogen use, yield, and fiber quality of cotton under arid climatic conditions. Environ. Sci. Pollut. Res. 2022, 29, 13742–13755. [Google Scholar] [CrossRef]
- Hussain, J.; Khaliq, T.; Rahman, M.H.u.; Ullah, A.; Ahmed, I.; Srivastava, A.K.; Gaiser, T.; Ahmad, A. Effect of Temperature on Sowing Dates of Wheat under Arid and Semi-Arid Climatic Regions and Impact Quantification of Climate Change through Mechanistic Modeling with Evidence from Field. Atmosphere 2021, 12, 927. [Google Scholar] [CrossRef]
Source of Variation (SOV) | Water Potential | Relative Water Content | Net CO2 Assimilation Rate | Stomatal Conductance | Transpiration Rate |
---|---|---|---|---|---|
Year | 0.04 ** | 210.92 ** | 0.31 * | 0.11 ** | 0.55 * |
Replication (Year) | 0.001 NS | 23.51 ** | 0.24 ** | 0.02 ** | 0.16 NS |
Irrigation | 1.55 ** | 2383.19 ** | 64.30 ** | 34.77 ** | 47.25 ** |
Year × Irrigation | 0.0001 | 0.10 | 0.005 | 0.001 | 0.10 |
Treatments | 0.16 ** | 661.52 ** | 5.06 ** | 1.23 ** | 1.60 ** |
Year × Treatments | 0.0001 | 0.64 | 0.04 | 0.001 | 0.09 |
Irrigation × Treatment | 0.01 ** | 29.17 ** | 0.43 ** | 0.10 ** | 0.07 NS |
Year × Irrigation × Treatment | 0.0001 | 0.11 | 0.05 | 0.001 | 0.10 |
Source of Variation (SOV) | Total Soluble Protein | Total Soluble Sugar | Total Free Amino Acid | Leaf Proline Contents | Biological Yield t/ha | Grain Yield t/ha |
---|---|---|---|---|---|---|
Year | 1.26 ** | 0.18 NS | 1.44 NS | 0.09 * | 2.05 ** | 0.83 ** |
Replication (Year) | 0.87 ** | 0.13 * | 0.94 NS | 0.01 NS | 7.47 ** | 19.89 ** |
Irrigation | 88.17 ** | 21.94 ** | 302.46 ** | 24.51 ** | 0.56 ** | 0.95 ** |
Year × Irrigation | 0.002 | 0.002 | 0.007 | 0.0001 | 0.03 NS | 0.01 * |
Treatments | 8.13 ** | 1.08 ** | 34.96 ** | 1.29 ** | 0.001 NS | 0.04 ** |
Year × Treatments | 0.004 | 0.001 | 0.03 | 0.001 | 0.001 | 0.001 |
Irrigation × Treatment | 0.97 ** | 0.08 NS | 2.19 ** | 0.10 ** | 0.31 ** | 0.02 ** |
Year × Irrigation × Treatment | 0.003 | 0.0001 | 0.01 | 0.0001 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, M.K.; Aurangzaib, M.; Iqbal, R.; Shahzaman, M.; Habib-ur-Rahman, M.; El-Sharnouby, M.; Datta, R.; Alzuaibr, F.M.; Sakran, M.I.; Ogbaga, C.C.; et al. The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials. Land 2022, 11, 368. https://doi.org/10.3390/land11030368
Ejaz MK, Aurangzaib M, Iqbal R, Shahzaman M, Habib-ur-Rahman M, El-Sharnouby M, Datta R, Alzuaibr FM, Sakran MI, Ogbaga CC, et al. The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials. Land. 2022; 11(3):368. https://doi.org/10.3390/land11030368
Chicago/Turabian StyleEjaz, Muhammad Kashif, Muhammad Aurangzaib, Rashid Iqbal, Muhammad Shahzaman, Muhammad Habib-ur-Rahman, Mohamed El-Sharnouby, Rahul Datta, Fahad M. Alzuaibr, Mohamed I. Sakran, Chukwuma C. Ogbaga, and et al. 2022. "The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials" Land 11, no. 3: 368. https://doi.org/10.3390/land11030368
APA StyleEjaz, M. K., Aurangzaib, M., Iqbal, R., Shahzaman, M., Habib-ur-Rahman, M., El-Sharnouby, M., Datta, R., Alzuaibr, F. M., Sakran, M. I., Ogbaga, C. C., & EL Sabagh, A. (2022). The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials. Land, 11(3), 368. https://doi.org/10.3390/land11030368