Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Vegetation Investigation and Soil Sampling
2.3. Soil Physicochemical Analyses
2.4. Soil DNA Extraction and Sequencing
2.5. MiSeq Processing and Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Variations in Vegetation and Soil Variables under Degradation and Cultivation
3.2. Changes in Soil Bacterial Diversity, Composition, Structure, and Predicted Functions
3.3. Relationships between Microbial Community and Environmental Variables under Different Taxonomic Level
4. Discussion
4.1. Degradation and Cultivation Significantly Changes the Biotic and Abiotic Components
4.2. The Relationships among the Biotic and Abiotic Factors under Different Taxonomic Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- You, Q.; Xue, X.; Peng, F.; Xu, M.; Duan, H.; Dong, S. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China. Ecol. Eng. 2014, 71, 133–143. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, S.; Gao, X.; Yang, M.; Li, S.; Shen, H.; Xiao, J.; Han, Y.; Zhang, J.; Li, Y.; et al. Aboveground community composition and soil moisture play determining roles in restoring ecosystem multifunctionality of alpine steppe on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 305, 107163. [Google Scholar] [CrossRef]
- Wang, X.T.; Zang, C.; Liao, L.R.; Wang, J.; Yu, L.H.; Zhang, X.Z. Effects of Degradation of Alpine Meadow on Soil Microbial Genes in Nitrogen Transformation in Qinghai-Tibet Plateau. B. Soil Water Conserv. 2020, 40, 8–13, (In Chinese with English Abstract). [Google Scholar]
- Hao, A.H.; Xue, X.; Peng, F.; You, Q.G.; Liao, J.; Duan, H.C.; Huang, C.H.; Dong, S.Y. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2020, 40, 964–975, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.; Wang, X.; Liu, G.; Wang, G.; Zhang, C. Grazing-to-fencing conversion affects soil microbial composition, functional profiles by altering plant functional groups in a Tibetan alpine meadow. Appl. Soil Ecol. 2021, 166, 104008. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Jiang, Z.; Sun, P.; Xiao, H.; Yuxin, W.; Chen, J. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 2018, 651, 2281–2291. [Google Scholar] [CrossRef]
- Wu, G.-L.; Ren, G.-H.; Dong, Q.-M.; Shi, J.-J.; Wang, Y.-L. Above- and Belowground Response along Degradation Gradient in an Alpine Grassland of the Qinghai-Tibetan Plateau. CLEAN–Soil Air Water 2013, 42, 319–323. [Google Scholar] [CrossRef]
- Zhang, L.; Unteregelsbacher, S.; Hafner, S.; Xu, X.; Schleuss, P.-M.; Miehe, G.; Kuzyakov, Y. Fate of Organic and Inorganic Nitrogen in Crusted and Non-Crusted Kobresia Grasslands. Land Degrad. Dev. 2016, 28, 166–174. [Google Scholar] [CrossRef]
- Li, H.; Qiu, Y.; Yao, T.; Han, D.; Gao, Y.; Zhang, J.; Ma, Y.; Zhang, H.; Yang, X. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 792, 148363. [Google Scholar] [CrossRef]
- Dai, L.; Yuan, Y.; Guo, X.; Du, Y.; Ke, X.; Zhang, F.; Li, Y.; Li, Q.; Lin, L.; Zhou, H.; et al. Soil water retention in alpine meadows under different degradation stages on the northeastern Qinghai-Tibet Plateau. J. Hydrol. 2020, 590, 125397. [Google Scholar] [CrossRef]
- Gao, X.; Dong, S.; Xu, Y.; Li, Y.; Li, S.; Wu, S.; Shen, H.; Liu, S.; Fry, E.L. Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. CATENA 2021, 205, 105385. [Google Scholar] [CrossRef]
- Dai, Y.T.; Yan, Z.J.; Xie, J.H.; Wu, H.X.; Xu, L.B.; Hou, X.Y.; Gao, L.; Cui, Y.W. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing. Acta Pedol. Sin. 2017, 54, 735–748. [Google Scholar]
- Li, S.X.; Wang, Y.L.; Wang, Y.Q.; Yin, Y.L. Response of soil bacterial community characteristics on alpine meadow degradation. Biodiv. Sci. 2021, 29, 53–64. [Google Scholar]
- Che, R.; Wang, Y.; Li, K.; Xu, Z.; Hu, J.; Wang, F.; Rui, Y.; Li, L.; Pang, Z.; Cui, X. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil Tillage Res. 2019, 195, 104426. [Google Scholar] [CrossRef]
- Zhou, H.K.; Zhao, X.Q.; Zhou, L.; Liu, W.; Li, Y.N.; Tang, Y.H. Characteristics of vegetation degradation and soil degradation in alpine meadow on Tibetan Plateau. Acta Pratacul. Sin. 2005, 3, 31–40, (In Chinese with English Abstract). [Google Scholar]
- Du, Y.; Cao, G.; Wang, Q.; Wang, C. Effects of grazing on surface characteristics and soil physical properties in alpine meadow. Mt. Res. 2007, 3, 338–343, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.K.; Han, F.; Ran, F.; Bao, S.K.; Zhou, H.K. Effects of alpine meadow degradation on soil nutrients and soil enzyme activities in the Three-river Source region. Chinese. J. Grassl. 2008, 4, 51–58, (In Chinese with English Abstract). [Google Scholar]
- Zhou, H.K.; Zhao, X.Q.; Wen, J.; Chen, Z.; Yao, B.Q.; Yang, Y.W.; Xu, W.X.; Duan, J.C. Characteristics of vegetation degradation and soil degradation on alpine steppe in the source region of Yellow River. Acta Pratacul. Sin. 2012, 21, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Xue, X.; You, Q.; Peng, F.; Dong, S.; Duan, H. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of the Qinghai-Tibetan Plateau. Land Degrad. Dev. 2017, 28, 2343–2353. [Google Scholar] [CrossRef]
- Pan, T.; Hou, S.; Liu, Y.J.; Tan, Q.H.; Liu, Y.H.; Gao, X.F. Influence of degradation on soil water availability in an alpine swamp meadow on the eastern edge of the Tibetan Plateau. Sci. Total Environ. 2020, 722, 137677. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Jiang, L.; Zhang, L.; Cui, S.; Meng, F.; Wang, Q.; Li, X.; Zhou, Y. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 2016, 222, 213–222. [Google Scholar] [CrossRef]
- Shang, Z.H.; Dong, Q.M.; Shi, J.J.; Zhou, H.K.; Dong, S.K.; Shao, X.Q.; Li, S.X.; Wang, Y.L.; Ma, Y.S.; Ding, L.M.; et al. Research progress in recent ten years of ecological restoration for “black soil land” degraded grassland on Tibetan Plateau—Concurrently discuss of ecological restoration in Sanjiangyuan Region. Acta Agrestia Sin. 2018, 1, 1–21, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.; Wang, Z.; Zheng, K.; Han, C.; Li, L.; Sheng, H.; Ma, Z. Changes in soil carbon and nitrogen stocks following degradation of alpine grasslands on the Qinghai-Tibetan Plateau: A meta-analysis. Land Degrad. Dev. 2020, 32, 1262–1273. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Jia, T.; Chai, B.; Wu, T. Soil Bacterial Community Response and Nitrogen Cycling Variations Associated with Subalpine Meadow Degradation on the Loess Plateau, China. Appl. Environ. Microbiol. 2020, 86, e00180-20. [Google Scholar] [CrossRef] [PubMed]
- Du, C.J.; Zhang, Y.L.; Liu, L.S.; Wang, Z.F.; Zhang, J.; Zhou, Q. Herdsmen’ s adaptation to alpine grassland degradation: A case study of Dalag County, China. Resour. Sci. 2009, 31, 973–979, (In Chinese with English Abstract). [Google Scholar]
- Wei, Y. Establishing Developing and Applying of the Space-Air-Field Integrated Eco-Monitoring and Data Infrastructure of the Three-River-Source National Park. In The Boundaries of the Source Regions in Sanjiangyuan Region; National Tibetan Plateau Data Center: Beijing, China, 2018; CSTR: 18406.11. Geogra.tpdc.270009. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, B.Y.; Liu, L.S.; Zheng, D. Redetermine the region and boundaries of Tibetan Plateau. Geogra. Res. 2021, 40, 1543–1553. [Google Scholar]
- Li, J.; Wang, H.; Hu, J.; Zhai, B.J.; Ren, X.N.; Wang, C.L. Plant species diversity and its relationship with environmental factors in Ningwu Laoshifu Sea wetland. Chin. J. Ecol. 2021, 40, 950–958, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Jiang, Y.; Ding, M.; Xie, Z. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 21902–21916. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Bao, S. Agricultural Chemical Analysis of Soil; China Agriculture Press: Beijing, China, 2000; pp. 14–16, 70–89. [Google Scholar]
- Zhang, N.N.; Zhong, B.; Zhao, C.Z.; Wang, E.T.; Wang, Y.J.; Chen, D.M.; Shi, F.S. Change of soil physicochemical properties, bacterial community and aggregation during desertification of grasslands in the Tibetan Plateau. Eur. J. Soil Sci. 2020, 72, 274–288. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Liu, X.N.; Sun, J.L.; Zhang, D.G.; Pu, X.P.; Xu, G.P. A study on the community structure and plant diversity of alpine meadow under different degrees of degradation in Eastern Qilian Mountains. Acta Pratacul. Sin. 2008, 17, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Yang, Y.W.; Li, X.L.; Zhou, X.H.; Qin, Y.J.; Shi, Y.Y.; Li, C.Y.; Zhou, H.K. Study on the relationship between plant community degradation and soil environmental characteristics in alpine meadow. Acta Agrestia Sin. 2016, 4, 1211–1217, (In Chinese with English Abstract). [Google Scholar]
- Li, C.Y.; Lai, C.M.; Peng, F.; Xue, X.; You, Q.; Zhang, W.; Liu, F. Productivity and community structure of alpine meadow at different degraded levels in the Northern Luhe Watershed of the Tibetan Plateau. Pratacul. Sci. 2019, 36, 1044–1052, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.J.; Liu, J.; Xu, C.L.; Cao, W.X. Effects of different degradation degrees on soil inorganic nitrogen and urease activity in alpine meadow. Acta Pratacul. Sin. 2018, 27, 45–53, (In Chinese with English Abstract). [Google Scholar]
- Wei, X.; Li, Y.; Wu, P.F. Effects of artificial grasslands with different forage species on soil nematode communities on the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2022, 42, 1–17, (In Chinese with English Abstract). [Google Scholar]
- Xing, Y.F.; Wang, X.L.; Liu, Y.Q.; Hua, R.; Wang, C.; Wu, J.L.; Shi, J.J. Characteristics of plant community and soil organic carbon and nitrogen in artificial grassland with different planting years. Acta Agrestia Sin. 2020, 28, 521–528, (In Chinese with English Abstract). [Google Scholar]
- Gao, X.; Dong, S.; Xu, Y.; Wu, S.; Wu, X.; Zhang, X.; Zhi, Y.; Li, S.; Liu, S.; Li, Y.; et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: A case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2019, 279, 169–177. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Y.; Hu, Y.; Wang, Z.; Lu, X. Soil Bacterial Communities and Diversity in Alpine Grasslands on the Tibetan Plateau Based on 16S rRNA Gene Sequencing. Front. Ecol. Evol. 2021, 9, 630722. [Google Scholar] [CrossRef]
- Bier, R.L.; Bernhardt, E.S.; Boot, C.M.; Graham, E.; Hall, E.K.; Lennon, J.T.; Nemergut, D.R.; Osborne, B.B.; González, C.R.; Schimel, J.P.; et al. Linking microbial community structure and microbial processes: An empirical and conceptual overview. FEMS Microbiol. Ecol. 2015, 91, fiv113. [Google Scholar] [CrossRef]
- Thomson, B.C.; Ostle, N.; McNamara, N.; Bailey, M.J.; Whiteley, A.; Griffiths, R.I.; Ostle, N. Vegetation Affects the Relative Abundances of Dominant Soil Bacterial Taxa and Soil Respiration Rates in an Upland Grassland Soil. Microb. Ecol. 2009, 59, 335–343. [Google Scholar] [CrossRef]
- Xian, W.D.; Zhang, X.T.; Li, W.J. Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiol. Sin. 2020, 60, 1801–1820, (In Chinese with English Abstract). [Google Scholar]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M. Effects of Napahai Wetland Degradation on Soil Microbial Community Structure and Diversity. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2018. [Google Scholar]
- Guo, Y.; Gong, H.; Guo, X. Rhizosphere bacterial community of Typha angustifolia L. and water quality in a river wetland supplied with reclaimed water. Appl. Microbiol. Biotechnol. 2014, 99, 2883–2893. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.F.; Li, X.L.; Jin, L.Q.; Li, C.Y.; Zhang, J. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone. Acta Pratacul. Sin. 2021, 30, 46–58, (In Chinese with English Abstract). [Google Scholar]
- Waite, D.W.; Vanwonterghem, I.; Rinke, C.; Parks, D.H.; Zhang, Y.; Takai, K.; Sievert, S.M.; Simon, J.; Campbell, B.J.; Hanson, T.E.; et al. Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 2017, 8, 682. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zheng, M.; Gao, Y.; Yuan, T.; Hale, L.; Van Nostrand, J.D.; Zhou, J.; Wan, S.; Yang, Y. Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing. ISME J. 2019, 13, 1370–1373. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.-H.; Chen, S.-Y.; Chen, J.-W.; Xue, K.; Chen, S.-L.; Wang, X.-M.; Chen, T.; Kang, S.-C.; Rui, J.-P.; Thies, J.E.; et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc. Natl. Acad. Sci. USA 2021, 118, e2025321118. [Google Scholar] [CrossRef]
- Yang, Y.D.; Zhang, M.C. Hu teria and Archaea in a North China agricultural soil. Acta Ecol. Sin. 2017, 37, 3636–3646, (In Chinese with English Abstract). [Google Scholar]
- Yin, S.; Chen, D.; Chen, L.; Edis, R. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol. Biochem. 2002, 34, 1131–1137. [Google Scholar] [CrossRef]
- Pang, X.P.; Guo, Z.G. Effects of plateau pika disturbance levels on the plant diversity and biomass of an alpine meadow. Grassl. Sci. 2018, 64, 159–166, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Zhang, C.; Wang, G. Effect of long-term destocking on soil fungal functional groups and interactions with plants. Plant Soil 2020, 448, 495–508. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Ding, J.-Z.; Peng, Y.-F.; Li, F.; Yang, G.-B.; Liu, L.; Qin, S.-Q.; Fang, K.; Yang, Y.-H. Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. J. Biogeogr. 2016, 43, 2027–2039. [Google Scholar] [CrossRef]
- Hu, A.; Nie, Y.; Yu, G.; Han, C.; He, J.; He, N.; Liu, S.; Deng, J.; Shen, W.; Zhang, G. Diurnal Temperature Variation and Plants Drive Latitudinal Patterns in Seasonal Dynamics of Soil Microbial Community. Front. Microbiol. 2019, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ke, X.; Dai, L.; Cao, G.; Zhou, H.; Guo, X. Moderate grazing increased alpine meadow soils bacterial abundance and diversity index on the Tibetan Plateau. Ecol. Evol. 2020, 10, 8681–8687. [Google Scholar] [CrossRef]
- Liu, L.; Gundersen, P.; Zhang, T.; Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 2012, 44, 31–38. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Ma, J.P.; Pang, D.B.; Chen, L.; Wan, H.Y.; Chen, G.L.; Li, X.B. Characteristics of soil microbial community structure under different altitude vegetation in Helan Mountain. Acta Ecol. Sin. 2022, 2, 1–10, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.; Liu, G.; Song, Z.; Wang, J.; Guo, L. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biol. Biochem. 2018, 124, 47–58. [Google Scholar] [CrossRef]
- Yuan, X.C.; Liu, H.Y.; Zeng, Q.X.; Chen, W.W.; Chen, J.M.; Xu, J.H.; Chen, Y.M.; Lin, K.M. Soil organic nitrogen depolymerase activity and its influencing factors of Pinus huangshanensis under different elevations in Wuyi Mountain. Acta Ecol. Sin. 2022, 4, 1–11, (In Chinese with English Abstract). [Google Scholar]
Variables | IAM | MDAM | BSB | AAG | |
---|---|---|---|---|---|
Vegetation | Coverage (%) | 96.42 ± 2.34 a | 44.21 ± 15.22 b | 31.67 ± 12.13 c | 55.56 ± 10.97 b |
Gleason index | 2.01 ± 0.31 a | 1.76 ± 0.30 b | 1.21 ± 0.29 c | 0.89 ± 0.27 d | |
Shannon–Wiener index | 1.90 ± 0.20 a | 2.10 ± 0.17 b | 1.83 ± 0.18 a | 1.56 ± 0.16 c | |
Simpson index | 0.16 ± 0.04 a | 0.11 ± 0.02 b | 0.17 ± 0.05 a | 0.26 ± 0.05 c | |
Pielou index | 0.74 ± 0.05 a | 0.80 ± 0.03 b | 0.83 ± 0.09 b | 0.83 ± 0.08 b | |
Aboveground biomass (g m−2) | 253.02 ± 53.80 a | 66.51 ± 78.43 b | 47.38 ± 30.93 c | 88.10 ± 23.39 b | |
Soil | pH | 5.65 ± 0.27 a | 6.81 ± 0.58 b | 6.67 ± 0.68 b | 6.58 ± 0.66 b |
EC (μS cm−1) | 192.87 ± 112.48 a | 100.03 ± 72.68 c | 136.11 ± 55.72 bc | 144.53 ± 79.13 abc | |
BD (g cm−3) | 0.68 ± 0.20 a | 1.20 ± 0.14 b | 1.08 ± 0.16 b | 1.13 ± 0.19 b | |
WC | 0.86 ± 0.26 a | 0.26 ± 0.09 c | 0.37 ± 0.10 bc | 0.43 ± 0.15 b | |
TOC (g kg−1) | 9.12 ± 3.04 a | 3.17 ± 0.70 b | 3.74 ± 1.19 b | 4.09 ± 1.04 b | |
TN (%) | 0.74 ± 0.25 a | 0.30 ± 0.06 b | 0.40 ± 0.22 b | 0.40 ± 0.07 b | |
TP (mg kg−1) | 811.58 ± 147.31 a | 643.40 ± 143.75 b | 697.55 ± 130.62 b | 821.63 ± 226.64 a | |
TK (%) | 1.95 ± 0.22 a | 2.24 ± 0.34 a | 2.13 ± 0.34 a | 2.08 ± 0.31 a | |
Soil | Sobs (×10−3) | 2.70 ± 0.20 a | 2.77 ± 0.11 ab | 3.07 ± 0.12 c | 3.04 ± 0.21 bc |
bacteria | Shannon | 6.28 ± 0.22 a | 6.50 ± 0.05 ab | 6.62 ± 0.06 b | 6.67 ± 1.15 b |
Simpson (×10−3) | 7.65 ± 6.09 a | 3.87 ± 0.22 a | 3.93 ± 0.35 a | 3.49 ± 1.02 a | |
Ace (×103) | 3.74 ± 0.30 a | 3.87 ± 0.15 ab | 4.24 ± 0.15 b | 4.06 ± 0.26 ab | |
Chao (×103) | 3.73 ± 0.29 a | 3.87 ± 0.12 a | 4.25 ± 0.11 b | 4.04 ± 0.24 ab | |
Coverage (%) | 97.40 ± 0.23 a | 97.32 ± 0.11 ab | 97.04 ± 0.09 b | 97.27 ± 0.21 ab | |
Shannon even | 0.79 ± 0.02 a | 0.82 ± 0.00 b | 0.82 ± 0.00 b | 0.83 ± 0.01 b | |
Simpson even | 0.06 ± 0.02 a | 0.09 ± 0.01 ab | 0.08 ± 0.01 ab | 0.10 ± 0.03 b | |
Quantity (×109 copies g−1) | 27.30 ± 8.02 a | 17.58 ± 1.03 b | 23.01 ± 10.17 b | 4.32 ± 0.97 c |
Levels | IAM | MDAM | BSB | AAG | Common | AAG&IAM |
---|---|---|---|---|---|---|
Phylum | 35 (2) | 32 (0) | 34 (0) | 37 (1) | 30 | 1 |
Class | 98 (3) | 88 (1) | 94 (1) | 104 (2) | 82 | 6 |
Order | 251 (16) | 214 (2) | 232 (4) | 268 (11) | 191 | 24 |
Family | 429 (34) | 347 (4) | 379 (4) | 439 (19) | 302 | 44 |
Genus | 748 (60) | 589 (12) | 654 (13) | 773 (37) | 485 | 95 |
Species | 1643 (138) | 1271 (26) | 1408 (45) | 1713 (89) | 978 | 263 |
OTU | 5477 (997) | 4092 (254) | 4567 (283) | 6072 (636) | 2070 | 1241 |
Control Factor | Weighted UniFrac Distance | Unweighted UniFrac Distance | ||||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | |||
phyla | S | V + T | 0.4515 | 0.004 | 0.2910 | 0.011 |
V | S + T | 0.1339 | 0.144 | 0.2246 | 0.033 | |
T | S + V | −0.0852 | 0.785 | 0.2543 | 0.008 | |
V + T | S | −0.0335 | 0.592 | 0.3211 | 0.005 | |
S + T | V | 0.3103 | 0.011 | 0.3504 | 0.004 | |
S + V | T | 0.4664 | 0.001 | 0.3420 | 0.002 | |
Genus | S | V + T | 0.5464 | 0.001 | 0.4636 | 0.001 |
V | S + T | 0.2189 | 0.068 | 0.3664 | 0.003 | |
T | S + V | −0.0567 | 0.654 | −0.0186 | 0.531 | |
V + T | S | 0.0403 | 0.334 | 0.2064 | 0.027 | |
S + T | V | 0.4011 | 0.002 | 0.3781 | 0.003 | |
S + V | T | 0.5826 | 0.001 | 0.5356 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ding, M.; Zhang, H.; Wang, N.; Xiao, F.; Yu, Z.; Huang, P.; Zou, F. Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation. Land 2022, 11, 396. https://doi.org/10.3390/land11030396
Zhang Y, Ding M, Zhang H, Wang N, Xiao F, Yu Z, Huang P, Zou F. Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation. Land. 2022; 11(3):396. https://doi.org/10.3390/land11030396
Chicago/Turabian StyleZhang, Yueju, Mingjun Ding, Hua Zhang, Nengyu Wang, Fan Xiao, Ziping Yu, Peng Huang, and Fu Zou. 2022. "Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation" Land 11, no. 3: 396. https://doi.org/10.3390/land11030396
APA StyleZhang, Y., Ding, M., Zhang, H., Wang, N., Xiao, F., Yu, Z., Huang, P., & Zou, F. (2022). Variations and Mutual Relations of Vegetation–Soil–Microbes of Alpine Meadow in the Qinghai-Tibet Plateau under Degradation and Cultivation. Land, 11(3), 396. https://doi.org/10.3390/land11030396