Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Simulation
2.2.1. Scenario RCP4.5
2.2.2. Scenario RCP8.5
2.3. Land Desertification Assessment
2.4. Tillage and Water Soil Erosion Assessment
2.5. Soil Salinization Risk Assessment
3. Results
3.1. Simulated Meteorological Data
3.1.1. Air Temperature
3.1.2. Annual Precipitation
3.2. Assessing Desertification Risk
3.2.1. Sotirio Study Site
3.2.2. Zappeion Study Site
3.2.3. Study Site of Trikala
3.3. Assessment of Changes in Soil Depth
3.4. Soil Salinization Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, D.L.; Watson-Stegner, D. Evolution model of pedogenesis. Soil Sci. 1987, 143, 349–366. [Google Scholar] [CrossRef]
- Yassoglou, N. Natural resources and desertification. In Desertification, Scientific Works of Greek Authors; Varelidis, O., Yassoglou, N., Liveris, S., Eds.; Ministry of Rural Development and Food, General Directorate of Development and Protection of Forests and Natural Environment: Athens, Greece, 2004; pp. 55–68. [Google Scholar]
- Klein, M.J.; Meijer, P.H.E. Principle of minimum entropy production. Phys. Rev. 1954, 96, 250–255. [Google Scholar] [CrossRef]
- Addiscott, T.M. Entropy and sustainability. Eur. J. Soil Sci. 1995, 46, 161–168. [Google Scholar] [CrossRef]
- Kosmas, C.; Ferrara, A.; Briasouli, H.; Imeson, A. Methodology for mapping Environmentally Sensitive Areas (ESAs) to Desertification. In The Medalus Project Mediterranean Desertification and Land Use. Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; Kosmas, C., Kirkby, M., Geeson, N., Eds.; European Commission: Brussels, Belgium, 1999; pp. 31–47. ISBN 92-828-6349-2. [Google Scholar]
- Mirzabaev, A.; Wu, J.; Evans, J.; García-Oliva, F.; Hussein, I.A.G.; Iqbal, M.H.; Kimutai, J.; Knowles, T.; Meza, F.; Nedjraoui, D.; et al. Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; in press. [Google Scholar]
- United Nations Convention to Combat Desertification-U.N.C.C.D. United Nations, General Assembly, Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification Particularly in Africa, Paris, 14 October 1994. Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-10&chapter=27&clang=_en (accessed on 6 May 2021).
- Spooner, E.; Mann, H.S. Desertification and Development Dryland Ecology in Social Perspective; Academic Press: Cambridge, MA, USA, 1982; p. 407. [Google Scholar]
- World Resource Institute. The World Resources 1988–1989; Basic Books Inc.: New York, NY, USA, 1989; p. 372. [Google Scholar]
- Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M. Evaluating Environmental Sensitivity at the Basin Scale through the Use of Geographic Information Systems and Remotely Sensed Data: An Example Covering the Agribasin (Southern Italy). Catena 2000, 40, 19–35. [Google Scholar] [CrossRef]
- Kosmas, C.; Tsara, M.; Moustakas, N.; Karavitis, C. Identification of indicators for desertification. Ann. Arid. Zone 2003, 42, 393–416. [Google Scholar]
- Kosmas, C.; Tsara, M.; Moustakas, N.; Kosma, D.; Yassoglou, N. Environmentally sensitive areas and indicators of desertification. In Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; NATO Security Through Science Series; Springer: Dordrecht, The Netherlands, 2006; Volume 3. [Google Scholar] [CrossRef]
- Sepehr, A.; Hassanli, A.M.; Ekhtesasi, M.R.; Jamali, J.B. Quantitative assessment of desertification in south of Iran using MEDALUS method. Environ. Monit. Assess. 2007, 134, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Contador, J.F.; Schnabel, S.; Gutiérrez, A.; Pulido-Fernández, M. Mapping sensitivity to land degradation in Extremadura, SW Spain. Land Degrad. Dev. 2009, 20, 129–144. [Google Scholar] [CrossRef]
- Salvati, L.; Bajocco, S. Land sensitivity to desertification across Italy: Past, present, and future. Appl. Geogr. 2011, 31, 223–231. [Google Scholar] [CrossRef]
- Tavares, J.; Baptista, I.; Ferreira, A.J.D.; Amiotte-Suchet, P.; Coelho, C.; Gomes, S.; Amoros, R.; Reis, E.; Mendes, A.; Costa, L.; et al. Assessment and mapping the sensitive areas to desertification in an insular Sahelian mountain region Case study of the Ribeira Seca Watershed, Santiago Island, Cabo Verde. Catena 2015, 128, 214–223. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Alvalá, R.C.S.; Sestini, M.F.; Affonso, A.G.; Rodriguez, D.A.; Barbosa, A.A.; Cunha, A.P.M.A.; Valles, G.F.; Crepani, E.; et al. Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth 2015, 6, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Kadović, R.; Bohajar, Y.A.M.; Perović, V.; Simić, S.B.; Todosijević, M.; Tošić, S.; Anđelić, M.; Mlađan, D.; Dovezenski, U. Land sensitivity analysis of degradation using MEDALUS model: Case study of Deliblato Sands, Serbia. Arch. Environ. Prot. 2016, 42, 114–124. [Google Scholar] [CrossRef]
- Leman, N.; Ramli, M.F.; Khirotdin, R.P.K. GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecol. Indic. 2016, 61 Pt 2, 293–308. [Google Scholar] [CrossRef]
- Taghipour-Javi, S.; Fazeli, A.; Kazemi, B. A case study of desertification hazard mapping using the MEDALUS (ESAs) methodology in southwest Iran. J. Nat. Resour. Dev. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Prăvălie, R.; Săvulescu, I.; Patriche, C.; Dumitra¸scu, M.; Bandoc, G. Spatial assessment of land degradation sensitive areas in southwestern Romania using modified MEDALUS method. Catena 2017, 153, 114–130. [Google Scholar] [CrossRef]
- Lahlaoi, H.; Rhinane, H.; Hilali, A.; Lahssini, S.; Moukrim, S. Desertification assessment using MEDALUS model in watershed Oued El Maleh, Morocco. Geosciences 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Karamesouti, M.; Panagos, P.; Kosmas, C. Model-based spatio-temporal analysis of land desertification risk in Greece. Catena 2018, 167, 266–275. [Google Scholar] [CrossRef]
- Lee, E.J.; Piao, D.; Song, C.; Kim, J.; Lim, C.-H.; Kim, E.; Moon, J.; Kafatos, M.; Lamchin, M.; Jeon, S.W.; et al. Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. For. Sci. Technol. 2019, 15, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, A.; Kosmas, C.; Salvati, L.; Padula, A.; Mancino, G.; Nolè, A. Updating the MEDALUS-ESA framework for worldwide land degradation and desertification assessment. Land Degrad. Dev. 2020, 31, 1593–1607. [Google Scholar] [CrossRef]
- Plaiklang, S.; Sutthivanich, I.; Sritarapipat, T.; Panurak, K.; Ogawa, S.; Charungthanakij, S.; Maneewan, U.; Thongrueang, N. Desertification assessment using MEDALUS model in upper Lamchiengkrai watershed, Thailand. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 1257–1262. [Google Scholar] [CrossRef]
- Uzuner, Ç.; Dengiz, O. Desertification risk assessment in Turkey based on environmentally sensitive areas. Ecol. Indic. 2020, 114, 106295. [Google Scholar] [CrossRef]
- Afzali, S.F.; Khanamani, A.; Maskooni, E.K.; Berndtsson, R. Quantitative Assessment of Environmental Sensitivity to Desertification Using the Modified MEDALUS Model in a Semiarid Area. Sustainability 2021, 13, 7817. [Google Scholar] [CrossRef]
- Bakker, M.; Govers, G.; Kosmas, C.; Vanacker, V.; Oost, K.; Rounsevell, M. Soil erosion as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Tsara, M.; Gerontidis, S.; Marathianou, M.; Kosmas, C. The long-term effect of tillage on soil displacement of hilly areas used for growing wheat in Greece. Soil Use Manag. 2001, 17, 113–120. [Google Scholar] [CrossRef]
- Kosmas, C.; Gerontidis, S.; Marathianou, M.; Detsis, V.; Zafiriou, T.; Muysen, W.; Govers, G.; Quine, T.; Vanoost, K. The effects of tillage displaced soil on soil properties and wheat biomass. Soil Tillage Res. 2001, 58, 31–44. [Google Scholar] [CrossRef]
- Greek Payment and Control Agency for Guidance and Guarantee Community Aid—OPEKEPE (in Greek). Development of a Unified System for Geospatial Soil Data and the Delineation of the Rural Areas of the Country. Ministry of Rural Development and Food. 2014. Available online: https://iris.gov.gr/SoilServices/js/pdf/SOIL%20MAP%20OF%20GREECE%20e-SOILBOOK.pdf (accessed on 14 May 2020).
- Moss, R.; Edmonds, J.; Hibbard, K.; Manning, M.; Rose, S.; Vuuren, D.; Carter, T.; Emori, S.; Kainuma, M.; Kram, T.; et al. The Next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Carrão, H.; Naumann, G.; Barbosa, P. Global projections of drought hazard in a warming climate: A prime for disaster risk management. Clim. Dyn. 2017, 50, 2137–2155. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority—ELSTAT; Agricultural Statistics: Athens, Greece, 2018. (In Greek)
- Intergovernmental Commission on Climate Change of the United Nations (I.P.C.C.). Fifth Assessment Report. 2014. Available online: https://www.ipcc.ch/assessment-report/ar5/ (accessed on 12 May 2021).
- Clarke, L.E.; Edmonds, J.A.; Jacoby, H.D.; Pitcher, H.; Reilly, J.M.; Richels, R. Scenarios of greenhouse gas emissions and atmospheric concentrations. In Sub-Report 2.1 A of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research; U.S. Climate Change Science Program: Washington, DC, USA, 2007. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Riahi, K.; Krey, V.; Rao, S.; Chirkov, V.; Fischer, G.; Kolp, P.; Kindermann, G.; Nakicenovic, N.; Rafai, P. RCP-8.5: Exploring the consequence of high emission trajectories. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, P.; Jones, C.G.; Willén, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate Model RCA3: Model description and performance. Tellus Ser. 2011, 63, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Giorgetta, M.; Jungclaus, J.; Reick, C.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Modeling Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Kairis, O.; Dimitriou, V.; Aratzioglou, C.; Gasparatos, D.; Yassoglou, N.; Kosmas, C.; Moustakas, N. A Comparative Analysis of a Detailed and Semi-Detailed Soil Mapping for Sustainable Land Management Using Conventional and Currently Applied Methodologies in Greece. Land 2020, 9, 154. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J., Coleman, D., Bezdicek, D., Stewart, B., Eds.; SSSA: Madison, WI, USA, 1994; Volume 35, pp. 3–21. [Google Scholar]
- Barrow, C.J. World Atlas of Desertification. In United Nations Environment Programme; Middleton, N., Thomas, D.S.G., Eds.; United Nations Environment Programme: London, UK, 1992. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. Irr. Drain 1998, 56, D05109. [Google Scholar]
- Food and Agriculture Organization of the United Nations—FAO. ETo Calculator (v. 3.2). 2012. Available online: http://www.fao.org/land-water/databases-and-software/eto-calculator/en/ (accessed on 9 September 2021).
- Kosmas, C.; Kairis, O.; Aratzioglou, C.; Gkougkougianni, M. Study on the Evaluation of the Contribution of the “Rural Development Program 2014–2020” to the Prevention and Improvement of Soil Management. Greek Ministry of Rural Development and Food. Special Management Unit of the “Rural Development Program 2014–2020”. 2019, p. 102. Available online: https://drive.google.com/file/d/1cYK6BPPYMaFJVqtRbGFXY61ARXM__GEz/view (accessed on 9 June 2021).
- Rubio, J.L.; Bochet, E. Desertification indicators as diagnosis criteria for desertification risk assessment in Europe. J. Arid. Env. 1998, 39, 113–120. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M.; Ceccarelli, T. Integrating economic and ecological indicators in the assessment of desertification risk: Suggestions from a case study. Appl. Environ. Ecol. Res. 2008, 6, 129–138. [Google Scholar] [CrossRef]
- Gerontidis, S.; Kosmas, C.; Detsis, V.; Marathianou, M.; Zafiriou, T.; Tsara, M. The effect of moldboard plough on tillage erosion along a hillslope. J. Soil Water Conserv. 2001, 56, 147–152. [Google Scholar]
- Govers, G.; Vandaele, K.; Desmet, P.; Poesen, J.; Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 1994, 45, 469–478. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Kosmas, C.; Kairis, O.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; et al. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach. Environ. Manag. 2014, 54, 951–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kairis, O.; Kosmas, C.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; et al. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Types of Degradation, Causes, and Implications for Management. Environ. Manag. 2014, 54, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Alamanos, A.; Pliakou, T.; Tritopoulou, E.; Kountouri, F.; Papadaki, L. Management of Water Resources: Introduction and Condition of Water Sector of Thessaly. Program on: Water for Tomorrow of Athens Brewery. 2021, p. 87. Available online: https://nerogiatoavrio.gr/wp-content/uploads/2021/03/Aνάλυση-Υφιστάμενης-Κατάστασης.pdf (accessed on 16 June 2021). (In Greek).
- Greek National Committee for Combating Desertification, 2000. Greek Action Plan to Combat Desertification, Ministry of Agriculture, Athens. 2001, p. 142. Available online: https://www.itia.ntua.gr/el/getfile/162/1/documents/2000aperimosi.pdf (accessed on 23 June 2021).
- Gasparatos, D.; Kairis, O. Detailed Soil Survey Field and Laboratory Data as a Critical Tool for Optimizing the Arable Cropping Capability Evaluation of a Representative Episaturated Soil Pedon in Greece. Land 2022, 11, 182. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Valmir da Silva, R.; Takara, K.; Matsuoka, Y.; Takahashi, K.; Maruyama, K.; Kawahara, N. Estimation of potential changes in cereals production under climate change scenarios. Hydrol. Process. 2011, 25, 715–2725. [Google Scholar] [CrossRef]
- Balkovič, J.; van der Velde, M.; Skalský, R.; Xiong, W.; Folberth, C.; Khabarov, N.; Smirnov, A.; Mueller, D.N.; Obersteiner, M. Global wheat production potentials and management flexibility under the representative concentration pathways Global Planet. Change 2014, 122, 107–121. [Google Scholar]
- Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Vitaliotou, M.; Lalas, P.D.; Theloudis, I.; Giannoulaki, D.K.; Dimopoulos, D.; Zavras, V. Climate change impacts and adaptation options for the Greek agriculture in 2021–2050: A monetary assessment. Clim. Risk Manag. 2017, 16, 164–182. [Google Scholar] [CrossRef]
- Kourgialas, N. A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef]
- Terzoudi, B.C.; Mitsios, J.; Pateras, D.; Gemtos, T. Interrill Soil Erosion as Affected by Tillage Methods under Cotton in Greece. CIGR 2006, VIII. Available online: https://www.academia.edu/22903698/Interrill_Soil_Erosion_as_Affected_by_Tillage_Methods_under_Cotton_in_Greece (accessed on 14 May 2021).
- Dimopoulos, M.; Chalkiadaki, M.; Dassenakis, M.; Scoullos, M. Quality of groundwater in western Thessaly the problem of nitrate pollution. Global Nest 2003, 5, 185–191. [Google Scholar]
- Papaioannou, A.; Plageras, P.; Dovriki, E.; Minas, A.; Krikelis, V.; Nastos, T.P.; Kakavas, K.; Paliatsos, G.A. Groundwater quality and location of productive activities in the region of Thessaly (Greece). Desalination 2007, 213, 209–217. [Google Scholar] [CrossRef]
- European Commission-EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM (2020) 381 Final, Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 9 July 2021).
Land Quality | Used Parameters | Description | Weighted Values | Current Greek Soil Mapping System’s Symbols [45] | Study Sites |
---|---|---|---|---|---|
Soil Quality Index—SQI | Soil texture of the top soil layer | L, SCL, SL, LS, CL | 1 | 3 | Trikala |
SC, SiL, SiCL | 1.2 | - | Non existent in the study sites | ||
Si, C, SiC | 1.6 | 5 | Zappeion, Sotirio | ||
S | 2 | 4 | Zappeion, Sotirio | ||
Parent material | Shale, schist, basic, ultra basic, conglomerates, unconsolidated | 1 | C, A, P, T | Zappeion, Sotirio, Trikala | |
Limestone, marble, granite, Rhyolite, ignibrite, gneiss, siltstone, sandstone | 1.7 | - | Non existent in the study sites | ||
Marl *, pyroclastics | 2 | M | Zappeion, Trikala | ||
Soil depth | >75 cm | 1 | 4, 5, 6 | Zappeion, Sotirio, Trikala | |
30–75 cm | 2 | 3 | Zappeion, Trikala | ||
15–30 cm | - | - | Non existent in the study sites | ||
<15 cm | 4 | Non existent in the study sites | |||
Slope (%) | <6 | 1 | A, B | Zappeion, Sotirio, Trikala | |
6–18 | 1.2 | - | Non existent in the study sites | ||
18–35 | 1.5 | - | Non existent in the study sites | ||
>35 | 2 | - | Non existent in the study sites | ||
Rock fragments cover | >60 | 1 | 3 | Zappeion, Sotirio | |
20–60 | 1.3 | 2 | Zappeion, Sotirio | ||
<20 | 2 | 1 | Zappeion, Sotirio, Trikala | ||
Drainage conditions | Well drained | 1 | A, B, C | Zappeion, Sotirio, trikala | |
Imperfectly drained | 1.2 | D | Sotirio, Trikala | ||
Poorly drained | 2 | D/F, E/F, E | Sotirio, Trikala |
Land Quality | Used Parameters | Description | Weighted Values | Data Source | Period/RCP/Study Site |
---|---|---|---|---|---|
Climate Quality Index—CQI | Annual precipitation | >650 mm | 1 | Academy of Athens | 1981–2000/Trikala |
280–650 mm | 2 | 1981–2000/Zappeion, 2041–2060/4.5/Zappeion, 2081–2100/4.5/Zappeion, 2041–2060/8.5/Zappeion, 2081–2100/8.5/Zappeion, 1981–2000/Sotirio, 2041–2060/4.5/Sotirio, 2081–2100/4.5/Sotirio, 2041–2060/8.5/Sotirio, 2081–2100/8.5/Sotirio, 2041–2060/4.5/Trikala, 2081–2100/4.5/Trikala, 2041–2060/8.5/Trikala | |||
<280 mm | 4 | 2081–2100/8.5/Trikala | |||
Aridity index | >1 | 1 | Calculated | Non existent in the study sites | |
0.75 < 1 | 1.05 | 1981–2000/Trikala | |||
0.65 < 0.75 | 1.15 | Non existent in the study sites | |||
0.50 < 0.65 | 1.25 | 1981–2000/Zappeion, 1981–2000/Sotirio | |||
0.35 < 0.50 | 1.35 | Non existent in the study sites | |||
0.20 < 0.35 | 1.45 | 2041–2060/4.5/Zappeion, 2081–2100/4.5/Zappeion, 2041–2060/8.5/Zappeion, 2041–2060/4.5/Sotirio, 2081–2100/4.5/Sotirio, 2041–2060/8.5/Sotirio, 2041–2060/4.5/Trikala, 2081–2100/4.5/Trikala | |||
0.10 < 0.20 | 1.55 | 2081–2100/8.5/Zappeion, 2081–2100/8.5/Sotirio, 2041–2060/8.5/Trikala, 2081–2100/8.5/Trikala | |||
0.03 < 0.10 | 1.75 | Non existent in the study sites | |||
<0.03 | 2 | Non existent in the study sites | |||
Aspect | N, NE, NW, flat | 1 | Estimated | Zappeion, Sotirio, Trikala | |
S, SE, SW, E | 2 |
Land Quality | Used Parameters | Description | Weighted Values | Study Sites |
Vegetation Quality Index—VQI | Fire risk | Bare land, perennial agricultural crops, annual agricultural crops (maize, tobacco, sunflower) | 1 | Not the main cultivations in the study sites |
Annual agricultural crops (cereals, grasslands), deciduous oak, (mixed), mixed Mediterranean, macchia/evergreen forests | 1.3 | Zappeion, Sotirio, Trikala | ||
Mediterranean macchia | 1.6 | Not the main vegetation in the study sites | ||
Pine forests | 2 | Not the main vegetation in the study sites | ||
Erosion protection | Mixed Mediterranean macchia-evergreen forests (with Q. ilex) | 1 | Not the main vegetation in the study sites | |
Mediterranean macchia, pine forests | 1.2 | Not the main vegetation in the study sites | ||
Deciduous forests (oak mixed), permanent grassland | 1.4 | Not the main vegetation in the study sites | ||
Evergreen perennial agricultural crops (olives) | 1.6 | Not the main cultivations in the study sites | ||
Deciduous perennial agricultural crops (almonds, orchards) | 1.8 | Not the main cultivations in the study sites | ||
Annual agricultural crops (cereals), annual grasslands | 2 | Zappeion, Sotirio, Trikala | ||
Drought resistance | Mixed Mediterranean macchia/evergreen forests, Mediterranean macchia | 1 | Not the main vegetation in the study sites Mediterranean macchia | |
Conifers, deciduous, olives | 1.2 | Not the main vegetation and cultivation in the study sites | ||
Perennial agricultural trees (vines, almonds, ochrand) | 1.4 | Not the main cultivations in the study sites | ||
Perennial grasslands | 1.7 | Not the main vegetation in the study sites | ||
Annual agricultural crops, annual grasslands | 2 | Zappeion, Sotirio, Trikala | ||
Plant cover | >40% | 1 | Not the main plant cover percentage in the study sites | |
10–40% | 1.8 | Zappeion, Sotirio, Trikala | ||
<10% | 2 | Not the main plant cover percentage in the study sites |
Land Quality | Used Parameters | Description | Weighted Values | Study Sites |
---|---|---|---|---|
Management Quality Index—MQI | Land use intensity (only for cropland) | Low land use intensity | 1 | Not the major trend existent in the study sites |
Medium land use intensity | 1.5 | Zappeion, Sotirio, Trikala (shallow plowing, application of fertilizers in a moderate intensity, contour cultivation in some areas) | ||
High land use intensity | 2 | Not the major trend existent in the study sites | ||
Policy enforcement | Complete: >75% of the area under protection | 1 | Not the major trend existent in the study sites | |
Partial: 25–75% of the area under protection | 1.5 | Zappeion, Sotirio, Trikala (partially adequate measures for soil protection) | ||
Incomplete: <25% of the area under protection | 2 | Not the major trend existent in the study sites |
Time Period | Mean Maximum Temperature (°C) | Mean Minimum Temperature (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sotirio | Zappeion | Trikala | Sotirio | Zappeion | Trikala | |||||||
1981–2000 | 20.6 | 20.6 | 20.6 | 20.6 | 20.3 | 20.3 | 9.4 | 9.4 | 9.4 | 9.4 | 11.9 | 11.9 |
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
2041–2060 | 22.3 | 23.0 | 23.0 | 23.7 | 23.7 | 24.3 | 10.5 | 11.2 | 11.1 | 11.7 | 11.6 | 12.2 |
2081–2100 | 22.6 | 25.6 | 23.2 | 26.4 | 23.9 | 27.1 | 10.8 | 13.8 | 11.3 | 14.3 | 11.9 | 14.9 |
Time Period | Mean Annual Precipitation (mm) | |||||
---|---|---|---|---|---|---|
Sotirio | Zappeion | Trikala | ||||
1981–2000 | 415.9 | 415.9 | 415.9 | 415.9 | 707.8 | 707.8 |
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
2041–2060 | 396.9 | 343.9 | 443.6 | 396.1 | 349.5 | 324.4 |
2081–2100 | 394.7 | 295.3 | 473.4 | 336.1 | 355.6 | 248.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kairis, O.; Karamanos, A.; Voloudakis, D.; Kapsomenakis, J.; Aratzioglou, C.; Zerefos, C.; Kosmas, C. Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios. Land 2022, 11, 395. https://doi.org/10.3390/land11030395
Kairis O, Karamanos A, Voloudakis D, Kapsomenakis J, Aratzioglou C, Zerefos C, Kosmas C. Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios. Land. 2022; 11(3):395. https://doi.org/10.3390/land11030395
Chicago/Turabian StyleKairis, Orestis, Andreas Karamanos, Dimitrios Voloudakis, John Kapsomenakis, Chrysoula Aratzioglou, Christos Zerefos, and Constantinos Kosmas. 2022. "Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios" Land 11, no. 3: 395. https://doi.org/10.3390/land11030395
APA StyleKairis, O., Karamanos, A., Voloudakis, D., Kapsomenakis, J., Aratzioglou, C., Zerefos, C., & Kosmas, C. (2022). Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios. Land, 11(3), 395. https://doi.org/10.3390/land11030395