Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site Description
2.2. Soil Sampling on the Profile
2.2.1. Soil Physical Properties
2.2.2. Soil Chemical Properties
2.3. Soil Sampling of the First 20 cm at Each Site
Soil Biological Properties
3. Statistical Analysis
4. Results
4.1. Chemical and Physical Characteristics of the Soil Profile at P1 and P4
4.2. Variation of Chemical and Biological Properties in the First 20 cm of Soil of the Angachilla Urban Wetland
5. Discussion
5.1. Effect of Anthropic Disturbance on the Soil Profile of an Urban Wetland
5.2. Loss of Soil Quality as a Result of Anthropic Disturbance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenreich, S.J. Climate Change and the European Water Dimension; EU Report N° 21553; JRS: Ispra, Italy, 2005. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Wetlands and Water Synthesis; Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; pp. 30–38. [Google Scholar]
- Palta, M.M.; Grimm, N.B.; Groffman, P.M. “Accidental” urban wetlands: Ecosystem functions in unexpected places. Front. Ecol. Environ. 2017, 15, 248–256. [Google Scholar] [CrossRef]
- Valle, S.R.; Carrasco, J. Soil quality indicator selection in Chilean volcanic soils formed under temperate and humid conditions. Catena 2018, 162, 386–395. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Valle, S.R.; Dörner, J.; Zúñiga, F.; Dec, D. Seasonal dynamics of the physical quality of volcanic ash soils under different land uses in southern Chile. Soil Tillage Res. 2018, 182, 25–34. [Google Scholar] [CrossRef]
- Blum, W.E. Soil and land resources for agricultural production: General trends and future scenarios-a worldwide perspective. Int. Soil Water Conserv. Res. 2013, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Clunes, J.; Pinochet, D. Leucine retention by the clay-sized mineral fraction. An indicator of C storage. Agro. Sur. 2021, 48, 37–46. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Valle, S.R.; Carrasco, J.; Pinochet, D.; Soto, P.; Mac Donald, R. Spatial distribution assessment of extractable Al, (NaF) pH and phosphate retention as tests to differentiate among volcanic soils. Catena 2015, 127, 17–25. [Google Scholar] [CrossRef]
- Haas, C.; Horn, R.; Gerke, H.H.; Dec, D.; Zúñiga, F.; Dörner, J. Air permeability and diffusivity of an Andisol subsoil as influenced by pasture improvement strategies. Agro. Sur. 2018, 46, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Clunes, J.; Navarro, J.; Pinochet, D. Variación temporal del contenido de materia orgánica en dos suelos volcánicos bajo diferentes manejos agrícolas. Agro. Sur. 2014, 42, 1–14. [Google Scholar] [CrossRef]
- Dörner, J.; Horn, R.; Uteau, D.; Rostek, J.; Zuniga, F.; Peth, S.; Dec, D.; Fleige, H. Studying the soil pore physical resistance and resilience of a shallow volcanic ash soil subjected to pure cyclic loading. Soil Tillage Res. 2020, 204, 104709. [Google Scholar] [CrossRef]
- Dörner, J.; Huertas, J.; Cuevas, J.G.; Leiva, C.; Paulino, L.; Arumí, J.L. Water content dynamics in a volcanic ash soil slope in southern Chile. J. Plant Nutr. Soil Sci. 2015, 178, 693–702. [Google Scholar] [CrossRef]
- Bravo, S.; González-Chang, M.; Dec, D.; Valle, S.; Wendroth, O.; Zúñiga, F.; Dörner, J. Using wavelet analyses to identify temporal coherence in soil physical properties in a volcanic ash-derived soil. Agric. For. Meteorol. 2020, 285, 107909. [Google Scholar] [CrossRef]
- Dec, D.; Zúniga, F.; Thiers, O.; Paulino, L.; Valle, S.; Villagra, V.; Tadich, I.; Horn, R.; Dörner, J. Water and temperature dynamics of aquands under different uses in southern Chile. J. Soil Sci. Plant Nutr. 2017, 17, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Ministerio del Medio Ambiente. Chile País de Humedales, 40 mil Reservas de Vida; Wildlife Conservation Society (WCS): Santiago, Chile, 2018.
- Lopetegui, E.J.; Vollman, R.S.; Contreras, H.C.; Valenzuela, C.D.; Suarez, N.L.; Herbach, E.P.; Huepe, J.U.; Jaramillo, G.V.; Leischner, B.P.; Riveros, R.S. Emigration and mortality of black-necked swans (Cygnus melancoryphus) and disappearance of the macrophyte Egeria densa in a Ramsar Wetland site of Southern Chile. J. Hum. Environ. 2007, 36, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Lara, M.; Gerding, J. Levantamiento de Información Bibliográfica y Cartográfica de los Humedales Urbanos de la Ciudad de Valdivia (Licitación Nº 613925-7-L115); Informe Final, Ministerio del Medio Ambiente: Valdivia, Chile, 2016. [Google Scholar]
- FORECOS. Available online: https://forecos.cl/temas/humedales/ruta/ (accessed on 15 May 2021).
- Correa, H.; Blanco-Wells, G.; Barrena, J.; Tacón, A. Self-organizing processes in urban green commons. The case of the Angachilla wetland, Valdivia-Chile. Int. J. Commons 2018, 12, 573–595. [Google Scholar] [CrossRef] [Green Version]
- CIREN. Estudio Agrológico X Región; Publicación CIREN N◦ 123; Natural Resources Information Center CIREN: Providencia, Santiago, 2003. [Google Scholar]
- Luzio, W. Suelos de Chile; Universidad de Chile: Santiago, Chile, 2010. [Google Scholar]
- Hartge, R.; Horn, R. Die physikalische Untersuchung von B¨oden. In Praxis Messmethoden Auswertung, 4. Vollst; Schweizerbart Science Publishers: Stuttgar, Germany, 2009. [Google Scholar]
- Forsythe, W. Física De Suelos: Manual De Laboratorio; IICA: San José, Costa Rica, 1974. [Google Scholar]
- Dörner, J.; Horn, R. Anisotropy of pore functions in structured stagnic luvisols in the weichselian moraine region in N Germany. J. Plant Nutr. Soil Sci. 2006, 169, 213–220. [Google Scholar] [CrossRef]
- Day, P.R. Particle fractionation and particle size analysis. Methods Soil Anal. 1965, 9, 545–567. [Google Scholar]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.L.; Flores, H.; Neaman, A. Recommended Methods of Analysis for Soils in Chile; Serie de Actas INIA no. 34; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006. [Google Scholar]
- Radojevic, M.; Bashkin, V. Practical Environmental Analysis; Royal Society of Chemistry: London, UK, 1999. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.L. Métodos de Análisis Recomendados Para Suelos de Chilenos; Sociedad Chilena de la Ciencia del Suelo: Santiago, Chile, 2004. [Google Scholar]
- Sadzawka, A. M Todos de Análisis de Suelos; Serie La Platina N 16; Instituto de Investigaciones Agropecuarias, Estación Experimental La Platina: Santiago, Chile, 1990. [Google Scholar]
- Campos, M.; Rilling, J.I.; Acuña, J.J.; Valenzuela, T.; Larama, G.; Peña-cortés, F.; Ogram, A.; Jaisi, D.P.; Jorquera, M.A. Spatiotemporal variations and relationships of phosphorus, phosphomonoesterases, and bacterial communities in sediments from two Chilean rivers. Sci. Total Environ. 2021, 776, 145782. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahti, L.; Shetty, S. Tools for Microbiome Analysis in R. Microbiome Package Version 1.16.0. Bioconductor, 2017. Available online: http://microbiome.github.com/microbiome (accessed on 10 February 2022).
- Xu, S.; Yu, G. MicrobiotaProcess: An R Package for Analysis, Visualization and Biomarker Discovery of Microbiome. R Package Version 1.6.2. 2021. Available online: https://github.com/YuLab-SMU/MicrobiotaProcess/ (accessed on 10 February 2022).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Whelan, J.; Russell, N.B.; Whelan, M. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 2003, 278, 261–269. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 10 February 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 February 2022).
- Dec, D.; Dörner, J.; Balocchi, O. Temporal and spatial variability of structure dependent properties of a volcanic ash soil under pasture in southern Chile. Chil. J. Agric. Res. 2011, 71, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Jost, E.; Schönhart, M.; Skalský, R.; Balkovič, J.; Schmid, E.; Mitter, H. Dynamic soil functions assessment employing land use and climate scenarios at regional scale. J. Environ. Manag. 2021, 287, 112318. [Google Scholar] [CrossRef]
- Clunes, J.; Dörner, J.; Pinochet, D. How does the functionality of the pore system affects inorganic nitrogen storage in volcanic ash soils? Soil Tillage Res. 2010, 205, 104802. [Google Scholar] [CrossRef]
- Matus, F.; Garrido, E.; Sepúlveda, N.; Cárcamo, I.; Panichini, M.; Zagal, E. Relationship between extractable Al and organic C in volcanic soils of Chile. Geoderma 2008, 148, 180–188. [Google Scholar] [CrossRef]
- García-Rodeja, E.; Nóvoa, J.C.; Pontevedra, X.; Martınez-Cortizas, A.; Buurman, P. Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 2004, 56, 155–183. [Google Scholar] [CrossRef]
- Haller, P.; Dec, D.; Zúñiga, F.; Thiers, O.; Ivelic-Sáez, J.; Horn, R.; Dörner, J. Efecto del estrés hidráulico y mecánico sobre la resistencia y resiliencia funcional del Sistema poroso de un Ñadi (Aquands) bajo distintos usos de suelo. Agro. Sur. 2015, 43, 41–52. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Change of shrinkage behavior of an Andisol in southern Chile: Effects of land use and wetting/drying cycles. Soil Tillage Res. 2009, 106, 45–53. [Google Scholar] [CrossRef]
- Zúñiga, F.; Dec, D.; Valle, S.; Thiers, O.; Paulino, L.; Martínez, O.; Seguel, O.; Casanova, M.; Pino, M.; Horn, R.; et al. The waterlogged volcanic ash soils of southern Chile. A review of the “Ñadi” soils. Catena 2019, 173, 99–113. [Google Scholar] [CrossRef]
- Yellick, A.H.; Jacob, D.L.; De Keyser, E.S.; Hargiss, C.L.; Meyers, L.M.; Ell, M.; Kissoon-Charles, L.T.; Otte, M.L. Multi-element composition of soils of seasonal wetlands across North Dakota, USA. Environ. Monit. Assess. 2016, 188, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, E.E.; McKee, G.A.; Bergstrom, R.; Burton, S.; Pallud, C.; Hubbard, R.M.; Kelly, E.F.; Rhoades, C.C.; Borch, T. Hydrogeomorphic controls on soil carbon composition in two classes of subalpine wetlands. Biogeochemistry 2019, 145, 161–175. [Google Scholar] [CrossRef]
- Dubeux, J.C., Jr.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Rokosch, A.E.; Bouchard, V.; Fennessy, S.; Dick, R. The use of soil parameters as indicators of quality in forested depressional wetlands. Wetlands 2009, 29, 666–677. [Google Scholar] [CrossRef]
- Werkmeister, C.; Jacob, D.L.; Cihacek, L.; Otte, M.L. Multi-element composition of prairie pothole wetland soils along depth profiles reflects past disturbance to a depth of at least one meter. Wetlands 2018, 38, 1245–1258. [Google Scholar] [CrossRef]
- Rodríguez, J.; Pinochet, D.; Matus, F. Fertilizaciόn de los Cultivos. Primera Edición; LOM Ediciones: Santiago, Chile, 2001. [Google Scholar]
- Dahlgren, R.A.; Saigusa, M.; Ugolini, F.C. The nature, properties and management of volcanic soils. Adv. Agron. 2004, 82, 113–182. [Google Scholar]
- Panichini, M.; Neculman, R.; Godoy, R.; Arancibia-Miranda, N.; Matus, F. Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. Geoderma 2017, 302, 76–88. [Google Scholar] [CrossRef]
- Cuevas, J.G.; Quiroz, M.; Dörner, J. Leaching of base cations from dairy slurry applied to an agricultural volcanic ash soil. J. Soil Sci. Plant Nutr. 2019, 19, 51–62. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 6, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Seybold, C.A.; Mausbach, M.J.; Karlen, D.L.; Rogers, H.H. Quanteification of soil quality. In Advances in Soil Science; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1996; p. 464. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Jorquera, M.A.; Maruyama, F.; Ogram, A.V.; Navarrete, O.U.; Lagos, L.M.; Inostroza, N.G.; Acuña, J.J.; Rilling, J.I.; de La Luz Mora, M. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments. Microb. Ecol. 2016, 72, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Lagos, L.M.; Navarrete, O.U.; Maruyama, F.; Crowley, D.E.; Cid, F.P.; Mora, M.L.; Jorquera, M.A. Bacterial community structure in rhizosphere microsites of ryegrass (Lolium perenne var. Nui) as revealed by pyrosequencing. Biol. Fertil. Soils 2014, 50, 1253–1266. [Google Scholar] [CrossRef]
- Lagos, L.M.; Acuña, J.J.; Maruyama, F.; Ogram, A.; de la Luz Mora, M.; Jorquera, M.A. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 2016, 52, 1007–1019. [Google Scholar] [CrossRef]
- Prasse, C.E.; Baldwin, A.H.; Yarwood, S.A. Site history and edaphic features override the influence of plant species on microbial communities in restored tidal freshwater wetlands. Appl. Environ. Microbiol. 2015, 81, 3482–3491. [Google Scholar] [CrossRef] [Green Version]
- Ilustre Municipalidad de Valdivia. Estudio Línea Base Catastro Humedales de la Comuna de Valdivia. Available online: https://www.munivaldivia.cl/web/repositoriodocumental/Catastro%20de%20Humedales%20Urbanos%20Valdivia%20-%20Parte%203.pdf (accessed on 10 February 2022).
- Nahlik, A.; Fennessy, M. Carbon storage in US wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.T.; Beja, O.; Taylor, L.T.; Delong, E.F. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ. Microbiol. 2001, 3, 323–331. [Google Scholar] [CrossRef]
- Rotthauwe, J.H.; Witzel, K.P.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [Green Version]
- Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 2006, 72, 5181–5189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Horizon (cm) | Soil Description of P1 |
---|---|
Hz1; 0–7 | Very dark brown (7.5 YR 2.5/2); silty loam; friable, plastic and adhesive; granular structure, moderate medium; fine and medium roots abundant; fine pores very abundant, coarse pores normal. Linear clear boundary. Worm presence. |
Hz2; 7–20 | Dark brown (7.5 YR 3/3); silty clay; friable, plastic and very adhesive; subangular, medium, moderate block structure; common fine and sparse medium roots; very abundant fine pores, coarse common. Linear clear boundary. Presence of burnt clay. |
Hz3; 20–33 | Very dark brown (7.5 YR 2.5/2); clayey; plastic and very adhesive; angular, moderate coarse blocks tending to angular, fine blocks; sparse fine and very fine roots; very abundant fine pores. Linear abrupt boundary. Charcoal present and visually very compacted. |
Hz4; 33–100+ | Dark gray (Gley 1 4/N); very fine sandy clay; plastic and very adhesive; massive; no roots; very abundant fine pores. Presence of fine gravels and charcoal. Water table present at 40 cm. |
Soil description of P4 | |
Hz1; 0–4 | Black (7.5 YR 2.5/1); silty clay loam; plastic and slightly adhesive; granular, fine weak structure; fine, medium and coarse roots abundant; fine pores very abundant, coarse pores common. Linear abrupt boundary. |
Hz2; 4–15 | Very dark greyish brown (10 YR 3/2); silty clay; very plastic and slightly adhesive; weak, coarse, angular block structure; abundant fine, medium and coarse roots; very abundant fine pores. Linear clear boundary. Presence of burnt clay. |
Hz3; 15–30 | Dark greyish brown (2.5 YR 4/2); very fine sandy clayey loam; plastic and adhesive; massive; common fine and medium roots; very abundant fine pores. Linear light boundary. Gleization with common oxidations. Water table present at 30 cm. |
Hz4; 30–100+ | Dark greenish grey (Gley 1 4/1); very fine sandy loam; plastic and very adhesive; massive; common fine and medium dead roots; very abundant fine pores. Presence of mottling. Gleization with mottling. |
P1 | P4 | |||||||
---|---|---|---|---|---|---|---|---|
Hz1 | Hz2 | Hz3 | Hz4 | Hz1 | Hz2 | Hz3 | Hz4 | |
Soil type parameters | ||||||||
SOM (%) | 17.0 ± 0.8 b | 9.6 ± 0.1 de | 8.6 ± 0.5 e | 3.1 ± 0.1 f | 36.2 ± 2.5 a | 13.9 ± 0.4 c | 11.2 ± 1.7 d | 8.3 ± 0.4 e |
pH NaF | 10.5 ± 0.1 e | 10.9 ± 0.0 b | 11.1 ± 0.0 a | 10.8 ± 0.0 c | 7.7 ± 0.1 f | 10.4 ± 0.0 e | 10.6 ± 0.0 d | 10.8 ± 0.0 c |
Ala (mg kg−1) | 1260.3 ± 33.6 a | 1132.4 ± 12.7 b | 1156.0 ± 58.9 ab | 674.2 ± 15.9 e | 277.0 ± 1.4 f | 892.1 ± 29.7 c | 776.2 ± 47.1 d | 717.0 ± 15.0 de |
Alp (%) | 2.9 ± 0.09 b | 3.3 ± 0.07 a | 3.3 ± 0.10 a | 1.4 ± 0.06 d | 0.8 ± 0.03 e | 1.7 ± 0.06 cd | 1.7 ± 0.01 c | 1.7 ± 0.15 c |
Alo (%) | 2.6 ± 0.04 a | 2.8 ± 0.17 a | 3.0 ± 0.17 a | 1.6 ± 0.66 b | 0.5 ± 0.07 c | 1.1 ± 0.01 bc | 1.2 ± 0.02 bc | 1.1 ± 0.08 bc |
Fep (%) | 1.1 ± 0.03 a | 1.1 ± 0.01 a | 0.9 ± 0.00 b | 0.1 ± 0.00 e | 0.4 ± 0.00 c | 0.3 ± 0.01 d | 0.4 ± 0.01 c | 0.2 ± 0.01 d |
Feo (%) | 1.2 ± 0.00 b | 1.4 ± 0.01 a | 1.1 ± 0.02 b | 0.2 ± 0.01 e | 0.6 ± 0.01 c | 0.4 ± 0.03 d | 0.6 ± 0.14 c | 0.5 ± 0.06 d |
Alo+1/2Feo | 3.2 ± 0.04 a | 3.5 ± 0.18 a | 3.5 ± 0.18 a | 1.7 ± 0.66 b | 0.8 ± 0.07 c | 1.3 ± 0.02 bc | 1.6 ± 0.09 b | 1.3 ± 0.05 bc |
pH H2O | 5.6 ± 0.02 c | 5.7 ± 0.03 b | 5.5 ± 0.06 cd | 6.0 ± 0.05 a | 4.8 ± 0.01 f | 5.1 ± 0.02 e | 5.4 ± 0.01 d | 5.6 ± 0.02 c |
pH CaCl2 | 4.7 ± 0.03 c | 4.9 ± 0.02 b | 5.1 ± 0.01 a | 5.1 ± 0.03 a | 4.2 ± 0.01 e | 4.3 ± 0.01 e | 4.4 ± 0.02 d | 4.5 ± 0.01 c |
SEB (cmolc kg−1) | 3.7 ± 0.22 | 2.0 ± 0.20 | 1.9 ± 0.02 | 3.0 ± 0.13 | 8.2 ± 0.38 | 6.6 ± 0.11 | 8.9 ± 0.20 | 8.1 ± 0.73 |
Al Sat (%) | 1.0 ± 0.14 | 1.6 ± 0.22 | 1.1 ± 0.23 | 0.7 ± 0.10 | 0.3 ± 0.01 | 2.9 ± 0. 22 | 1.8 ± 0.06 | 1.3 ± 0.05 |
Soil chemical properties | ||||||||
NO3 (mg kg−1) | 9.6 ± 3.98 b | 2.8 ± 2.10 c | 2.3 ± 0.40 c | 1.6 ± 0.81 c | 22.6 ± 1.76 a | 10.5 ± 0.7 b | 10.3 ± 2.14 b | 1.9 ± 0.81 c |
NH4 (mg kg−1) | 36.4 ± 3.70 b | 24.5 ± 4.37 c | 20.1 ± 6.31 c | 18.4 ± 2.25 c | 115.3 ± 0.81 a | 23.3 ± 4.50 c | 19.6 ± 1.85 c | 21.0 ± 2.10 c |
P-Olsen (mg kg −1) | 3.7 ± 0.22 c | 2.0 ± 0.20 e | 1.9 ± 0.02 e | 3.0 ± 0.13 d | 8.2 ± 0.38 a | 6.6 ± 0.11 b | 8.9 ± 0.20 a | 8.1 ± 0.73 a |
Exc K (cmolc kg−1) | 0.18 ± 0.03 b | 0.06 ± 0.00 cd | 0.04 ± 0.01 e | 0.04 ± 0.00 e | 0.57 ± 0.02 a | 0.15 ± 0.01 b | 0.07 ± 0.02 c | 0.05 ± 0.00 de |
Exc Mg (cmolc kg−1) | 1.92 ± 0.19 b | 0.35 ± 0.05 c | 0.21 ± 0.07 d | 1.69 ± 0.02 b | 11.86 ± 0.50 a | 1.55 ± 0.03 b | 1.53 ± 0.05 b | 1.60 ± 0.03 b |
Exc Na (cmolc kg−1) | 0.16 ± 0.02 d | 0.09 ± 0.00 e | 0.07 ± 0.00 f | 0.23 ± 0.00 bc | 0.60 ± 0.02 a | 0.26 ± 0.01 b | 0.23 ± 0.00 bc | 0.21 ± 0.01 c |
Exc Ca (cmolc kg−1) | 2.18 ± 0.08 b | 0.26 ± 0.05 c | 0.15 ± 0.07 c | 1.97 ± 0.04 b | 8.99 ± 0.11 a | 1.44 ± 0.67 b | 1.30 ± 0.09 b | 1.21 ± 0.03 b |
Exc Al (cmolc kg−1) | 0.04 ± 0.00 b | 0.01 ± 0.00 b | 0.01 ± 0.00 b | 0.03 ± 0.00 b | 0.06 ± 0.00 a | 0.10 ± 0.00 a | 0.06 ± 0.00 a | 0.04 ± 0.00 b |
Absolute Quantification (Gene Copy g−1 soil dw) | Relative Quantification | ||||
---|---|---|---|---|---|
Sites | 16S rRNA | amoA | nosZ | amoA | nosZ |
106) | 104) | (×105) | (×10−4) | (×10−1) | |
P1 | 12.8 ± 0.66 a | 1.08 ± 0.123 a | 2.6 ± 0.726 a | 8.43 ± 18.7 a | 20.3 ± 1.1 a |
P2 | 1.64 ± 0.704 a | 1.355 ± 0.416 a | 3 ± 0.852 a | 82.2 ± 59.2 b | 1.83 ± 1.21 b |
P3 | 0.229 ± 0.351 b | 0.0307 ± 0.0132 c | 1.03 ± 0.168 a | 13.4 ± 26.5 a | 4.5 ± 47 b |
P4 | 40.1 ± 12.0 c | 2.64 ± 0.392 b | 605 ± 146 b | 6.57 ± 3.27 a | 15.1 ± 1.22 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clunes, J.; Valle, S.; Dörner, J.; Campos, M.; Medina, J.; Zuern, S.; Lagos, L. Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance. Land 2022, 11, 394. https://doi.org/10.3390/land11030394
Clunes J, Valle S, Dörner J, Campos M, Medina J, Zuern S, Lagos L. Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance. Land. 2022; 11(3):394. https://doi.org/10.3390/land11030394
Chicago/Turabian StyleClunes, John, Susana Valle, Jose Dörner, Marco Campos, Jorge Medina, Sarah Zuern, and Lorena Lagos. 2022. "Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance" Land 11, no. 3: 394. https://doi.org/10.3390/land11030394
APA StyleClunes, J., Valle, S., Dörner, J., Campos, M., Medina, J., Zuern, S., & Lagos, L. (2022). Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance. Land, 11(3), 394. https://doi.org/10.3390/land11030394