Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China
Abstract
:1. Introduction
2. Theoretical Analysis Framework
2.1. Definition of High-Quality Agricultural Development
2.2. Impact Mechanism Analysis of RMT on HAD
2.2.1. Direct Effects of RMT on HAD
2.2.2. Spatial Spillover Effects of RMT on HAD
3. Research Data and Methods
3.1. Data and Variables
3.1.1. Key Explanatory Variable
3.1.2. Explained Variable
3.1.3. Control Variables
- Industrialization ratio and urbanization ratio (industrialization and urbanization). The development of industrialization and urbanization could optimize the regional industrial structure and improve the per capita income level of residents, which may directly affect high-quality agricultural development. Added value of the industrial sector and proportion of urban population are used to measure industrialization and urbanization, respectively.
- Economic development level (economic). The region of high-level economic development always has a more perfect agricultural service system, which could lead to the rational allocation of agricultural production factors and has an impact on high-quality agricultural development.
- Government intervention (gov). This is represented by the ratio of local government’s public financial expenditure to GDP [9]. Economic performance competition is an important reason to encourage local governments to intervene in economic development in China; local government’s policy of farmland transfer and large-scale management may affect high-quality agricultural development.
3.2. Methods
3.2.1. Projection Pursuit Model
3.2.2. Panel Data Model
3.2.3. Spatial Econometric Model
4. Results and Discussions
4.1. Temporal Evolution and Spatial Pattern of RMT
4.2. Temporal Evolution and Spatial Pattern of HAD
4.3. Spatial Correlation Analysis
4.4. Model Results Analysis
4.5. Direct Effects and Indirect Effects
5. Discussion
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Grainger, A. National Land Use Morphology: Patterns and Possibilities. Geography 1995, 80, 235–245. [Google Scholar]
- Long, H.; Li, T. Analysis of the Coupling of Farmland and Rural Housing Land Transition in China. Acta Geogr. Sin. 2012, 67, 201–210. [Google Scholar]
- Popp, A.; Rose, S.K.; Calvin, K.; Van Vuuren, D.P.; Dietrich, J.P.; Wise, M.; Stehfest, E.; Humpenöder, F.; Kyle, P.; Van Vliet, J.; et al. Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 2014, 123, 495–509. [Google Scholar] [CrossRef]
- Skog, K.L.; Steinnes, M. How do centrality, population growth and urban sprawl impact farmland conversion in Norway? Land Use Policy 2016, 59, 185–196. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Song, X.; Wu, Z.; Ouyang, Z. Route of cultivated land transition research. Geogr. Res.-Aust. 2014, 33, 403–413. [Google Scholar]
- Chen, K.; Long, H.; Liao, L.; Tu, S.; Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, J.; Gao, Y.; Cai, W.; Zhang, F. Land use transition of mountainous rural areas in China. Acta Geogr. Sin. 2018, 73, 503–517. [Google Scholar]
- Tang, Y.; Lu, X.; Wang, M.; Jiang, B.; Chen, D.; Ge, K. Assessing the threshold effects of road infrastructure construction on farmland use transition: An empirical study in China. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Long, H.; Tu, S.; Zhang, Y.; Zheng, Y. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. A framework of multi-disciplinary comprehensive research on recessive farmland transition in China. Acta Geogr. Sin. 2018, 73, 1226–1241. [Google Scholar]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization Outsourcing Clusters and Division of Labor in Chinese Agriculture. China Econ. Rev. 2015, 43, 184–195. [Google Scholar] [CrossRef]
- Feng, S.; Heerink, N.; Ruben, R.; Qu, F. Land rental market, off-farm employment and agricultural production in Southeast China: A plot-level case study. China Econ. Rev. 2010, 21, 598–606. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, X.; Yi, J.; Wang, H.; Zhang, X.; Zheng, W. Evaluating the spatial spillover effect of farmland use transition on grain production–An empirical study in Hubei Province, China. Ecol. Indic. 2021, 125, 107478. [Google Scholar] [CrossRef]
- Alonso-Carrera, J.; Raurich, X. Labor mobility, structural change and economic growth. J. Macroecon. 2018, 56, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Mlachila, M.; Tapsoba, R.; Tapsoba, S.J.A. A Quality of Growth Index for Developing Countries: A Proposal. Soc. Indic. Res. 2017, 134, 675–710. [Google Scholar] [CrossRef]
- Alwyn, Y. Gold into Base Metals: Productivity Growth in the People’s Republic of China during the Reform Period. J. Polit. Econ. 2003, 111, 1220–1261. [Google Scholar]
- Hoang, V.; Coelli, T. Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach. J. Environ. Econ. Manag. 2011, 62, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Dias Avila, A.F.; Evenson, R.E. Chapter 72 Total Factor Productivity Growth in Agriculture: The Role of Technological Capital. In Handbook of Agricultural Economics; Elsevier: Amsterdam, The Netherlands, 2010; Volume 4, pp. 3769–3822. [Google Scholar]
- Ghatak, M.; Roy, S. Land reform and agricultural productivity in India: A review of the evidence. Oxf. Rev. Econ. Pol. 2007, 23, 251–269. [Google Scholar] [CrossRef]
- Lawry, S.; Samii, C.; Hall, R.; Leopold, A.; Hornby, D.; Mtero, F. The impact of land property rights interventions on investment and agricultural productivity in developing countries: A systematic review. J. Dev. Effect. 2017, 9, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Baldos, U.L.C.; Viens, F.G.; Hertel, T.W.; Fuglie, K.O. R&D Spending, Knowledge Capital, and Agricultural Productivity Growth: A Bayesian Approach. Am. J. Agric. Econ. 2018, 101, 291–310. [Google Scholar]
- Martinez, M.; Mlachila, M. The Quality of the Recent High-Growth Episode in Sub-Saharan Africa; International Monetary Fund: Washington, DC, USA, 2013. [Google Scholar]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Bartkowiak, A.; Bartkowiak, P. Technical and Technological Progress in the Context of Sustainable Development of Agriculture in Poland. Procedia Eng. 2017, 182, 66–75. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Thapa, G.B. Agricultural sustainability assessment at provincial level in Pakistan. Land Use Policy 2017, 68, 492–502. [Google Scholar] [CrossRef]
- James, L.; Robert, K.P. Introduction to Spatial Econometrics + Reference; CRC Press/Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar]
- Ertur, C.; Koch, W. Growth, technological interdependence and spatial externalities: Theory and evidence. J. Appl. Economet. 2007, 22, 1033–1062. [Google Scholar] [CrossRef] [Green Version]
- Thang, T.T.; Thang, T.T.; Pham, T.S.H.; Barnes, B.R. Spatial Spillover Effects from Foreign Direct Investment in Vietnam. J. Dev. Stud. 2016, 52, 1431–1445. [Google Scholar] [CrossRef]
- Chen, X.; Shao, S.; Tian, Z.; Xie, Z.; Yin, P. Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Li, M.; Zhang, M.; Du, C.; Chen, Y. Study on the spatial spillover effects of cement production on air pollution in China. Sci. Total Environ. 2020, 748, 141421. [Google Scholar] [CrossRef] [PubMed]
- Fragoso Januário, J.; Costa, Á.; Oliveira Cruz, C.; Miranda Sarmento, J.; Faria E Sousa, V. Transport infrastructure, accessibility, and spillover effects: An empirical analysis of the Portuguese real estate market from 2000 to 2018. Res. Transp. Econ. 2021, 90, 101130. [Google Scholar] [CrossRef]
- Kumar, K.S.K. Climate sensitivity of Indian agriculture: Do spatial effects matter? Camb. J. Reg. Econ. Soc. 2011, 4, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Tang, Y.; Yi, J.; Jiang, X. Study on the Impact of Cultivated Land Use Transition on Agricultural Economic Growth based on Spatial Econometric Model. China Land Sci. 2019, 33, 53–61. [Google Scholar]
- Mei, L.; Chen, Z. The Convergence Analysis of Regional Growth Differences in China: The Perspective of the Quality of Economic Growth*. J. Serv. Sci. Manag. 2016, 9, 453–476. [Google Scholar] [CrossRef] [Green Version]
- Ren, B. Theoretical Interpretation and Practical Orientation of China’s Economy from High Speed Growth to High Quality Development. Acad. Mon. 2018, 50, 66–74. [Google Scholar]
- Jin, B. Study on the “High-Quality Development” Economics. China Ind. Econ. 2018, 1, 163–180. [Google Scholar]
- Aker, J.C.; Ghosh, I.; Burrell, J. The promise (and pitfalls) of ICT for agriculture initiatives. Agric. Econ. Blackwell 2016, 47, 35–48. [Google Scholar] [CrossRef]
- Rosenberg, N. Science, Invention and Economic Growth. Econ. J. 1974, 84, 90–108. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Qiao, W.; Peng, C. Measuring agricultural total factor productivity in China: Pattern and drivers over the period of 1978–2016. Aust. J. Agric. Resour. Econ. 2019, 64, 82–103. [Google Scholar] [CrossRef]
- Li, G. On Transformation of Ways in Driving China’s Agricultural Development. China Rural. Econ. 2017, 7, 2–14. [Google Scholar]
- Holden, S.T.; Deininger, K.; Ghebru, H. Impact of Land Certification on Land Rental Market Participation in Tigray Region, Northern Ethiopia. In Proceedings of the Nordic Development Economics Conference, Copenhagen, Denmark, 18–19 June 2007. [Google Scholar]
- Jin, S.; Jayne, T.S. Land Rental Markets in Kenya: Implications for Efficiency, Equity, Household Income, and Poverty. Land Econ. 2013, 89, 246–271. [Google Scholar] [CrossRef]
- Zhang, S. Land transfer and agricultural modernization. Manag World. 2010, 7, 66–85. [Google Scholar]
- Besley, T. Property Rights and Investment Incentives: Theory and Evidence from Ghana. J. Polit. Econ. 1995, 103, 903–937. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Feeny, D. Land Tenure and Property Rights: Theory and Implications for Development Policy. World Bank Econ. Rev. 1991, 5, 135–153. [Google Scholar] [CrossRef]
- Kong, X.; Li, C.; Zhao, J.; Wang, H.; Tan, M.; Li, T.; Zhang, Q. Method and empirical research on the realization degree of arable land production capacity at town level. Trans. Chin. Soc. Agric. Eng. 2010, 26, 345–351. [Google Scholar]
- Ge, D.; Long, H.; Qiao, W.; Wang, Z.; Sun, D.; Yang, R. Effects of rural–urban migration on agricultural transformation: A case of Yucheng City, China. J. Rural Stud. 2020, 76, 85–95. [Google Scholar] [CrossRef]
- Cao, Z.; Dawson, R. Modeling circulation function in agroecosystems. Ecol. Model. 2005, 181, 557–565. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, W.; You, L.; Zhu, T.; van Vliet, J.; Verburg, P.H.; Liu, Z.; Li, Z.; Yang, P.; Zhou, Q.; et al. Assessing the harvested area gap in China. Agric. Syst. 2017, 153, 212–220. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure; Allen & Unwin: London, UK, 1965. [Google Scholar]
- Friedman, J.H.; Tukey, J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 1974, 23, 881–890. [Google Scholar] [CrossRef]
- Cantos, P.; Gumbau Albert, M.; Maudos, J. Transport infrastructures, spillover effects and regional growth: Evidence of the Spanish case. Transp. Rev. 2005, 25, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Li, L.; Tian, Y.; Zhang, G.; Zhang, H. Spatial weights matrix construction and econimoic space gravitational effects analysis. Syst. Eng.-Theory Pract. 2015, 35, 1918–1927. [Google Scholar]
- LeSage, J.; Kelley, P.R. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Lu, Q.; Liang, F.; Bi, X.; Duffy, R.; Zhao, Z. Effects of urbanization and industrialization on agricultural land use in Shandong Peninsula of China. Ecol. Indic. 2011, 11, 1710–1714. [Google Scholar] [CrossRef]
- Li, T.; Cheng, S.; Ni, L.; Qian, J. The consumption effects of urbanization: Evidence from China. China J. Popul. Sci. 2013, 23, 19–27. [Google Scholar]
- Ndikumana, L. Distributional conflict, the state and peace building in Burundi. Round Table 2005, 94, 413–427. [Google Scholar] [CrossRef]
- Lu, X.H.; Wang, H.; Tang, Y.F.; Jiang, X. Study on the Spatial Spillover Effect of the Transformation of Farmland Utilization on Farmers’ Income in Hubei Province. Resour. Environ. Yangtze Basin 2021, 30, 1757–1767. [Google Scholar]
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | |
---|---|---|---|---|---|
constant | −3.07 *** (0.16) | −2.45 *** (0.07) | −0.71 *** (0.07) | −0.10 *** (0.03) | −0.07 (0.06) |
RMT | 0.09 * (0.05) | 0.05 * (0.02) | 0.07 *** (0.02) | 0.04 *** (0.01) | 0.03 * (0.02) |
urbanization | 0.91 *** (0.25) | 0.26 ** (0.12) | 0.39 *** (0.10) | 0.18 *** (0.05) | 0.08 (0.10) |
industrialization | −0.72 *** (0.12) | −0.45 (1.27) | −0.33 *** (0.05) | −0.07 *** (0.02) | 0.04 (0.04) |
economic | 0.85 *** (0.07) | 0.65 *** (0.03) | 0.16 *** (0.03) | 0.05 *** (0.01) | 0.06 ** (0.03) |
gov | 0.36 (0.30) | 0.13 (0.14) | 0.25 (0.12) | −0.15 ** (0.06) | −0.13 (0.12) |
R2 | 0.68 | 0.78 | 0.65 | 0.63 | 0.62 |
Model (6) | Model (7) | Model (8) | Model (9) | Model (10) | |
---|---|---|---|---|---|
RMT | 0.26 *** (4.79) | 0.18 *** (2.71) | 0.15 *** (2.09) | 0.13 *** (2.33) | 0.57 *** (10.68) |
industrialization | 0.10 *** (2.98) | 0.05 *** (2.99) | 0.10 *** (7.99) | 0.03 *** (3.38) | 0.04 *** (2.70) |
urbanization | −0.17 (−1.16) | 0.10 (1.27) | −0.44 *** (−7.66) | 0.12 ** (2.71) | 0.05 (0.69) |
economic | 0.71 *** (3.41) | −0.14 (−1.23) | 0.11 (1.46) | 0.09 (1.58) | 0.67 *** (7.34) |
gov | 0.79 *** (6.81) | 0.57 *** (8.97) | 0.41 *** (9.57) | 0.08 ** (2.48) | −0.22 (−4.37) |
w × RMT | −0.74 ** (−2.28) | −0.41 ** (−2.33) | −0.01 (−0.11) | −0.18 ** (−1.99) | −0.32 (−2.26) |
w × industrialization | 0.86 *** (8.26) | 0.22 *** (3.96) | 0.09 ** (2.28) | 0.20 *** (7.21) | 0.41 *** (9.02) |
w × urbanization | 0.76 (0.87) | −0.29 (−0.62) | −1.00 *** (−3.04) | 0.29 (1.20) | −0.30 (−0.78) |
w × economic | 2.32 *** (2.63) | −1.39 *** (−2.92) | 1.09 *** (3.53) | −0.38 (−1.58) | 2.84 *** (7.29) |
w × gov | −0.73 (−1.25) | 0.87 *** (2.73) | −0.70 *** (−3.20) | 0.03 (0.18) | −0.77 (−3.02) |
R2 | 6.29 *** (4.19) | 1.42 * (1.73) | 2.70 *** (4.79) | −0.16 (−0.38) | 2.94 *** (4.47) |
Variables | HAD | HAD_Driving | HAD_Efficient | HAD_Industry | HAD_Sustainability | |
---|---|---|---|---|---|---|
Direct effects | RMT | 0.13 *** (4.56) | 0.06 ** (2.70) | 0.11 *** (7.88) | 0.08 *** (4.23) | 0.05 *** (1.40) |
industrialization | −0.17 (−1.01) | 0.11 ** (2.16) | −0.44 *** (−7.49) | 0.12 ** (2.76) | −0.01 (−0.14) | |
urbanization | 0.75 *** (3.54) | −0.12 (−1.07) | 0.13 ** (2.23) | 0.07 (1.03) | 0.89 *** (3.02) | |
economic | 0.77 *** (6.75) | 0.57 *** (8.31) | 0.40 *** (9.62) | 0.09 ** (2.53) | −0.28 *** (−5.02) | |
gov | −0.60 (−1.86) | −0.38 * (−2.04) | 0.03 (0.15) | −0.19 * (−1.72) | −0.16 (−1.16) | |
Indirect effects | RMT | 1.22 *** (6.53) | 0.27 *** (4.00) | 0.11 ** (2.57) | 0.25 *** (6.40) | 0.85 *** (2.19) |
industrialization | 0.99 (0.91) | −0.32 (−0.55) | −1.17 *** (−3.04) | 0.35 (1.08) | −0.97 (−1.04) | |
urbanization | 3.60 *** (3.12) | −1.71 *** (3.03) | 1.33 *** (3.42) | −0.56 * (−1.77) | 2.75 *** (3.25) | |
economic | −0.79 (−1.07) | 1.18 ** (2.75) | −0.77 *** (−2.78) | 0.13 (0.58) | −1.66 *** (−3.61) | |
gov | 8.01 *** (3.79) | 1.81 ** (2.11) | 3.19 *** (4.81) | −0.27 (−0.44) | 2.95 *** (2.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Li, Z.; Wang, H.; Tang, Y.; Hu, B.; Gong, M.; Li, Y. Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China. Land 2022, 11, 435. https://doi.org/10.3390/land11030435
Lu X, Li Z, Wang H, Tang Y, Hu B, Gong M, Li Y. Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China. Land. 2022; 11(3):435. https://doi.org/10.3390/land11030435
Chicago/Turabian StyleLu, Xinhai, Zhoumi Li, Hongzheng Wang, Yifeng Tang, Bixia Hu, Mingyue Gong, and Yulong Li. 2022. "Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China" Land 11, no. 3: 435. https://doi.org/10.3390/land11030435
APA StyleLu, X., Li, Z., Wang, H., Tang, Y., Hu, B., Gong, M., & Li, Y. (2022). Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China. Land, 11(3), 435. https://doi.org/10.3390/land11030435