Factors Affecting Wetland Loss: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Information Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Research on the African Continent
3.2. Research in the American Continent
3.3. Research in the Asian Continent
Country | Site and Type of Wetland or Flooded Area | Affectation Time (Years) | Incident Factor in Vegetation Loss and Sequestration | Loss and Sequestration Indicator | Affectation Percentage | Author |
---|---|---|---|---|---|---|
China | Yellow River | 1990–2015 | Urbanization | Land Use Cover Change LUCC | 15 | [17] |
China | Xiamen Coast Wetlands | N.A. | Urbanization, Population Growth | Vegetation Loss | N.A. | [96] |
China | Mangroves Northeast Coast Hainan Island | 1960– | Aquaculture | Vegetation Loss | 73 | [97] |
China | Xincun Bay, Hainan Island | N.A. | Aquaculture | Eutrophication | N.A. | [98] |
China | Shanyutan Swamp, Minjiang River Estuary | 19th Century | Aquaculture, Agriculture and Wastewater | Carbon Mineralization | N.A. | [99] |
China | Sanjiang Plain | Last 50 years | Agriculture | Vegetation Loss | N.A. | [100] |
China | Liaoche Rivel Delta | N.A. | Agriculture, Aquaculture, Oil Exploitation, Forestry, Industrial Construction | Vegetation Loss | N.A. | [101] |
China | Daya Bay | Last Decades. | Domestic, Industrial, Agricultural and Aquacultural Waste Water. | Eutrophication | N.A. | [102] |
China | North Hangzhou Bay | Last Years | Urbanization, Agriculture and Roads | Vegetation Loss. | N.A. | [103] |
China | Shenzhen Bay | N.A. | Microplastics | Heavy and Organic Metal Pollution | N.A. | [104] |
China | Yellow River Delta, Shandong Province | Last Century | Agricultural Fertilization and Fossil Fuel Combustion | Plant Growing. | [105] | |
China | Chongming Island, Yangtze Estuary | Two Decades | Breakwater Construction Agricultural Use | Puddling below Ground Level (30 cm) | N.A. | [106] |
China | Zhangjiang Estuary | N.A. | Shrimp Aquaculture | Variation of Mangrove Height by Nutrients | N.A. | [107] |
China | Poyang Lake, Yangtze River | Last Decades | Climate change and intensive human activities | Loss of Water Level, Change in Vegetation | N.A. | [108] |
China | Northeast | Last Centuries | Agriculture | Vegetation Loss | N.A. | [109] |
China | Hangzhou Bay | 2000, 2010 | Industry and urbanization | Economic Development | 35.81, 15.19 | [110] |
China | Jiaozhou Bay | N.A. | Aquaculture | High Alkalinity and Salinity | N.A. | [111] |
China | Bohai Bay | 1979–2014 | Urbanization and agriculture | Economic Development | N.A. | [112] |
China | Heilongjiang, Jilin and Liaoning Provinces | 50 | Climate Change | Desiccation | N.A. | [113] |
China | Yangtze River | N.A. | Waste water | Decreasing Biomass | N.A. | [114] |
China | Sanjiang Plain | 50 | Agriculture | Drainage | N.A. | [115] |
China | Yancheng Natural National Reserve | 1988–2006 | Agriculture, aquaculture urbanization | Landscape Fragmentation | N.A. | [116] |
China | Baiyangdian Freshwater Wetland | 1970– | Reservoir Construction | Wetland Drying | N.A. | [117] |
Thailand | Phang-nga Bay Phuket Province | Variable | Mining, Agriculture, Aquaculture and Urbanization | Change in Use | N.A. | [118] |
Saudi Arabia | Pérsian Gulf | Last Century | Oil Industry, Urbanization, Population Growth | Vegetation Loss | 90 | [119] |
Korea | Marshes Mud Flat | 1987– | Industry | Pressure due to Development | 22 | [120] |
Korea | Seagrasses Korea Peninsula | Last two or three decades | Construction of Levees, Urbanization and Industrialization | Vegetation Loss | N.A. | [121] |
India | Coastal zone Cambay Gulf, Gujarat | N.A. | Industry, Aquaculture, Urbanization and Coastal Erosion | Vegetation Loss | N.A. | [122] |
India | Lake wetlands University of Kalyani West Bengal. | N.A. | Industrial Waste Water | Eutrophication | N.A. | [123] |
India | Kerala State Coastal Mangroves | Last 50 years | Aquaculture and Coastal Erosion | Vegetation Loss | N.A. | [124] |
India | Chilika brackish water lagoon | N.A. | Nitrogen Fertilizers | Eutrophication | N.A. | [125] |
India | Kannur, Kerala, and kunhimangalam | Currently | Agriculture, Aquaculture, Urbanization, Roads | Vegetation Loss. | N.A. | [126] |
India | Kodungallur-Azhikode Estuary | N.A. | Aquaculture y Agriculture | Organic and Inorganic Waste. | N.A. | [127] |
Malaysia | Kalimantan indoor bog, Borneo | Last Decades | Fires and Drainage | Vegetation Loss | N.A. | [128] |
3.4. Research on the European Continent
3.5. Research in the Oceania/Australia Continent
3.6. Incident Factors and Effective Losses Globally
- Vegetation loss;
- Eutrophication by wastewater.
- Oil spills;
- Salinity;
- Fires;
- Sea level.
Future Lines of Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Spatial variation of above-ground carbon storage in temperate coastal wetlands. Estuar. Coast. Shelf Sci. 2018, 210, 55–67. [Google Scholar] [CrossRef]
- Gallant, K.; Withey, P.; Risk, D.; van Kooten, G.C.; Spafford, L. Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands. Ecol. Econ. 2020, 171, 106619. [Google Scholar] [CrossRef]
- Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. J. Environ. Manag. 2019, 247, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.C.; Gavier-Pizarro, G.I. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef]
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Mander, Ü. Wetlands and carbon revisited. Ecol. Eng. 2018, 114, 1–6. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Li, X.; Tian, C. Soil organic carbon changes following wetland restoration: A global meta-analysis. Geoderma 2019, 353, 89–96. [Google Scholar] [CrossRef]
- Huang, C.; Yuan, C.; Yang, W.; Yang, L. Temporal variations of greenhouse gas emissions and carbon sequestration and stock from a tidal constructed mangrove wetland. Mar. Pollut. Bull. 2019, 149, 110568. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.K.; Bhomia, R.K. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE 2017, 12, e0187749. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 2020, 748, 141343. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Zhu, X.; Cao, K.; Feng, L. Integrative assessment and management implications on ecosystem services loss of coastal wetlands due to reclamation. J. Clean. Prod. 2017, 163, S101–S112. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, S.; Jiang, Z.; Wu, Y.; Cui, L.; Huang, X.; Macreadie, P.I. Nitrogen purification potential limited by nitrite reduction process in coastal eutrophic wetlands. Sci. Total Environ. 2019, 694, 133702. [Google Scholar] [CrossRef] [PubMed]
- Marín-Muñiz, J.L.; Hernández, M.E.; Moreno-Casasola, P. Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, Mexico. Plant Soil 2014, 378, 189–203. [Google Scholar] [CrossRef]
- Liu, H.; Yi, Y.; Yue, Y.; Cui, B. Reducing the likelihood of carbon loss from wetlands by improving the spatial connections between high carbon patches. J. Clean. Prod. 2020, 267, 121819. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köchy, M.; Hiederer, R.; Freibauer, A. Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 2015, 1, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Villa, J.A.; Bernal, B. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework. Ecol. Eng. 2018, 114, 115–128. [Google Scholar] [CrossRef]
- Cui, X.; Liang, J.; Lu, W.; Chen, H.; Liu, F.; Lin, G.; Xu, F.; Luo, Y.; Lin, G. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For. Meteorol. 2018, 249, 71–80. [Google Scholar] [CrossRef]
- Lavery, P.S.; Mateo, M.-Á.; Serrano, O.; Rozaimi, M. Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS ONE 2013, 8, e73748. [Google Scholar] [CrossRef] [Green Version]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 55002. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry 2013, 115, 77–93. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, G.; Cao, S.; Zhang, X.; Zhang, J.; Han, G. Dynamic assessment of the value of vegetation carbon fixation and oxygen release services in Qinghai Lake basin. Acta Ecol. Sin. 2017, 37, 79–84. [Google Scholar] [CrossRef]
- Von Uexkull, N.; Buhaug, H. Security implications of climate change: A decade of scientific progress. J. Peace Res. 2021, 58, 3–17. [Google Scholar] [CrossRef]
- Lang’at, J.K.S.; Kairo, J.G.; Mencuccini, M.; Bouillon, S.; Skov, M.W.; Waldron, S.; Huxham, M. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE 2014, 9, e107868. [Google Scholar] [CrossRef] [Green Version]
- Githaiga, M.N.; Kairo, J.G.; Gilpin, L.; Huxham, M. Carbon storage in the seagrass meadows of Gazi Bay, Kenya. PLoS ONE 2017, 12, e0177001. [Google Scholar] [CrossRef]
- Juma, G.A.; Magana, A.M.; Michael, G.N.; Kairo, J.G. Variation in Seagrass Carbon Stocks Between Tropical Estuarine and Marine Mangrove-Fringed Creeks. Front. Mar. Sci. 2020, 7, 696. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Abowaly, M.; Gad, A.A.; Abu Alkheir, A.; Elbehiry, F. Restoration and sequestration of carbon and nitrogen in the degraded northern coastal area in Nile Delta, Egypt for climate change mitigation. J. Coast Conserv. 2017, 21, 105–114. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H. Evaluation of carbon sequestration potentiality of Lake Burullus, Egypt to mitigate climate change Egypt. J. Aquat. Res. 2013, 39, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Ligate, E.J.; Chen, C.; Wu, C. Evaluation of tropical coastal land cover and land use changes and their impacts on ecosystem service values. Ecosyst. Health Sustain. 2018, 4, 188–204. [Google Scholar] [CrossRef] [Green Version]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.; Feliciano, E.; Trettin, C.; Shapiro, A.; Mangora, M.M. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 2019, 14, 25002. [Google Scholar] [CrossRef]
- Saunders, M.J.; Kansiime, F.; Jones, M.B. Agricultural encroachment: Implications for carbon sequestration in tropical African wetlands. Glob. Chang. Biol. Bioenergy 2012, 18, 1312–1321. [Google Scholar] [CrossRef]
- Were, D.; Kansiime, F.; Fetahi, T.; Hein, T. A natural tropical freshwater wetland is a better climate change mitigation option through soil organic carbon storage compared to a rice paddy wetland. SN Appl. Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Ellery, W.N.; Grenfell, S.E.; Grenfell, M.C.; Humphries, M.S.; Barnes, K.; Dahlberg, A.; Kindness, A. Peat formation in the context of the development of the Mkuze floodplain on the coastal plain of Maputaland, South Africa. Geomorphology 2012, 141–142, 11–20. [Google Scholar] [CrossRef]
- Torres, J.E. Africa’s Economy: 50 Years of Failed Policies]. Economia 2008. Available online: https://go.gale.com/ps/i.do?id=GALE%7CA351436991&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=17947634&p=IFME&sw=w&userGroupName=anon~b76f7591 (accessed on 12 December 2021).
- Quimbayo Ruiz, G.A. Territory, sustainability, and beyond: Latin American urbanization through a political ecology. Environ. Plan E Nat. Space 2020, 3, 786–809. [Google Scholar] [CrossRef]
- Delgado, R.; Eguino, H.; Lopes, A. (Eds.) Fiscal Policy and Climate Change: Recent Experiences of the Finance Ministries of Latin America and the Caribbean; Inter-American Development Bank (IDB): Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Ardón, M.; Helton, A.M.; Bernhardt, E.S. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry 2016, 127, 411–426. [Google Scholar] [CrossRef]
- Kassakian, J.; Jones, A.; Martinich, J.; Hudgens, D. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise. Environ. Manag. 2017, 59, 736–751. [Google Scholar] [CrossRef] [PubMed]
- St. Laurent, K.A.; Hribar, D.J.; Carlson, A.J.; Crawford, C.M.; Siok, D. Assessing coastal carbon variability in two Delaware tidal marshes. J. Coast. Conserv. 2020, 24, 65. [Google Scholar] [CrossRef]
- Greiner, J.T.; McGlathery, K.J.; Gunnell, J.; McKee, B.A. Seagrass Restoration Enhances “Blue Carbon” Sequestration in Coastal Waters. PLoS ONE 2013, 8, e72469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegel, J.B.; Bernhardt, E.; Swenson, J. Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing. PLoS ONE 2013, 8, e68251. [Google Scholar] [CrossRef] [PubMed]
- Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 2011, 45, 4390–4397. [Google Scholar] [CrossRef]
- Stralberg, D.; Brennan, M.; Callaway, J.C.; Wood, J.K.; Schile, L.M.; Jongsomjit, D.; Kelly, M.; Parker, V.T.; Crooks, S. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay. PLoS ONE 2011, 6, e27388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coverdale, T.C.; Brisson, C.P.; Young, E.W.; Yin, S.F.; Donnelly, J.P.; Bertness, M.D. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS ONE 2014, 9, e93296. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.B. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob. Chang. Biol. 2012, 18, 3615–3623. [Google Scholar] [CrossRef]
- Siciliano, D.; Wasson, K.; Potts, D.C.; Olsen, R.C. Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sens. Environ. 2008, 112, 4020–4033. [Google Scholar] [CrossRef] [Green Version]
- Hester, M.W.; Willis, J.M.; Baker, M.C. Oil spills in coastal wetlands. In Encyclopedia of the Anthropocene; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 5, pp. 67–76. [Google Scholar] [CrossRef]
- Yavitt, J.B.; Burtis, J.C.; Smemo, K.A.; Welsch, M. Plot-scale spatial variability of methane, respiration, and net nitrogen mineralization in muck-soil wetlands across a land use gradient. Geoderma 2018, 315, 11–19. [Google Scholar] [CrossRef]
- Craft, C.; Vymazal, J.; Kröpfelová, L. Carbon sequestration and nutrient accumulation in floodplain and depressional wetlands. Ecol. Eng. 2018, 114, 137–145. [Google Scholar] [CrossRef]
- Lane, R.R.; Mack, S.K.; Day, J.W.; Kempka, R.; Brady, L.J. Carbon Sequestration at a Forested Wetland Receiving Treated Municipal Effluent. Wetlands 2017, 37, 861–873. [Google Scholar] [CrossRef]
- Suir, G.M.; Sasser, C.E.; DeLaune, R.D.; Murray, E.O. Comparing carbon accumulation in restored and natural wetland soils of coastal Louisiana. Int. J. Sediment Res. 2019, 34, 600–607. [Google Scholar] [CrossRef]
- Haywood, B.J.; Hayes, M.P.; White, J.R.; Cook, R.L. Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Sci. Total Environ. 2020, 711, 135185. [Google Scholar] [CrossRef] [PubMed]
- Fennessy, M.S.; Wardrop, D.H.; Moon, J.B.; Wilson, S.; Craft, C. Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion. Ecol. Eng. 2018, 114, 129–136. [Google Scholar] [CrossRef]
- Hemes, K.S.; Chamberlain, S.D.; Eichelmann, E.; Knox, S.H.; Baldocchi, D.D. A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands. Geophys. Res. Lett. 2018, 45, 6081–6091. [Google Scholar] [CrossRef]
- Newman, S.; Osborne, T.Z.; Hagerthey, S.E.; Saunders, C.; Rutchey, K.; Schall, T.; Reddy, K.R. Drivers of landscape evolution: Multiple regimes and their influence on carbon sequestration in a sub-tropical peatland. Ecol. Monogr. 2017, 87, 578–599. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Hernandez, M.E. Landscape and climate change threats to wetlands of North and Central America. Aquat. Sci. 2013, 75, 133–149. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Laanbroek, H.J.; Rains, M.C.; Whigham, D.F. Effects of increased summer flooding on nitrogen dynamics in impounded mangroves. J. Environ. Manag. 2014, 139, 217–226. [Google Scholar] [CrossRef]
- Dontis, E.E.; Radabaugh, K.R.; Chappel, A.R.; Russo, C.E.; Moyer, R.P. Carbon Storage Increases with Site Age as Created Salt Marshes Transition to Mangrove Forests in Tampa Bay, Florida (USA). Estuaries Coast 2020, 43, 1470–1488. [Google Scholar] [CrossRef]
- Marchio, D.A.; Savarese, M.; Bovard, B.; Mitsch, W.J. Carbon sequestration and sedimentation in mangrove swamps influenced by hydrogeomorphic conditions and urbanization in Southwest Florida. Forest 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Vences Martínez, J.Á.; Sampedro Rosas, M.L.; Castillo Elías, B.; Olmos Martínez, E.; Juárez López, A.L.; Reyes Umaña, M. Affectation of mangrove by anthropogenic activities at sub-basin nuxco, Guerrero, Mexico. Mex. J. Agroecosystems 2016, 3, 163–174. Available online: http://ri.uagro.mx/handle/uagro/621 (accessed on 10 December 2021).
- Cerón, R.M.; Cerón, J.G.; Guerra, J.J.; Zavala, J.C.; Amador, L.E.; Endañu, E.; Moreno, G. Determination of the amount of carbon stored in a disturbed mangrove forest in Campeche, MexicoWIT Trans. Ecol. Environ. 2011, 144, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-González, C.; Fermán-Almada, J.L.; Moreno-Casasola, P.; Espejel, I. Scenarios of vulnerability in coastal municipalities of tropical Mexico: An analysis of wetland land use. Ocean Coast. Manag. 2014, 89, 11–19. [Google Scholar] [CrossRef]
- Berlanga-Robles, C.A.; Ruiz-Luna, A.; Bocco, G.; Vekerdy, Z. Spatial analysis of the impact of shrimp culture on the coastal wetlands on the Northern coast of Sinaloa, Mexico. Ocean Coast. Manag. 2011, 54, 535–543. [Google Scholar] [CrossRef]
- Campos, C.A.; Hernández, M.E.; Moreno-Casasola, P.; Cejudo Espinosa, E.; Robledo, R.A.; Infante Mata, D. Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. 2011, 56, 1388–1406. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, T.S.; Allison, M.A.; Zhao, J.; Li, X.; Comeaux, R.S.; Feagin, R.A.; Kulawardhana, R.W. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 2013, 119, 7–16. [Google Scholar] [CrossRef]
- Adame, M.F.; Santini, N.S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.; Guevara, M. Carbon tocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 2015, 12, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Gómez, J.G.; Lluch-Cota, S.E.; Rivera-Monroy, V.H.; Lluch-Cota, D.B.; Troyo-Diéguez, E.; Oechel, W.; Serviere-Zaragoza, E. Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico). For. Ecol. Manag. 2019, 442, 135–147. [Google Scholar] [CrossRef]
- Beach, T.; Luzzadder-Beach, S.; Terry, R.; Dunning, N.; Houston, S.; Garrison, T. Carbon isotopic ratios of wetland and terrace soil sequences in the Maya Lowlands of Belize and Guatemala. Catena 2011, 85, 109–118. [Google Scholar] [CrossRef]
- Bhomia, R.K.; Kauffman, J.B.; Mcfadden, T.N. Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetl. Ecol. Manag. 2016, 24, 187–201. [Google Scholar] [CrossRef]
- Rodríguez-Arias, C.E.; Silva Benavides, A.M. Los Humedales de la Quebrada Estero en San Ramón, Costa Rica: Importancia y estado actual. Posgrado Sociedad Revista Electrónica Sistema Estudios Posgrado 2017, 15, 13–26. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Tejada, J.; Nahlik, A.; Kohlmann, B.; Bernal, B.; Hernández, C.E. Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol. Eng. 2008, 34, 276–288. [Google Scholar] [CrossRef]
- Ramenzoni, V.C.; Besonen, M.R.; Yoskowitz, D.; Sánchez, V.V.; Rivero, A.R.; González-Díaz, P.; Méndez, A.F.; Escuela, D.B.; Ramos, I.H.; Hernández López, N.V.; et al. Transnational research for coastal wetlands conservation in a Cuba–US setting. Glob. Sustain. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rojas, J.; Moreno, F.; Quevedo, J.C.; Villa, J. Soil organic carbon stocks in fluvial and isolated tropical wetlands from Colombia. Catena 2019, 179, 139–148. [Google Scholar] [CrossRef]
- Blanco, J.F.; Estrada, E.A.; Ortiz, L.F.; Urrego, L.E. Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. ISRN Ecol. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ricaurte, L.F.; Olaya-Rodríguez, M.H.; Cepeda-Valencia, J.; Lara, D.; Arroyave-Suárez, J.; Max Finlayson, C.; Palomo, I. Future impacts of drivers of change on wetland ecosystem services in Colombia. Glob. Environ. Chang. 2017, 44, 158–169. [Google Scholar] [CrossRef]
- Palacios Peñaranda, M.L.; Cantera Kintz, J.R.; Peña Salamanca, E.J. Carbon stocks in mangrove forests of the Colombian Pacific. Estuar. Coast. Shelf Sci. 2019, 227, 106299. [Google Scholar] [CrossRef]
- Mateus, F.; Caicedo, Y. Effect of the Transformation of the Landscape on the Provision of the Ecosystem Service of Provision of Habitat of the Wetland “El Tunjo” (Bogotá-Colombia), from 1940 to 2014; University of Applied and Environmental Sciences: Bogotá, CO, USA, 2014; Available online: https://core.ac.uk/download/pdf/326431054.pdf (accessed on 15 December 2021).
- Ayala, K.; Torres, J. A Socio-Environmental Study of “El Pantanal” Wetland from the Technical University of Machala; Universidad Técnica de Machala: Machala, Ecuador, 2016; Available online: http://investigacion.utmachala.edu.ec/proceedings/index.php/utmach/article/view/50 (accessed on 27 November 2021).
- Zamora, A. Ecosystem Services in Coastal Wetlands from Peru; University of the South: Sewanee, TN, USA, 2019; Available online: https://repositorio.cientifica.edu.pe/handle/20.500.12805/1383 (accessed on 30 November 2021).
- Ghermandi, A.; Agard, J.; Nunes, P.A.L.D. Applying Geographic Information Systems to ecosystem services valuation and mapping in Trinidad and Tobago. Lett. Spat. Resour. Sci. 2018, 11, 289–306. [Google Scholar] [CrossRef]
- Ding, Y.; Cawley, K.M.; da Cunha, C.N.; Jaffé, R. Environmental dynamics of dissolved black carbon in wetlands. Biogeochemistry 2014, 119, 259–273. [Google Scholar] [CrossRef]
- Rovai, A.S.; Coelho-Jr, C.; de Almeida, R.; Cunha-Lignon, M.; Menghini, R.P.; Twilley, R.R.; Cintrón-Molero, G.; Schaeffer-Novelli, Y. Ecosystem-level carbon stocks and sequestration rates in mangroves in the Cananéia-Iguape lagoon estuarine system, southeastern Brazil. For. Ecol. Manag. 2021, 479, 118553. [Google Scholar] [CrossRef]
- Finkl, C.W.; Makowski, C. (Eds.) Coastal Wetlands: Alteration and Remediation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 159–186. [Google Scholar] [CrossRef] [Green Version]
- Lucas, C.M.; Schöngart, J.; Sheikh, P.; Wittmann, F.; Piedade, M.T.F.; McGrath, D.G. Effects of land-use and hydroperiod on aboveground biomass and productivity of secondary Amazonian floodplain forests. For. Ecol. Manag. 2014, 319, 116–127. [Google Scholar] [CrossRef]
- Dos Santos, F.B.; Ferreira, F.C.; Esteves, K.E. Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River Basin, Southeast Brazil). Environ. Biol. Fishes 2015, 98, 1895–1912. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Bezerra, L.E.A.; Matthews-Cascon, H. Aboveground carbon stock in a restored neotropical mangrove: Influence of management and brachyuran crab assemblage. Wetl. Ecol. Manag. 2019, 27, 223–242. [Google Scholar] [CrossRef]
- Portela, A.; Dos Santos, A.; De Lima, J.; Silveira Graudenz, G.; Silva Ruiz, M.; de Mahiques, M.M.; Lopes Figueira, R.C.; de Faria Alvim Wasserman, J.C. Management of Environmental Quality: An International Journal Article Information. 2011. Available online: http://repositorio.ipen.br/bitstream/handle/123456789/31131/26909.pdf?sequence=1&isAllowed=y (accessed on 2 December 2021).
- Lin, Q.; Yu, S. Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cumings, B.; Deyo, F.C. The Origins and Development of the Northeast Asian Political Economy: Industrial Sectors, Product Cycles, and Political Consequences. In The Political Economy of the New Asian Industrialism; Cornell University Press: Ithaca, NY, USA, 2019. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Unger, D.; Wu, Y.; Jennerjahn, T.C. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE hainan, tropical China. Cont. Shelf Res. 2013, 57, 92–104. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Pavao-Zuckerman, M. The dynamics of land-sea-scape carbon flow can reveal anthropogenic destruction and restoration of coastal carbon sequestration. Landsc. Ecol. 2021, 36, 1933–1949. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, S.; Zhang, J.; Wu, Y.; Zhao, C.; Lian, Z.; Huang, X. Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed. Plant Soil 2018, 426, 135–152. [Google Scholar] [CrossRef]
- Mou, X.; Liu, X.; Sun, Z.; Tong, C.; Huang, J.; Wan, S.; Wang, C.; Wen, B. Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary. Chin. Geogr. Sci. 2018, 28, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Bao, K.; Zhao, H.; Xing, W.; Lu, X.; McLaughlin, N.B.; Wang, G. Carbon Accumulation in Temperate Wetlands of Sanjiang Plain, Northeast China. Soil Sci. Soc. Am. J. 2011, 75, 2386–2397. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Song, X.; Wang, M.; Hu, Q.; Deng, C. Effects of reclamation on distribution of soil carbon and nitrogen in saline soil of the yellow river delta. Acta Pedol. Sin. 2018, 55, 1032–1041. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, S.; Laws, E.A.; He, L.; Yuan, H.; Ding, X.; Wang, J. Carbon burial records during the last ~40,000 years in sediments of the Liaohe Delta wetland, China. Estuar. Coast. Shelf Sci. 2019, 226, 106291. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, T.; Wu, W.; Zhou, Y.; Tian, B. Rapid risk assessment of wetland degradation and loss in low-lying coastal zone of Shanghai, China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 82–97. [Google Scholar] [CrossRef]
- Duan, J.; Han, J.; Cheung, S.G.; Chong, R.K.Y.; Lo, C.M.; Lee, F.W.F.; Xu, S.J.L.; Yang, Y.; Tam, N.F.; Zhou, H.C. How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China. Sci. Total Environ. 2021, 767, 144695. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Han, G.; Eller, F.; Xie, B.; Wang, J.; Wu, H.; Li, J.; Zhao, M. Nitrogen input in different chemical forms and levels stimulates soil organic carbon decomposition in a coastal wetland. Catena 2020, 194, 104672. [Google Scholar] [CrossRef]
- Zhong, Q.; Wang, K.; Nie, M.; Zhang, G.; Zhang, W.; Zhu, Y.; Fu, Y.; Zhang, Q.; Gao, Y. Responses of wetland soil carbon and nutrient pools and microbial activities after 7 years of experimental warming in the Yangtze Estuary. Ecol. Eng. 2019, 136, 68–78. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, Y.; Weng, Q.; Chen, L. Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland. ISPRS J. Photogramm. Remote Sens. 2019, 149, 146–156. [Google Scholar] [CrossRef]
- Mu, S.; Li, B.; Yao, J.; Yang, G.; Wan, R.; Xu, X. Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations. Sci. Total Environ. 2020, 725, 138096. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Deng, L.; Kim, D.G.; Huang, C.; Tian, K. Carbon budgets of wetland ecosystems in China. Glob. Chang. Biol. Bioenergy 2019, 25, 2061–2076. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xu, D.; Guo, P.; Wang, D.; Li, L.; Gao, J. Exploring variations of ecosystem service value in Hangzhou Bay Wetland, Eastern China. Ecosyst. Serv. 2019, 37, 100944. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Li, Y.; Kong, F.; Xi, M. Inorganic carbon sequestration and its mechanism of coastal saline-alkali wetlands in Jiaozhou Bay, China. Geoderma 2019, 351, 221–234. [Google Scholar] [CrossRef]
- Meng, W.; Feagin, R.A.; Hu, B.; He, M.; Li, H. The spatial distribution of blue carbon in the coastal wetlands of China. Estuar. Coast. Shelf Sci. 2019, 222, 13–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Craft, C.B.; Xue, Z.; Tong, S.; Lu, X. Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, Northeast China. Ecol. Indic. 2016, 70, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, L.; Fu, X.; Yan, J.; Wu, J.; Tsang, Y.; Le, Y.; Sun, Y. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways. Sci. Total Environ. 2016, 565, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, Z.; Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 2015, 82, 381–389. [Google Scholar] [CrossRef]
- Ke, C.Q.; Zhang, D.; Wang, F.Q.; Chen, S.X.; Schmullius, C.; Boerner, W.M.; Wang, H. Analyzing coastal wetland change in the Yancheng National Nature Reserve, China. Reg. Environ. Chang. 2011, 11, 161–173. [Google Scholar] [CrossRef]
- Dong, W.; Shu, J.; He, P.; Ma, G.; Dong, M. Study on the Carbon Storage and Fixation of Phramites autralis in Baiyangdian Demonstration Area. Procedia Environ. Sci. 2012, 13, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Gillis, L.G.; Ziegler, A.D.; Van Oevelen, D.; Cathalot, C.; Herman, P.M.J.; Wolters, J.W.; Bouma, T.J. Tiny is mighty: Seagrass beds have a large role in the export of organic material in the tropical coastal zone. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Cusack, M.; Saderne, V.; Arias-Ortiz, A.; Masqué, P.; Krishnakumar, P.K.; Rabaoui, L.; Qurban, M.A.; Qasem, A.M.; Prihartato, P.; Loughland, R.A.; et al. Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environ. Res. Lett. 2018, 13, 74007. [Google Scholar] [CrossRef]
- Byun, C.; Lee, S.H.; Kang, H. Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea. J. Ecol. Environ. 2019, 43, 8. [Google Scholar] [CrossRef]
- Sondak, C.F.A.; Chung, I.K. Potential blue carbon from coastal ecosystems in the Republic of Korea. Ocean Sci. 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Misra, A.; Balaji, R. Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India. Environ. Monit. Assess. 2015, 187, 461. [Google Scholar] [CrossRef]
- Jana, B.B.; Nandy, S.K.; Lahiri, S.; Bhakta, J.N.; Biswas, J.K.; Bag, S.K.; Ghosh, P.; Maity, S.M.; Jana, S. Heterogeneity of water quality signature and feedbacks to carbon sequestration in wetlands across some districts of West Bengal, India. J. Water Clim. Chang. 2020, 11, 434–450. [Google Scholar] [CrossRef]
- Harishma, K.M.; Sandeep, S.; Sreekumar, V.B. Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecol. Process. 2020, 9, 31. [Google Scholar] [CrossRef]
- Ganguly, D.; Patra, S.; Muduli, P.R.; Vishnu Vardhan, K.; Abhilash, K.R.; Robin, R.S.; Subramanian, B.R. Influence of nutrient input on the trophic state of a tropical brackish water lagoon. Earth Syst. Sci. 2015, 124, 1005–1017. [Google Scholar] [CrossRef]
- Bindu, G.; Rajan, P.; Jishnu, E.S.; Ajith Joseph, K. Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt. J. Remote Sens. Space Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Bijoy Nandan, S.; Jayachandran, P.R.; Sreedevi, O.K. Spatio-Temporal Pattern of Primary Production in a Tropical Coastal Wetland (Kodungallur-Azhikode Estuary), South West Coast of India. J. Coast. Dev. 2014, 17, 392. [Google Scholar] [CrossRef]
- Dommain, R.; Couwenberg, J.; Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: Links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 2011, 30, 999–1010. [Google Scholar] [CrossRef]
- Miettinen, J.; Wang, J.; Hooijer, A.; Liew, S. Peatland conversion and degradation processes in insular southeast asia: A case study in Jambi, Indonesia. Land Degrad. Dev. 2013, 24, 334–341. [Google Scholar] [CrossRef]
- Bal, G.; Banerjee, K. Carbon storage potential of tropical wetland forests of South Asia: A case study from Bhitarkanika Wildlife Sanctuary, India. Environ. Monit. Assess. 2019, 191, 795. [Google Scholar] [CrossRef] [PubMed]
- Islam, G.M.T.; Islam, A.K.M.S.; Shopan, A.A.; Rahman, M.M.; Lázár, A.N.; Mukhopadhyay, A. Implications of agricultural land use change to ecosystem services in the Ganges delta. J. Environ. Manag. 2015, 161, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Suratman, M.N. Detection of changes in mangrove forests using Landsat TM in Pulau Indah, Malaysia. 2007. In Proceedings of the Conference of Forestry and Forest Products (CFFPR 2007), Monterey, CA, USA, 26–31 August 2007. [Google Scholar]
- Suratman, M.N. Carbon sequestration potential of mangroves in Southeast Asia. In Managing Forest Ecosystems: The Challenge of Climate Change; Springer: Dordrecht, The Netherlands, 2008; pp. 297–315. Available online: https://link.springer.com/chapter/10.1007/978-1-4020-8343-3_17 (accessed on 1 January 2022).
- Cole, L.E.S.; Bhagwat, S.A.; Willis, K.J. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 2015, 103, 16–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friess, D.A. Tropical wetlands and REDD+: Three unique scientific challenges for policy. Int. J. Rural. Law Policy 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tareq, S.M.; Tanoue, E.; Tsuji, H.; Tanaka, N.; Ohta, K. Hydrocarbon and elemental carbon signatures in a tropical wetland: Biogeochemical evidence of forest fire and vegetation changes. Chemosphere 2005, 59, 1655–1665. [Google Scholar] [CrossRef]
- Kusumaningtyas, M.A.; Hutahaean, A.A.; Fischer, H.W.; Pérez-Mayo, M.; Ransby, D.; Jennerjahn, T.C. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast. Shelf Sci. 2019, 218, 310–323. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Jauhiainen, J.; Takahashi, H.; Heikkinen, J.E.P.; Martikainen, P.J.; Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Chang. Biol. 2005, 11, 1788–1797. [Google Scholar] [CrossRef]
- Marasinghe, S.; Perera, P.; Simpson, G.D.; Newsome, D. Nature-based tourism development in coastal wetlands of Sri Lanka: An Importance—Performance analysis at Maduganga Mangrove Estuary. J. Outdoor Recreat. Tour. 2021, 33, 100345. [Google Scholar] [CrossRef]
- Perera, K.A.R.S.; Amarasinghe, M.D. Carbon sequestration capacity of mangrove soils in micro tidal estuaries and lagoons: A case study from Sri Lanka. Geoderma 2019, 347, 80–89. [Google Scholar] [CrossRef]
- Nam, V.N.; Sasmito, S.D.; Murdiyarso, D.; Purbopuspito, J.; MacKenzie, R.A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 2016, 24, 231–244. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2021. Make Agri-Food Systems More Resilient to Shocks and Stresses; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/publications/sofa/sofa-2021/es/ (accessed on 1 January 2022).
- World Bank Data for China. Upper Middle Income. 2021. Available online: https://data.worldbank.org/?locations=CN-XT (accessed on 1 January 2022).
- Elschot, K.; Bakker, J.P.; Temmerman, S.; Van De Koppel, J.; Bouma, T.J. Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh. Mar. Ecol. Prog. Ser. 2015, 537, 9–21. [Google Scholar] [CrossRef]
- Martínez-López, J.; Carreño, M.F.; Palazón-Ferrando, J.A.; Martínez-Fernández, J.; Esteve, M.A. Free advanced modeling and remote-sensing techniques for wetland watershed delineation and monitoring. Int. J. Geogr. Inf. Sci. 2014, 28, 1610–1625. [Google Scholar] [CrossRef]
- Fennessy, M.S.; Ibánez, C.; Calvo-Cubero, J.; Sharpe, P.; Rovira, A.; Callaway, J.; Caiola, N. Environmental controls on carbon sequestration, sediment accretion, and elevation change in the Ebro River Delta: Implications for wetland restoration. Estuar. Coast. Shelf Sci. 2019, 222, 32–42. [Google Scholar] [CrossRef]
- Morris, E.P.; Flecha, S.; Figuerola, J.; Costas, E.; Navarro, G.; Ruiz, J.; Rodriguez, P.; Huertas, E. Contribution of Doñana wetlands to carbon sequestration. PLoS ONE 2013, 8, e71456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitoka, E.; Tompoulidou, M.; Hatziiordanou, L.; Apostolakis, A.; Höfer, R.; Weise, K.; Ververis, C. Water-related ecosystems’ mapping and assessment based on remote sensing techniques and geospatial analysis: The SWOS national service case of the Greek Ramsar sites and their catchments. Remote Sens. Environ. 2020, 245, 111795. [Google Scholar] [CrossRef]
- Lloyd, C.R. 2006 Annual carbon balance of a managed wetland meadow in the Somerset Levels, UK. Agric. For. Meteorol. 2006, 138, 168–179. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; García-Navarro, F.J.; Bravo, S.; Amoros, J.A.; Pérez de los Reyes, C.; Mejias, M. Environmental assessment of potential toxic elements contents in the inundated floodplain área of Tablas de Daimiel wetland (Spain). Environ. Geochem. Health 2017, 39, 1159–1177. [Google Scholar] [CrossRef] [PubMed]
- De la Hera, A.; Villarroya, F. Services Evolution of Two Groundwater Dependent Wetland Ecosystems in the “Mancha Húmeda” Biosphere Reserve (Spain). Resources 2013, 2, 128–150. [Google Scholar] [CrossRef] [Green Version]
- Du Laing, G.; De Meyer, B.; Meers, E.; Lesage, E.; Van de Moortel, A.M.K.; Tack, F.M.G.; Verloo, M.G. Metal accumulation in intertidal marshes: Role of sulphide precipitation. Wetlands 2008, 28, 735–746. [Google Scholar] [CrossRef]
- Coles, B. Steps towards the Heritage Management of Wetlands in Europe. J. Wetl. Archaeol. 2004, 4, 183–198. [Google Scholar] [CrossRef]
- Finlayson, C.M.; Davis, J.A.; Gell, P.A.; Kingsford, R.T.; Parton, K.A. The status of wetlands and the predicted effects of global climate change: The situation in Australia. Aquat. Sci. 2013, 75, 73–93. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 2011, 31, 343–352. [Google Scholar] [CrossRef]
- Chimner, R.A.; Ewel, K.C. Differences in carbon fluxes between forested and cultivated micronesian tropical peatlands. Wetl. Ecol. Manag. 2004, 12, 419–427. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Johnston, S.G.; Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Slavich, P.G. Anthropogenic forcing of estuarine hypoxic events in sub-tropical catchments: Landscape drivers and biogeochemical processes. Sci. Total Environ. 2011, 409, 5368–5375. [Google Scholar] [CrossRef] [PubMed]
- Dubuc, A.; Waltham, N.; Malerba, M.; Sheaves, M. Extreme dissolved oxygen variability in urbanised tropical wetlands: The need for detailed monitoring to protect nursery ground values. Estuar. Coast. Shelf Sci. 2017, 198, 163–171. [Google Scholar] [CrossRef]
- Iram, N.; Kavehei, E.; Maher, D.; Bunn, S.; Rashti, M.R.; Farahani, B.S.; Adame, M.F. Greenhouse gas emissions from tropical coastal wetlands and their alternative agricultural lands: Where significant mitigation gains lie. Biogeosciences Discuss. 2021, 1–27. [Google Scholar] [CrossRef]
- Adame, M.F.; Reef, R.; Wong, V.N.L.; Balcombe, S.R.; Turschwell, M.P.; Kavehei, E.; Rodríguez, D.C.; Kelleway, J.J.; Masque, P.; Ronan, M. Carbon and Nitrogen Sequestration of Melaleuca Floodplain Wetlands in Tropical Australia. Ecosystems 2020, 23, 454–466. [Google Scholar] [CrossRef]
- Carnell, P.E.; Windecker, S.M.; Brenker, M.; Baldock, J.; Masque, P.; Brunt, K.; Macreadie, P.I. Carbon stocks, sequestration, and emissions of wetlands in south eastern Australia. Glob. Chang. Biol. 2018, 24, 4173–4184. [Google Scholar] [CrossRef] [PubMed]
- Beringer, J.; Livesley, S.J.; Randle, J.; Hutley, L.B. Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet-dry tropics of Northern Australia. Agric. For. Meteorol. 2013, 182–183, 239–247. [Google Scholar] [CrossRef]
- Howe, A.J.; Rodríguez, J.F.; Saco, P.M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 2009, 84, 75–83. [Google Scholar] [CrossRef]
- Rogers, K.; Saintilan, N.; Copeland, C. Managed Retreat of Saline Coastal Wetlands: Challenges and Opportunities Identified from the Hunter River Estuary, Australia. Estuaries Coast 2014, 37, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Rogers, K.; Kelleway, J.J.; Ens, E.; Sloane, D.R. Adaptation to Climate Change Impacts on the Coastal Wetlands in the Gulf of Mexico. Wetlands 2018. Available online: http://www.ine.gob.mx/descargas/cclimatico/env_framework_feb09.pdf (accessed on 22 December 2021).
- Livesley, S.J.; Andrusiak, S.M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar. Coast. Shelf Sci. 2012, 97, 19–27. [Google Scholar] [CrossRef]
- Hayes, M.A.; Jesse, A.; Tabet, B.; Reef, R.; Keuskamp, J.A.; Lovelock, C.E. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant Soil 2017, 416, 193–204. [Google Scholar] [CrossRef]
- Limpert, K.E.; Carnell, P.E.; Trevathan-Tackett, S.M.; Macreadie, P.I. Reducing Emissions from Degraded Floodplain Wetlands. Front. Environ. Sci. 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Basset, A.; Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 892–916. [Google Scholar] [CrossRef] [Green Version]
- Department of Economic and Social Affairs, Population Division, United Nations. World Population Prospects 2019: Highlights. ST/ESA/SER.A/423. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 5 January 2022).
- Mojica Vélez, J.M.; Barrasa García, S.; Espinoza Tenorio, A. Policies in coastal wetlands: Key challenges. Environ. Sci. Policy 2018, 88, 72–82. [Google Scholar] [CrossRef]
- Convención De Ramsar Sobre Los Humedales. Perspectiva Mundial Sobre Los Humedales: Estado De Los Humedales Del Mundo Y Sus Servicios a Las Personas. Gland (Suiza). 2018. Available online: https://www.ramsar.org/sites/default/files/flipbooks/ramsar_gwo_spanish_web.pdf (accessed on 10 November 2021).
- FAO. Foro de Expertos de Alto Nivel, del 13-13 de Octubre, Roma 2009 FAO 2009-“Cómo Alimentar al Mundo en 2050”. 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/synthesis_papers/C%C3%B3mo_alimentar_al_mundo_en_2050.pdf (accessed on 15 November 2021).
- FAO. The State of Food Insecurity in the World, Addressing Food Insecurity in Protracted Crises; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. The State of Food and Agriculture. Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016. [Google Scholar]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Chang. 2018. Available online: https://www.ipcc.ch/sr15/download/#full (accessed on 20 November 2021).
Country | Site and Type of Wetland or Flooded Area | Affectation Time (Years) | Incident Factor in Loss of Vegetation and Sequestration | Loss and Sequestration Indicator | Affectation Percentage | Author |
---|---|---|---|---|---|---|
Kenia | Gazi Bay Mangroves | Yearly | Logging | Vegetation Loss | 0.7 | [28] |
Kenia | Gazi Bay Seagrasses | Last 140 | Fishing with nets | Degradation | N.A. | [29,30] |
Egypt | Coastal Area Governorate of Kafr Elsheikh-Nile River Delta, | N.A. | Salinity | Productivity | N.A. | [31] |
Egypt | Burullus Lake | Last two centuries | Soil erosion, agricultural soil drainage. | High Sedimentation and Eutrophication | 62.5 | [32] |
Ghana | Densu Delta, Sakumo II and Muni-Pomadze | 1985, 2002, 2017 | Flood, marine erosion | LDD, NDVI | N.A. | [33] |
Tanzania | Tanzania, Kenia and Mozambique Coastal Zone | 2000–2016 | Urbanization, agriculture, livestock, lumber industry | Vegetation Loss | N.A. | [34] |
Tanzania and Mozambique | Rufiji and Zambeze | N.A. | Illegal Logging and Coastal Erosion | Vegetation Loss | N.A. | [35] |
Uganda | Kirinya Wetland and Nakivo | 1950– | Agriculture | Vegetation Loss | N.A. | [36] |
Uganda | Wetland Naigombwa | N.A. | Agriculture | Vegetation Loss | N.A. | [37] |
South Africa | Mkuse Floodable Plain | N.A. | Agriculture, Dams | Vegetation Loss, Flood and Sediment Control | N.A. | [38] |
Country | Site and Type of Wetland or Flooded Area | Affectation Time (Years) | Incident Factor in Loss of Vegetation and Sequestration | Loss and Sequestration Indicator | Affectation Percentage | Author |
---|---|---|---|---|---|---|
USA | Wetlands of Albermarle Strait, North Carolina | N.A. | Agriculture | Drainage | N.A. | [40] |
USA | Estuaries from Delaware Bay and the Indian River Florida | 1970– | Rising Sea Levels | Vegetation Loss | N.A. | [41] |
USA | Tidal Marshes Estuaries- National Research Reserve, Delaware | 1780– | Agriculture and Urbanization | Vegetation Loss | 54 | [42] |
USA | Seagrasses from the Virginia Coastal Reserve | N.A. | Mud Mold and a Hurricane. | Vegetation Loss | N.A. | [43] |
USA | Timberlake, Albemarle Peninsula, North Carolina | 1900–1980 | Deforestation Agriculture | Vegetation Loss | N.A. | [44] |
USA | Salt Marsh in Rowley Massachusetts | N.A. | Waste Water | Eutrophication | N.A. | [45] |
USA | San Francisco Bay | 20th century | Agriculture and Urbanization | Vegetation Loss | 90 | [46] |
USA | New England Coast | Last 30 years | Overgrazing | Vegetation Loss | N.A. | [47] |
USA | Georgia Coast | –2100 | Rising Sea Levels | Vegetation Loss | 20 | [48] |
USA | Elkhorn Slough Wetland | Last century | Agriculture | Eutrophication | N.A. | [49] |
California | ||||||
USA | Coasts | 1960–1970 | Oil Spill | Pollution | N.A. | [50] |
USA | New York | N.A. | Agriculture | Respiration and Nitrogen Mineralization | N.A. | [51] |
USA | Indiana and Illinois | 150–200 | Agriculture | Drainage | 90 | [52] |
USA | Coastal Wetlands of Louisiana | Last two centuries | Flood Control Levees | Degradation | N.A. | [53] |
USA | Continental Wetlands Louisiana | 200 | Agriculture | Drainage | 80 | [54] |
USA | Barataria Bay, Lousiana | Coastal Sinking | Rising Sea Levels, Erosion | [55] | ||
USA | Ohio Freshwater Wetlands | Agriculture | Erosion | N.A. | [56] | |
USA | Marshes, California | 100 | Agriculture, Livestock | Drainage | N.A. | [57] |
USA | Everglades Boglands | 19th Century | Waste water | Eutrophication | N.A. | [58] |
USA | Everglades Wetlands, Great Dismal Swamp | 200 | Agriculture, Urbanization and Fire | Vegetation Loss | N.A. | [59] |
USA | Indian River Lagoon | At the end of the 20th Century | Reservoir Construction | Drainage | variables | [60] |
Vero Beach and Fort Pierce Florida | ||||||
USA | Mangroves in Tampa Bay | 1950–1990 | Urbanization | Vegetation Loss | 21 | [61] |
USA | Naples Bay Mangroves, Florida | 2005 | Urbanization | Vegetation Loss | 70 | [62] |
Mexico | Nuxco Sub-basin Mangroves, Municipality of Tecpan de Galeana | 1981–2015 | Agriculture and Urbanization | Vegetation Loss | 50 | [63] |
Mexico | Terminos Lagoon | Last Years | Waste water and Garbage | Disturbance | N.A. | [64] |
Mexico | Alvarado Lagoon System | Colonial Period | Agriculture and Livestock | Change in vegetation | variable | [65] |
Mexico | Sinaloa Marshes | Last Three (3) Decades | Aquaculture | Vegetation Loss | variable | [66] |
Mexico | Marshes and Swamps State of Veracruz | N.A. | Livestock, Petrochemistry and Urbanization. | Vegetation Loss | N.A. | [67] |
Mexico | Gulf of México Mangroves | 100 | Sub-freezing and Increased level of the substrate due to sediments | Vegetation Loss vegetal | variable | [68] |
Mexico | La Encrucijada Biosphere Reserve | N.A. | River dredging and Fires | Degradation | N.A. | [69] |
Chiapas | ||||||
Mexico | California Gulf Mangroves | N.A. | Urbanization | Population Growth | 50 | [70] |
Mexico | Biosphere Reserve of Sian Ka’an Yucatán Peninsula | N.A. | Climate Change | Sea Level, Roads, tourism | N.A. | [71] |
Belize and Guatemala | Milpa, blue creek and Zotz. Wetlands. | Recent Years | Agriculture | Carbon Isotope Variation | N.A. | [72] |
Honduras | Fonseca Gulf Mangroves | 1985–2013 | Aquaculture | Vegetation loss | 5800 ha | [73] |
Costa Rica | Estereo Brook Basin | Last ten years | Urbanization, Waste water | Vegetation Loss and Eutrophication | N.A. | [74] |
Costa Rica | Palo Verde Freshwater W | 30 | Livestock | Grazing | N.A. | [24] |
Costa Rica | Earth University, Parismina River Basin | N.A. | Agriculture | Vegetation Loss | N.A. | [75] |
Cuba | Caguanes National Park | 19th Century | Agriculture and livestock | Deforestation | N.A. | [76] |
Dominican Republic | Providence of Montecristi Mangroves | 1983–1993 | Aquaculture | Vegetation loss | N.A. | [77] |
Colombia | Magdalena River | 2007–2012 | Livestock, Agroindustry, Mining, Energy and Urban Expansion | Population Growth | 24 | [78] |
Colombia | Uraba Gulf Mangroves | Two (2) decades | Deforestation, Agrícultural soils and Urban areas. | Population Growth | 29.8 | [79] |
Colombia | Orinoco River Basin and the Caribbean | Last four (4) years | Agriculture | Change in Land Use | variable | [80] |
Colombia | Malaga Bay Mangroves and Buenaventura Bay | N.A. | Deforestation, Urbanization, Expansion of ports and docks. | Vegetation Loss | N.A. | [81] |
Colombia | El Tunjo Freshwater Wetland | 1940–2016 | Urbanization | Fragmentation | 90 | [82] |
Ecuador | El Pantanal Wetland, Technical University of Machala | 2007–2016 | Solid waste and Enclosure | Vegetation Loss | 40 | [83] |
Peru | Santa Rosa Wetland, Lima | N.A. | Agriculture, Porciculture, Livestock and Waste water | Invasive Plants, Eutrophication | N.A. | [84] |
Trinidad and Tobago | Coasts of the Islands | N.A. | Port Industry, Agriculture and Urbanization | Ecological Stress and Loss of Cover | N.A. | [85] |
Brazil | O Pantanal | N.A. | Natural and Arson Fires | Biomass Burning | N.A. | [86] |
Brazil | Cananeia-Iguape Lagoon | 165 | River Diversion | Intrusion of Macrophyte Species | N.A. | [87] |
Brazil | Whale Coast in Bahía | Last 34 years | Eucalyptus Forestry, Agriculture, Urbanization | Vegetation Loss | N.A. | [88] |
Brazil | Varzea Clear Water Alluvial Plain | Currently | Livestock | Soil Compaction | N.A. | [89] |
Brazil | Atibaia River Basin and Jaguari River | N.A. | Agriculture and Urbanization | Eutrophication and Vegetation Loss | 72.4 | [90] |
Brazil | Jaguaribe River | N.A. | Wastewater and Aquaculture | EutrophicationVegetation Loss | N.A. | [91] |
Brazil | Sepetiba Bay | N.A. | Metallurgical industry and Urbanization | Heavy Metals | N.A. | [92] |
Rio de Janeiro | ||||||
Argentina | Parana River Delta | 19 | Livestock | Vegetation Loss | 58.3 | [93] |
Country | Location and Type of Humidity | Affectation Time (Years) | Incident Factor in Loss of Vegetation and Sequestration | Loss and Sequestration Indicator | Affectation Percentage | Author |
---|---|---|---|---|---|---|
New Scotland | Fundi Bay | N.A. | Agriculture | Change of Use | 80 | [3] |
Spain | Lago Fuente de piedra | Last decades | Agriculture and Urbanization | Change of Use | N.A. | [4] |
Czech Republic | Biosphere Reserve UNESCO MAB Třeboň | 400–600 | Aquaculture and Sowing Pastures | Drainage | 30 | [54] |
Holland | Back Barrier Swamp Island of Schiermonnikoog | Last 120 | Livestock | Compaction | N.A. | [146]. |
Spain | 11 wetlands in Murcia | Last decades | Agriculture, Urbanization, tourism | Loss of area | N.A. | [147] |
Spain | Ebro River Delta | N.A. | Dam Construction and Rice Planting | Reduction of Sediment Flow and Organic Matter | 99 | [148] |
Spain | Wetlands adjacent to the Doñana National Park | N.A. | Aquaculture and Agriculture | Change of Use | N.A. | [149] |
Greece | Ten Greek Ramsar sites | 30 | Agriculture | Change of Use | [150] | |
United Kingdom | Tadham Moor Somerset Levels and Moors | Historically | Agriculture and Livestock | Drainage | N.A. | [151] |
Country | Location and Type of Humidity | Affectation Time (Years) | Incident Factor in Loss of Vegetation and Sequestration | Loss and Sequestration Indicator | Affectation Percentage | Author |
---|---|---|---|---|---|---|
Micronesia | Mangroves Babeldoab Island and Yap Island | N.A. | Climate Change | Vegetation Loss | N.A. | [156] |
Micronesia | Wooded Wetland Kosrae Island | Last 50 years | Agroforestry Crops | Change of Use | N.A. | [157] |
Australia | Richmond and Clarence River Basins Estuaries | 1900–1970 | Agriculture | Drainage | N.A. | [158] |
Australia | Queensland wetland | N.A. | Urbanization (Waste Water) | Oxygenation, Water, and Soil Quality. | N.A. | [159] |
Australia | Herbert River Queensland | 20th Century | Agriculture | Vegetation Loss | variable | [160] |
Australia | Halifax bay Wetlands, National Park Insulator Creek among others | Last Century | Deforestation and Degradation | Vegetation Loss | 50 | [161] |
Australia | Victoria State | 187 | Agricultural Frontier | Drainage | 27 | [162] |
Australia | Fogg Dam Wetland | N.A. | Floods and, natural and arson fires | Gas emission | N.A. | [163] |
Australia | Hunter Estuary | 1954–1994 | Industry, drainage. | Vegetation Loss | 30 | [164] |
Australia | Hunter River Estuary | N.A. | Rising sea level | Possible loss of vegetation | 100 | [165] |
Australia | East Coast Rivers of New South Wales and Queensland | 1950–1960 | Flood control projects | Vegetation Loss | N.A. | [166] |
Australia | Westernport Bay | N.A. | Agriculture, industry and urbanization | Vegetation Loss | N.A. | [167] |
Australia | Mangrove forests on western shores Moreton Bay-Queensland | N.A. | Waste water | Eutrophication | N.A. | [168] |
Australia | Duck Creek North Freshwater Wetland | European Colonization | Dams, roads | Change in hydrology | N.A. | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballut-Dajud, G.A.; Sandoval Herazo, L.C.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; López Méndez, M.C.; Betanzo-Torres, E.A. Factors Affecting Wetland Loss: A Review. Land 2022, 11, 434. https://doi.org/10.3390/land11030434
Ballut-Dajud GA, Sandoval Herazo LC, Fernández-Lambert G, Marín-Muñiz JL, López Méndez MC, Betanzo-Torres EA. Factors Affecting Wetland Loss: A Review. Land. 2022; 11(3):434. https://doi.org/10.3390/land11030434
Chicago/Turabian StyleBallut-Dajud, Gastón Antonio, Luis Carlos Sandoval Herazo, Gregorio Fernández-Lambert, José Luis Marín-Muñiz, María Cristina López Méndez, and Erick Arturo Betanzo-Torres. 2022. "Factors Affecting Wetland Loss: A Review" Land 11, no. 3: 434. https://doi.org/10.3390/land11030434
APA StyleBallut-Dajud, G. A., Sandoval Herazo, L. C., Fernández-Lambert, G., Marín-Muñiz, J. L., López Méndez, M. C., & Betanzo-Torres, E. A. (2022). Factors Affecting Wetland Loss: A Review. Land, 11(3), 434. https://doi.org/10.3390/land11030434