Effect of Maize Conservation Crops Associated with Two Vegetal Covers on the Edaphic Macrofauna in a Well-Drained Savanna of Venezuela
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Design of the Study
2.3. Soil Preparation for Crops
2.4. Soil Macrofauna Sampling
2.5. Soil Sampling
2.6. Laboratory Analysis
2.7. Statistical Processes and Calculations
3. Results and Discussion
3.1. Effect of Agroecological Management on the Structure of the Edaphic Macroinvertebrate Community
3.2. Effect of Agroecological Management on the Vertical Distribution of Soil Macrofauna
3.3. Effect of Agricultural Management on Soil Macrofauna in the Temporal Gradient
3.4. Relationship of Edaphic Macrofauna with Edaphic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, A.; Ordoñez, J. Evolución Reciente y Situación Actual Del Sistema Alimentario Venezolano (SAV); Corporación Parque Tecnológico de Mérida—ULA: Mérida, Venezuela, 2011. [Google Scholar]
- Hernández-Hernández, R.M.; López-Hernández, D. El Tipo de Labranza Como Agente Modificador de La Materia Orgánica: Un Modelo Para Suelos de Sabana de Los Llanos Centrales Venezolanos. Interciencia 2002, 27, 529–536. [Google Scholar]
- Berroterán, J.L. Modelo de Utilización Cereal-Pasto En Sistemas de Producción de Sabanas Bien Drenadas Con Suelos Ácidos En Venezuela. Intercencia 2000, 25, 203–209. [Google Scholar]
- Lozano, Z.; Mogollon, A.; Hernandez, R.M.; Bravo, C.; Ojeda, A.; Torres, A.; Rivero, C.; Toro, M. Cambios En Las Propiedades Químicas De Un Suelo De Sabana Luego De La Introduccion De Pasturas Mejoradas. Bioagro 2010, 22, 135–144. [Google Scholar]
- Hernández-Hernández, R.M.; Morros María, E.; Bravo, C.; Lozano, Z.; Herrera, P.; Ojeda, A.; Morales, J.; Birbe, B. La Integración Del Conocimiento Local y Científico En El Manejo Sostenible de Suelos En Agroecosistemas de Sabanas. Interciencia 2011, 36, 104–112. [Google Scholar]
- Lopez-Hernández, D. Impact of Agriculture and Livestock Production on Tropical Soils in Latin America. In Global Land Use Change: A Perspective from the Columbian Encounter; Turner, B., Gómez-Sal, A., González Bernáldez, F., di Castri, F., Eds.; Editorial CSIC-CSIC Press: Madrid, Spain, 1995; pp. 405–418. [Google Scholar]
- López-Hernández, D.; Hernández-Hernández, R.M.; Brossard, M. Historia Del Uso Reciente de Tierras de Las Sabanas de América Del Sur. Estudios de Casos En Sabanas Del Orinoco. Interciencia 2005, 30, 623–630. [Google Scholar]
- de Wit, J.; Oldenbroek, J.K.; van Keulen, H.; Zwart, D. Criteria for Sustainable Livestock Production: A Proposal for Implementation. Agric. Ecosyst. Environ. 1995, 53, 219–229. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation Tillage Impacts on Soil, Crop and the Environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Bedano, J.C.; Domínguez, A.; Arolfo, R.; Wall, L.G. Effect of Good Agricultural Practices under No-till on Litter and Soil Invertebrates in Areas with Different Soil Types. Soil Tillage Res. 2016, 158, 100–109. [Google Scholar] [CrossRef]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; University of California Press: Oakland, CA, USA, 1979. [Google Scholar]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil Invertebrates and Ecosystem Services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology, 2nd ed.; Springer: New York, NY, USA, 2011; Volume 21. [Google Scholar]
- Nielsen, U.N. Soil Fauna Assemblages; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Menta, C.; Remelli, S. Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects 2020, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Morales, J.; Sarmiento, L. Dynamics of soil macroinvertebrates and Its relationships to vegetation in a secondary succession of the Venezuelan Paramo. Ecotropicos 2002, 15, 99–110. [Google Scholar]
- Wu, P.; Liu, S.; Liu, X. Composition and Spatio-Temporal Changes of Soil Macroinvertebrates in the Biodiversity Hotspot of Northern Hengduanshan Mountains, China. Plant Soil 2012, 357, 321–338. [Google Scholar] [CrossRef]
- Morales-Márquez, J.A.; Hernández-Hernández, R.M.; Sánchez, G.K.; Lozano, Z.; Castro, I.; Bravo, C.; Ramírez, E.; Jiménez-Ballesta, R. Soil Macroinvertebrates Community and Its Temporal Variation in a Well-Drained Savannah of the Venezuelan Llanos. Eur. J. Soil Biol. 2018, 84, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Snyder, B.A.; Hendrix, P.F. Current and Potential Roles of Soil Macroinvertebrates (Earthworms, Millipedes, and Isopods) in Ecological Restoration. Restor. Ecol. 2008, 16, 629–636. [Google Scholar] [CrossRef]
- Prescott, C.E.; Frouz, J.; Grayston, S.J.; Quideau, S.A.; Straker, J. Rehabilitating Forest Soils after Disturbance. In Developments in Soil Science. Global Change and Forest Soils; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 309–343. [Google Scholar] [CrossRef]
- Swift, M. Prólogo. In El Arado Natural: Las Comunidades de Macroinvertebrados del Suelo en las Sabanas Neotropicales de Colombia; Jimenez, J., Thomas, R., Eds.; CIAT: Cali, Colombia, 2003; p. vii. [Google Scholar]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The Values of Soil Animals for Conservation Biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Lavelle, P.; Velasquez, E.; Andrade, M. “Indicating Soil Quality and the GISQ”: Reply to the Comments by Rossi et Al. Soil Biol. Biochem. 2009, 41, 446–447. [Google Scholar] [CrossRef]
- Havlicek, E. Soil Biodiversity and Bioindication: From Complex Thinking to Simple Acting. Eur. J. Soil Biol. 2012, 49, 80–84. [Google Scholar] [CrossRef]
- Domínguez-Haydar, Y.; Velásquez, E.; Carmona, J.; Lavelle, P.; Chavez, L.F.; Jiménez, J.J. Evaluation of Reclamation Success in an Open-Pit Coal Mine Using Integrated Soil Physical, Chemical and Biological Quality Indicators. Ecol. Indic. 2019, 103, 182–193. [Google Scholar] [CrossRef]
- Stanturf, J.A. Landscape Degradation and Restoration. In Soils and Landscape Restoration; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–159. [Google Scholar] [CrossRef]
- Wubs, E.R.J.; Melchers, P.D.; Bezemer, T.M. Potential for Synergy in Soil Inoculation for Nature Restoration by Mixing Inocula from Different Successional Stages. Plant Soil 2018, 433, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Eckschmitt, K.; Wolters, V.; Weber, M.; Benckiser, G. Spiders, Carabids and Staphylinids: The Ecological Potential of Predatory Macroarthropods. In Fauna in soil Ecosystems: Recycling Processes, Nutrient Fluxes, and Agricultural Production; Benckiser, G., Ed.; Marcel Derker: New York, NY, USA, 1997; pp. 307–362. [Google Scholar]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why Is the Influence of Soil Macrofauna on Soil Structure Only Considered by Soil Ecologists? Soil Tillage Res. 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Crespo-Pérez, V.; Kazakou, E.; Roubik, D.W.; Cárdenas, R.E. The Importance of Insects on Land and in Water: A Tropical View. Curr. Opin. Insect Sci. 2020, 40, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Sanabria, C.; Lavelle, P.; Fonte, S.J. Ants as Indicators of Soil-Based Ecosystem Services in Agroecosystems of the Colombian Llanos. Appl. Soil Ecol. 2014, 84, 24–30. [Google Scholar] [CrossRef]
- Lanfranco, D. Estudios Entomofaunísticos En El Archipiélago Del Cabo de Hornos. An. Inst. Patagon. 1980, 11, 281–291. [Google Scholar]
- Jiménez, J. La Biodiversidad del Suelo: La Gran Desconocida. Available online: http://www.aragoninvestiga.org/La-biodiversidad-del-suelo-la-gran-desconocida/ (accessed on 19 February 2016).
- Moura, E.G.; Aguiar, A.d.C.F.; Piedade, A.R.; Rousseau, G.X. Contribution of Legume Tree Residues and Macrofauna to the Improvement of Abiotic Soil Properties in the Eastern Amazon. Appl. Soil Ecol. 2015, 86, 91–99. [Google Scholar] [CrossRef]
- Anderson, J.M. Spatiotemporal Effects of Invertebrates on Soil Processes. Biol. Fertil. Soils 1988, 6, 216–227. [Google Scholar] [CrossRef]
- Coleman, D.C.; Callaham, M.A.; Crossley, D.A. Fundamentals of Soil Ecology, 3rd ed.; Coleman, D.C., Callaham, M.A., Crossley, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- FAO; ITPS; GSBI; SCBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities, Report 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Frouz, J. Preface. In Soil Biota and Ecosystem Development in Post Mining Sites; Frouz, J., Ed.; CRC Press: Prague, Czech Republic, 2013; pp. 291–302. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Decaëns, T.; Rossi, J.P. Stability of the Spatio-Temporal Distribution and Niche Overlap in Neotropical Earthworm Assemblages. Acta Oecologica 2006, 30, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Decaëns, T.; Lavelle, P.; Jiménez, J.J.; Escobar, G.; Rippstein, G.; Schneidmadl, J.; Sanz, J.I.; Hoyos, P.; Thomas, R.J. Impact of Land Management on Soil Macrofauna in the Eastern Savannas of Colombia. In Soil Macroinvertebrate Communities in the Neotropical Savannas of Colombia; Rippstein, G., Escobar, G., Motta, F., Eds.; CIAT: Cali, Colombia, 2001; pp. 111–137. [Google Scholar]
- Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Six, J.; Ayuke, F.O.; Pulleman, M.M. Exclusion of Soil Macrofauna Did Not Affect Soil Quality but Increased Crop Yields in a Sub-Humid Tropical Maize-Based System. Agric. Ecosyst. Environ. 2015, 208, 75–85. [Google Scholar] [CrossRef]
- Riera, J.; Guerrero, I. Caracterización Agroecológica de La Región Oriental de Guárico. In Sub Estación Experimental Valle de La Pascua; FONAIAP: Caracas, Venezuela, 1984; pp. 140–150. [Google Scholar]
- Ponce, M.E.; González, V.C.; Brandín, J.; Ponce, M. Análisis de La Vegetación Asociada a Una Toposecuencia En Los Llanos Centro Orientales de Venezuela. Ecotropicos 1994, 7, 11–22. [Google Scholar]
- Chacón, P.; Lopez-Hernández, I.D.; Lamotte, M. Le Cycle de l’azote Dans Une Savane à Trachypogon Au Centre Du Venezuela. Rev. D’écologie Biol. Sol 1991, 28, 67–75. [Google Scholar]
- U.S. Department of Agriculture. Soil Survey Staff. In Keys to Soil Taxonomy; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2010. [Google Scholar]
- Lozano, Z.; Romero, H.; Bravo, C. Influence of Cover Crops and Grazing on Soil Physical Properties in Savanna Soil. Agrociencia 2010, 44, 135–146. [Google Scholar]
- Decaëns, T.; Lavelle, P.; Jiménez, J.J.; Escobar, G.; Rippstein, G.; Schneidmadl, J.; Sanz, J.; Hoyos, P.; Thomas, R. Impacto Del Uso de La Tierra En La Macrofauna Del Suelo de Los Llanos Orientales de Colombia. In El Arado Natural: Las Comunidades de Macroinvertebrados del Suelo en las Sabanas Neotropicales de Colombia; Jiménez, J., Thomas, R., Eds.; CIAT: Cali, Colombia, 2003; pp. 21–45. [Google Scholar]
- Hernández, R.M.; Lozano, Z.; Toro, M.; Bravo, C.; Morales, J.; Rivero, C.; Salazar, J.; Ojeda, A.; Ramírez, E.; Cáchica, H.; et al. Manejo Agroecológico de Suelos de Sabanas Bien Drenadas Con Unidades de Producción Cereal-Ganado. Informe Final—Proyecto G-2002000398; IDECYT, Universidad Nacional Experimental Simón Rodriguez: Caracas, Venezuela, 2011. [Google Scholar]
- Carpenter, S.R. The Need for Large-Scale and Experiments of Predict the Response to Perturbation Ecosystems. In Success, Limitations, and Frontiers in Ecosystem Science; Pace, M.L., Groffman, P.M., Eds.; Springer: New York, NY, USA, 1998; Volume 1, pp. 287–312. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Method, 2nd ed.; CAB International: Oxford, UK, 1993. [Google Scholar]
- ISO 23611-5:2011; Soil Quality—Sampling of Soil Invertebrates. Part 5: Sampling and Extraction of Soil Macro-Invertebrates. International Organization for Standardization: Geneva, Switzerland, 2011; p. 12.
- Triplehorn, C.A.; Johnson, N.F.; Borror, D.J. Borror and DeLong’s Introduction to the Study of Insects, 7th ed.; Thompson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Vera, S.; Lozano, Z.; Lobo, D.; Bravo, C.; Hernández, R. Propiedades Físicas Del Suelo y Distribución de Raíces de Maíz Bajo Diferentes Tipos de Cobertura y Fertilización En Un Sistema Conservacionista Cereal-Ganado. Rev. Fac. Agron. 2012, 38, 49–63. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; ACSESS-Alliance of Crop, Soil, and Environmental Science Societies: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Plá, I. Metodología Para La Caracterización Física Con Fines de Diagnóstico de Problemas de Manejo y Conservación de Suelos En Condiciones Tropicales. Rev. Alcance. Fac. Agron. UCV 1983, 32, 91. [Google Scholar]
- Heanes, D. Determination of Total Organic-C in Soil by an Improved Chromic Acid Digestion and Spectrophotometric Procedure. Comm. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954; pp. 1–19.
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.J.; Abdi, H. Fisher’s Least Significant Difference (LSD) Test. Encycl. Res. Des. 2010, 218, 840–853. [Google Scholar]
- StatSoft. STATISTICA (Data Analysis Software System), Version 6; Statsoft Europe: Hamburg, Germany, 2001. [Google Scholar]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Leps, J.; Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Verzani, J. Using R for Introductory Statistics, 2nd ed.; Chapman & Hall/CRC The R Series; CRC Press: Boca Ratón, FL, USA, 2014. [Google Scholar]
- Lavelle, P.; Bignell, D.; Lepage, M.; Wolters, W.; Roger, P.; Ineson, P.; Heal, O.W.; Dhillion, S. Soil Function in a Changing World: The Role of Invertebrate Ecosystem Engineers. Eur. J. Soil Biol. 1997, 33, 159–193. [Google Scholar]
- de Aquino, A.M.; Ferreira da Silva, R.; Mercante, F.M.; Fernandes Correia, M.E.; de Fátima Guimarães, M.; Lavelle, P. Invertebrate Soil Macrofauna under Different Ground Cover Plants in the No-till System in the Cerrado. Eur. J. Soil Biol. 2008, 44, 191–197. [Google Scholar] [CrossRef]
- Fierer, N.; Strickland, M.S.; Liptzin, D.; Bradford, M.A.; Cleveland, C.C. Global Patterns in Belowground Communities. Ecol. Lett. 2009, 12, 1238–1249. [Google Scholar] [CrossRef]
- Castro, I. Disponibilidad y Conservación Del N y C En Agroecosistemas de Sabanas Bien Drenadas Cultivados Con Maíz. Ph.D. Thesis, Universidad Central de Venezuela, Caracas, Venezuela, 2016. [Google Scholar]
- Ramírez, E. Sincronización de Los Componentes Suelo-Planta-Animal En Agroecosistemas de Sabanas Bien Drenadas. Ph.D. Thesis, Universidad Central de Venezuela, Caracas, Venezuela, 2015. [Google Scholar]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation Agriculture and Ecosystem Services: An Overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of Different Soil Conservation Tillage Approaches on Soil Nutrients, Water Use and Wheat-Maize Yield in Rainfed Dry-Land Regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhu, A.; Zhang, J.; Yang, W. Effects of Tillage and Residue Managements on Organic C Accumulation and Soil Aggregation in a Sandy Loam Soil of the North China Plain. CATENA 2017, 156, 176–183. [Google Scholar] [CrossRef]
- Ayuke, F.O.; Pulleman, M.M.; Vanlauwe, B.; de Goede, R.G.M.; Six, J.; Csuzdi, C.; Brussaard, L. Agricultural Management Affects Earthworm and Termite Diversity across Humid to Semi-Arid Tropical Zones. Agric. Ecosyst. Environ. 2011, 140, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Bedano, J.C.; Becker, A.R. Negative Effects of No-till on Soil Macrofauna and Litter Decomposition in Argentina as Compared with Natural Grasslands. Soil Tillage Res. 2010, 110, 51–59. [Google Scholar] [CrossRef]
- Domínguez, A.; Bedano, J.C.; Becker, A.R. Cambios En La Comunidad de Lombrices de Tierra (Annelida: Lumbricina) Como Consecuencia Del Uso de La Técnica de Siembra Directa En El Centro-Sur de Córdoba, Argentina. Cienc. Suelo 2009, 27, 11–19. [Google Scholar]
- Piccoli, I.; Schjønning, P.; Lamandé, M.; Furlan, L.; Morari, F. Challenges of Conservation Agriculture Practices on Silty Soils. Effects on Soil Pore and Gas Transport Characteristics in North-Eastern Italy. Soil Tillage Res. 2017, 172, 12–21. [Google Scholar] [CrossRef]
- Decaëns, T.; Galvis, J.H.; Amézquita, E. Propiedades de Las Estructuras Construidas Por Los Ingenieros Del Ecosistema En La Superficie Del Suelo de Una Sabana Colombiana1 Materiales y Métodos. In El Arado Natural: Las Comunidades de Macroinvertebrados del Suelo en las Sabanas Neotropicales de Colombia; Jiménez, J.J., Thomas, R.J., Eds.; CIAT: Cali, Colombia, 2003; pp. 171–197. [Google Scholar]
- Vasconcellos, R.L.F.F.; Segat, J.C.; Bonfim, J.A.; Baretta, D.; Cardoso, E.J.B.N.B.N. Soil Macrofauna as an Indicator of Soil Quality in an Undisturbed Riparian Forest and Recovering Sites of Different Ages. Eur. J. Soil Biol. 2013, 58, 105–112. [Google Scholar] [CrossRef]
- Tao, H.-H.; Slade, E.M.; Willis, K.J.; Caliman, J.-P.; Snaddon, J.L. Agriculture, Ecosystems and Environment Effects of Soil Management Practices on Soil Fauna Feeding Activity in an Indonesian Oil Palm Plantation. Agric. Ecosyst. Environ. 2016, 218, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Bottinelli, N.; Henry-des-Tureaux, T.; Hallaire, V.; Mathieu, J.; Benard, Y.; Duc Tran, T.; Jouquet, P. Earthworms Accelerate Soil Porosity Turnover under Watering Conditions. Geoderma 2010, 156, 43–47. [Google Scholar] [CrossRef]
- Lavelle, P.; Dangerfield, M.; Fragoso, C.; Eschenbrenner, V.; Lopez-Hernandez, D.; Pashanasi, B.; Brussaard, L. The Relationship between Soil Macrofauna and Tropical Soil Fertility. In The Biological Management of Tropical Soil Fertility; Woomer, P.L., Swift, M.J., Eds.; Tropical Soil Biology and Fertility Programme; C. Sayce Publishing: Dublin, OH, USA, 1994; pp. 137–169. [Google Scholar]
- Rückamp, D. Role of Termites for the Distribution Patterns of Carbon and Phosphorus Fractions and the Genesis of Tropical Soils, Brazil. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2011. [Google Scholar]
- Umeh, V.C.; Ivbijaro, M.F.; Ewete, F.K. Relationship Between Characteristics of Macrotermes Spp. Mound Materials and Their Surrounding Soils. Int. J. Trop. Insect Sci. 1999, 19, 251–255. [Google Scholar] [CrossRef]
- Pelosi, C.; Pey, B.; Hedde, M.; Caro, G.; Capowiez, Y.; Guernion, M.; Peigné, J.; Piron, D.; Bertrand, M.; Cluzeau, D. Reducing Tillage in Cultivated Fields Increases Earthworm Functional Diversity. Appl. Soil Ecol. 2014, 83, 79–87. [Google Scholar] [CrossRef]
Parameter | Depth (cm) | ||
---|---|---|---|
0–5 | 5–15 | 15–30 | |
Clay [<2 µm] † (%) | 2.50 ± 0.38 ‡ | 2.94 ± 0.09 | 10.00 ± 1.20 |
Silt [2–5 µm] (%) | 12.51 ± 1.15 | 11.00 ± 0.98 | 12.00 ± 1.02 |
Very fine sand [50–100 µm] (%) | 6.99 ± 0.32 | 3.17 ± 0.89 | 10.00 ± 1.92 |
Fine sand [100–250 µm] (%) | 48.91 ± 5.15 | 29.05 ± 2.13 | 36.00 ± 3.16 |
Medium sand [250–500 µm] (%) | 25.29 ± 1.12 | 44.59 ± 3.32 | 22.93 ± 2.16 |
Coarse sand [500–1000 µm] (%) | 3.29 ± 0.78 | 7.98 ± 1.12 | 8.20 ± 0.32 |
Very coarse sand [1000–2000 µm] (%) | 0.51 ± 0.11 | 1.27 ± 0.08 | 0.78 ± 0.10 |
Textural class | Loamy Sand | Loamy Sand | Sandy Loam |
Reaction of the soil (pH in H2O) | 5.01 ± 0.18 | 4.81 ± 0.25 | 4.75 ± 0.24 |
Total acidity (cmol+·kg−1) | 0.46 ± 0.21 | 0.83 ± 0.58 | 1.18 ± 0.73 |
Interchangeable aluminum (cmol+·kg−1) | 0.16 ± 0.09 | 0.34 ± 0.23 | 0.50 ± 0.31 |
Interchangeable hydrogen (cmol+·kg−1) | 0.30 ± 0.18 | 0.49 ± 0.42 | 0.67 ± 0.53 |
Electrical conductivity (µS·cm−1) | 27.53 ± 1.32 | 23.62 ± 3.26 | 22.77 ± 3.62 |
CEC (cmol+·kg−1) | 2.21 ± 0.54 | 1.94 ± 0.66 | 1.90 ± 0.82 |
Organic matter (%) | 1.33 ± 0.30 | 1.23 ± 0.26 | 1.04 ± 0.27 |
Total nitrogen (%) | 0.039 ± 0.007 | 0.032 ± 007 | 0.028 ± 0.007 |
Inorganic nitrogen (mg·kg−1) | 21.34 ± 11.18 | 17.23 ± 8.45 | 15.73 ± 9.54 |
Phosphorus (mg·kg−1) | 11.30 ± 0.30 | 10.01 ± 3.62 | 8.67 ± 3.26 |
Potassium (mg·kg−1) | 29.94 ± 14.10 | 19.51 ± 7.31 | 11.53 ± 4.40 |
Calcium (mg·kg−1) | 89.64 ± 25.21 | 63.15 ± 27.87 | 38.11 ± 14.76 |
Magnesium (mg·kg−1) | 51.35 ± 16.94 | 47.19 ± 12.07 | 39.11 ± 14.66 |
Sodium (mg·kg−1) | 2.09 ± 1.33 | 2.40 ± 1.65 | 3.11 ± 1.86 |
Iron (mg·kg−1) | 44.61 ± 22.07 | 53.36 ± 25.03 | 54.38 ± 24.96 |
Copper (mg·kg−1) | 0.71 ± 0.44 | 0.90 ± 0.60 | 1.07 ± 0.57 |
Manganese (mg·kg−1) | 7.76 ± 3.60 | 3.52 ± 2.64 | 2.63 ± 1.73 |
Zinc (mg·kg−1) | 1.07 ± 0.57 | 0.86 ± 0.37 | 0.79 ± 0.39 |
Descriptor | Sampling Times | ||||||
---|---|---|---|---|---|---|---|
Days after initiation | 0 | 76 | 188 | 363 | 461 | 678 | 1035 |
Climate season | Start of rainy season | Rainy season | Dry season | Start of rainy season | Rainy season | Dry season | Dry season |
Chronological order | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
Order | Vegetation Cover | Family | Vegetation Cover | ||||
---|---|---|---|---|---|---|---|
NS | Bd | Cm | NS | Bd | Cm | ||
Ind·m−2 | Ind·m−2 | ||||||
Blattodea (Isoptera) | 30.5 ± 46.4 † | 162.3 ± 158.3 | 92.6 ± 89.3 | Termitidae | 30.5 ± 46.4 | 161.5 ± 159.2 | 92.6 ± 89.3 |
Coleoptera | 77.5 ± 52.8 | 48.4 ± 47.7 | 45.1 ± 38.1 | Carabidae | 18.5 ± 18.3 | 20.2 ± 18.1 | 10.7 ± 10.2 |
Staphylinidae | 12.2 ± 16.3 | 8.6 ± 8.1 | 7.4 ± 7.9 | ||||
Scarabaeidae | 13.7 ± 17.0 | 5.3 ± 8.1 | 3.8 ± 5.2 | ||||
Aphodiidae | 5.5 ± 8.9 | 4.6 ± 4.4 | 11.8 ± 9.9 | ||||
Tenebrionidae | 5.1 ± 6.9 | 2.3 ± 4.1 | 3.4 ± 5.2 | ||||
Rutelidae | 4.0 ± 6.5 | 2.7 ± 4.3 | 1.9 ± 3.4 | ||||
Elateridae | 3.6 ± 5.5 | 1.9 ± 3.3 | 1.5 ± 2.8 | ||||
Chrysomelidae | 3.4 ± 5.6 | 0.2 ± 0.4 | 1.7 ± 3.1 | ||||
Hydroscaphidae | 2.1 ± 3.8 | 1.7 ± 2.9 | 0.8 ± 1.5 | ||||
Lampyridae | 2.9 ± 4.6 | 0.2 ± 0.4 | 0 | ||||
Cerambycidae | 1.7 ± 3.1 | 0 | 1.0 ± 1.7 | ||||
Coccinelidae | 2.3 ± 4.1 | 0 | 0 | ||||
Geotrupidae | 1.0 ± 1.8 | 0 | 1.1 ± 2.1 | ||||
Dynastidae | 1.5 ± 2.8 | 0 | 0 | ||||
Curculionidae | 0 | 0.8 ± 1.5 | 0 | ||||
Hymenoptera | 66.5 ± 64.1 | 25.5 ± 24.9 | 45.1 ± 41.9 | Formicidae | 57.7 ± 71.3 | 23.8 ± 22.5 | 28.8 ± 27.3 |
Haplotaxida | Tenthredinidae | 7.2 ± 11.0 | 1.0 ± 1.7 | 11.8 ± 10.9 | |||
Larva (NI) ‡ | 1.5 ± 2.8 | 0.8 ± 1.5 | 4.6 ± 4.8 | ||||
Glossoscolecidae | 19.8 ± 23.0 | 19.2 ± 12.9 | 17.5 ± 16.5 | ||||
Diptera | 9.9 ± 12.3 | 6.9 ± 10.4 | 7.8 ± 13.0 | Muscidae | 6.9 ± 10.4 | 3.0 ± 5.5 | 3.2 ± 3.9 |
Larva (NI) | 1.5 ± 2.8 | 3.0 ± 5.5 | 2.3 ± 4.1 | ||||
Sciaridae | 0.8 ± 1.5 | 0.8 ± 1.5 | 2.3 ± 1.4 | ||||
Cecidyomidae | 0.8 ± 1.5 | 0 | 0 | ||||
Hemiptera | 5.1 ± 7.8 | 4.0 ± 6.5 | 4.0 ± 6.9 | Miridae | 3.6 ± 5.9 | 1.0 ± 1.7 | 4.0 ± 5.9 |
Cercopidae | 1.1 ± 2.1 | 3.2 ± 5.6 | 0.8 ± 1.5 | ||||
Lygaeidae | 1.5 ± 2.8 | 3.0 ± 5.5 | 0 | ||||
Araneae | Pentatomidae | 0 | 0.8 ± 1.5 | 0 | |||
6.5 ± 9.3 | 2.3 ± 3.9 | 2.5 ± 4.2 | Paratropididae | 4.2 ± 6.4 | 1.5 ± 2.8 | 2.5 ± 4.2 | |
Dipluridae | 2.3 ± 4.1 | 0.8 ± 1.5 | 0 | ||||
Chilopoda | 1.5 ± 2.8 | 0.8 ± 1.5 | 2.3 ± 3.9 | Cryptopidae | 1.5 ± 2.8 | 0.8 ± 1.5 | 1.5 ± 2.8 |
Scolopendridae | 0 | 0 | 0.8 ± 1.5 | ||||
Solifugae | Ammotrechidae | 2.1 ± 3.8 | 1.7 ± 1.9 | 0 | |||
Blattodea | Blattelidae | 0 | 0.8 ± 1.5 | 1.5 ± 2.8 | |||
Lepidoptera | Pieridae | 0.8 ± 1.5 | 0 | 0 | |||
Orthoptera | Gryllotalpidae | 0 | 0.8 ± 1.5 | 0 | |||
Psocoptera | Psocidae | 0 | 0.8 ± 1.5 | 0 | |||
Density | 221.3 ± 166.6 | 276.6 ± 266.5 | 205.5 ± 155.4 | ||||
Families | |||||||
Richness | 6.0 ± 3.9 | 4.2 ± 3.6 | 4.6 ± 3.0 | ||||
Diversity | 4.5 ± 2.8 | 2.6 ± 2.1 | 3.2 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Márquez, J.A.; Jiménez-Ballesta, R.; Hernández-Hernández, R.M.; Sánchez, G.K.; Lozano, Z.; Castro, I. Effect of Maize Conservation Crops Associated with Two Vegetal Covers on the Edaphic Macrofauna in a Well-Drained Savanna of Venezuela. Land 2022, 11, 464. https://doi.org/10.3390/land11040464
Morales-Márquez JA, Jiménez-Ballesta R, Hernández-Hernández RM, Sánchez GK, Lozano Z, Castro I. Effect of Maize Conservation Crops Associated with Two Vegetal Covers on the Edaphic Macrofauna in a Well-Drained Savanna of Venezuela. Land. 2022; 11(4):464. https://doi.org/10.3390/land11040464
Chicago/Turabian StyleMorales-Márquez, Jimmy A., Raimundo Jiménez-Ballesta, Rosa M. Hernández-Hernández, Gloria K. Sánchez, Zenaida Lozano, and Ignacio Castro. 2022. "Effect of Maize Conservation Crops Associated with Two Vegetal Covers on the Edaphic Macrofauna in a Well-Drained Savanna of Venezuela" Land 11, no. 4: 464. https://doi.org/10.3390/land11040464
APA StyleMorales-Márquez, J. A., Jiménez-Ballesta, R., Hernández-Hernández, R. M., Sánchez, G. K., Lozano, Z., & Castro, I. (2022). Effect of Maize Conservation Crops Associated with Two Vegetal Covers on the Edaphic Macrofauna in a Well-Drained Savanna of Venezuela. Land, 11(4), 464. https://doi.org/10.3390/land11040464