A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
LULC [km2 (%)] | RMF1 | RMF2 | RMF3 | RMF4 | RMF5 | RMF6 | RMF7 | RMF8 |
---|---|---|---|---|---|---|---|---|
Agriculture | 3.8 | 3.1 | 3.1 | 3.1 | 2.9 | 0.2 | <0.1 | 0.1 |
(10.5) | (8.8) | (8.8) | (8.8) | (8.5) | (20.3) | (42.8) | (16.3) | |
Upland Forest | 31.1 | 30.8 | 30.8 | 30.8 | 30.2 | 0.6 | <0.1 | 0.4 |
(86.5) | (88.3) | (88.3) | (88.3) | (88.5) | (79.2) | (57.2) | (83.4) | |
Mixed Development | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | <0.1 | 0 | <0.1 |
(2.0) | (1.9) | (1.9) | (1.9) | (1.9) | (0.2) | (0) | (0.3) | |
Open Water | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | <0.1 | 0 | 0 |
(1.0) | (1.1) | (1.1) | (1.1) | (1.1) | (0.3) | (0) | (0) | |
Total Area | 35.9 | 34.9 | 34.9 | 34.9 | 34.1 | 0.8 | <0.1 | 0.5 |
(100) | (100) | (100) | (100) | (100) | (100) | (100) | (100) |
2.2. Data Collection and Analysis
3. Results
3.1. Climate during Study
3.2. Suspended Sediment Characteristics
3.3. Sand, Silt, Clay Fractions
3.4. Particle Size Distribution Ratios
4. Discussion
4.1. Stream Water and Shallow Groundwater Suspended Sediment
4.2. Particle Size Variability
4.3. Methodlogical Considerations
4.4. Study Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wass, P.D.; Leeks, G.J.L. Suspended sediment fluxes in the Humber catchment, UK. Hydrol. Process. 1999, 13, 935–953. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling. Sci. Total Environ. 2017, 598, 228–238. [Google Scholar] [CrossRef]
- Noe, G.B.; Cashman, M.J.; Skalak, K.; Gellis, A.; Hopkins, K.G.; Moyer, D.; Webber, J.; Benthem, A.; Maloney, K.; Brakebill, J.; et al. Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay watershed, USA. Wiley Interdiscip. Rev. Water 2020, 7, 1–28. [Google Scholar] [CrossRef]
- Martin, J.-M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A. Continuous and event-based time series analysis of observed floodplain groundwater flow under contrasting land-use types. Sci. Total Environ. 2016, 566–567, 436–445. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Boulton, A.J.; Daniel, S.O.; Poole, G.C.; Rahel, F.J.; Stanley, E.H.; Wohl, E.; Bång, A.; Carlstrom, J.; Cristoni, C.; et al. Process-Based Ecological River Restoration: Visualizing Three- Dimensional Connectivity and Dynamic Vectors to Recover Lost Linkages. Ecol. Soc. 2006, 11, 5. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Freeman, G. A case study considering the comparability of mass and volumetric suspended sediment data. Environ. Earth Sci. 2014, 71, 4051–4060. [Google Scholar] [CrossRef]
- Brunke, M. Colmation and depth filtration within streambeds: Retention of particles in hypoheic interstices. Int. Rev. Hydrobiol. 1999, 84, 99–117. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Gebo, N.A. Quantifying the Effects of Land Use and Erosion. Eros. Control 2010, 17, 43–49. [Google Scholar]
- Hubbart, J.A. Using sediment particle size class analysis to better understand urban land-use effects. Int. J. Appl. Sci. Technol. 2012, 2, 12–27. [Google Scholar]
- Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water. Appl. Geochem. 2016, 68, 1–9. [Google Scholar] [CrossRef]
- Chalmers, A.T.; van Metre, P.C.; Callender, E. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A. J. Contam. Hydrol. 2007, 91, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.A.; Walling, D.E.; Hodgkinson, R.A. Suspended sediment sources in two small lowland agricultural catchments in the UK. J. Hydrol. 2001, 252, 1–24. [Google Scholar] [CrossRef]
- Murphy, J.C. Changing suspended sediment in United States rivers and streams: Linking sediment trends to changes in land use/cover, hydrology and climate. Hydrol. Earth Syst. Sci. 2020, 24, 991–1010. [Google Scholar] [CrossRef] [Green Version]
- Walling, D.E. The changing sediment loads of the world’s rivers. IAHS-AISH Publ. 2008, 20, 323–338. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A.; Smith, T. Quantifying Urban Land-Use Impacts on Suspended Sediment Particle Size Class Distribution. Stormwater 2014, 15, 40–50. [Google Scholar]
- Gao, P. Understanding watershed suspended sediment transport. Prog. Phys. Geogr. 2008, 32, 243–263. [Google Scholar] [CrossRef]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.R.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, 1–12. [Google Scholar] [CrossRef]
- Estrany, J.; Garcia, C.; Batalla, R.J. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain. Geomorphology 2009, 106, 292–303. [Google Scholar] [CrossRef]
- Burt, T.P. The hydrological role of floodplains within the drainage basin system. In Buffer Zones: Their Processes and Potential in Water Protection; Haycock Associated Limited: Hertfordshire, UK, 1997; pp. 21–32. [Google Scholar]
- Walling, D.E.; Owens, P.N.; Leeks, G.J.L. The role of channel and floodplain storage in the suspended sediment budget of the River Ouse, Yorkshire, UK. Geomorphology 1998, 22, 225–242. [Google Scholar] [CrossRef]
- Vanlierde, E.; de Schutter, J.; Jacobs, P.; Mostaert, F. Estimating and modeling the annual contribution of authigenic sediment to the total suspended sediment load in the Kleine Nete Basin, Belgium. Sediment. Geol. 2007, 202, 317–332. [Google Scholar] [CrossRef]
- Rudorff, C.M.; Dunne, T.; Melack, J.M. Recent increase of river–floodplain suspended sediment exchange in a reach of the lower Amazon River. Earth Surf. Process. Landforms 2018, 43, 322–332. [Google Scholar] [CrossRef]
- Abbott, S.; Julian, J.P.; Kamarinas, I.; Meitzen, K.M.; Fuller, I.C.; McColl, S.T.; Dymond, J.R. State-shifting at the edge of resilience: River suspended sediment responses to land use change and extreme storms. Geomorphology 2018, 305, 49–60. [Google Scholar] [CrossRef]
- Pronk, M.; Goldscheider, N.; Zopfi, J. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environ. Sci. Technol. 2007, 41, 8400–8405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiger, S.J.; Hubbart, J.A. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design. Sci. Total Environ. 2016, 542, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Karwan, D.L.; Gravelle, J.A.; Hubbart, J.A. Effects of timber harvest on suspended sediment loads in Mica Creek, Idaho. For. Sci. 2007, 53, 181–188. [Google Scholar]
- Rousseau, A.N.; Savary, S.; Hallema, D.W.; Gumiere, S.J.; Foulon, É. Modeling the effects of agricultural BMPs on sediments, nutrients, and water quality of the Beaurivage River watershed (Quebec, Canada). Can. Water Resour. J. 2012, 38, 99–120. [Google Scholar] [CrossRef]
- Bechmann, M.; Stålnacke, P. Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments. Sci. Total Environ. 2005, 344, 129–142. [Google Scholar] [CrossRef]
- Gellis, A.C.; Hupp, C.R.; Pavich, M.J.; Landwehr, J.M.; Banks, W.S.L.; Hubbard, B.E.; Landland, M.J.; Ritchie, J.C.; Reuter, J.M. Sources, Transport, and Storage of Sediment at Selected Sites in the Chesapeake Bay Watershed; U.S. Geological Survey Scientific Investigations Report 2008-5186; U.S. Geological Survey West Trenton Publishing Service Center: Baltimore, MD, USA, 2009.
- Bainbridge, Z.T.; Brodie, J.E.; Faithful, J.W.; Sydes, D.A.; Lewis, S.E. Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reef from the Tully—Murray Basin, Queensland, Australia. Mar. Freshw. Res. 2009, 60, 1081–1090. [Google Scholar] [CrossRef]
- Hughes, A.O.; Quinn, J.M.; McKergow, L.A. Land use influences on suspended sediment yields and event sediment dynamics within two headwater catchments, Waikato, New Zealand. N. Z. J. Mar. Freshw. Res. 2012, 46, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Gruszowski, K.E.; Foster, I.D.L.; Lees, J.A.; Charlesworth, S.M. Sediment sources and transport pathways in a rural catchment, Herefordshire, UK. Hydrol. Process. 2003, 17, 2665–2681. [Google Scholar] [CrossRef]
- Foster, I.D.L.; Chapman, A.S.; Hodgkinson, R.M.; Jones, A.R.; Lees, J.A.; Turner, S.E.; Scott, M. Changing suspended sediment and particulate phosphorus loads and pathways in underdrained lowland agricultural catchments; Herefordshire and Worcestershire, U.K. Hydrobiologia 2003, 494, 119–126. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E.; Youngs, E.G.; Amoozegar, A.; Booltink, H.W.G.; Bouma, J. Saturated and field-saturated water flow parameters. In Methods of Soil Analysis, Part 4, Phyiscal Methodss; Dane, J.H., Topp, G.C., Eds.; Wiley: Madison, WI, USA, 2002; pp. 797–801. [Google Scholar]
- Brakebill, J.W.; Ator, S.W.; Sekellick, A.J. Input and Predictions from a Suspended-Sediment SPARROW Model CBSS_V2 in the Chesapeake Bay Watershed; U.S. Geological Survey Data Release; U.S. Geological Survery: Baltiomore, MD, USA, 2019.
- Phillips, S.W. The U.S. Geological Survey and the Chesapeake Bay—The Role of Science in Environmental Restoration; U.S. Geological Survey Circular 1220; United States Government Printing Office: Reston, VA, USA, 2002.
- Chesapeake Futures: Choices for the 21st Century; Boesch, D.F.; Greer, J. (Eds.) Chesapeake Research Consortium, Inc.: Edgewater, MD, USA, 2003. [Google Scholar]
- Linker, L.C.; Batiuk, R.A.; Shenk, G.W.; Cerco, C.F. Development of the Chesapeake Bay watershed total maximum daily load allocation. J. Am. Water Resour. Assoc. 2013, 49, 986–1006. [Google Scholar] [CrossRef]
- Langland, M.; Blomquist, J.; Moyer, D.; Hyer, K. Nutrient and Suspended-Sediment Trends, Loads, and Yields and Development of an Indicator of Streamwater Quality at Nontidal Sites in the Chesapeake Bay Watershed, 1985–2010; U.S. Geological Survey Scientific Investigations Report 2012–5093; U.S. Geological Survey: Lemoyne, PA, USA, 2012; pp. 1–26.
- United States Environmental Protection Agency Cheapeake Bay. Total Maximum Daily Load for Nitrogen, Phosphorus and Sediment; United States Environmental Protection Agency Cheapeake Bay: Washington, DC, USA, 2010.
- Langland, M.; Cronin, T. A Summary Report of Sediment Processes in Chesapeake Bay and Watershed; Water-Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2003. [CrossRef]
- Zhang, Q.; Brady, D.C.; Boynton, W.R.; Ball, W.P. Long-Term Trends of Nutrients and Sediment from the Nontidal Chesapeake Watershed: An Assessment of Progress by River and Season. J. Am. Water Resour. Assoc. 2015, 51, 1534–1555. [Google Scholar] [CrossRef]
- Moyer, D.L.; Blomquist, J. Summary of Nitrogen, Phosphorus, and Suspended-Sediment Loads and Trends Measured at the Chesapeake Bay Nontidal Network Stations for Water Years 2009–2018. Available online: https://cbrim.er.usgs.gov/data/NTN%20Load%20and%20Trend%20Summary%202018.pdf (accessed on 22 March 2022).
- Zhang, Q.; Blomquist, J.D. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984–2016. Sci. Total Environ. 2018, 619–620, 1066–1078. [Google Scholar] [CrossRef]
- Williams, M.R.; Bhatt, G.; Filoso, S.; Yactayo, G. Stream Restoration Performance and Its Contribution to the Chesapeake Bay TMDL: Challenges Posed by Climate Change in Urban Areas. Estuaries Coasts 2017, 40, 1227–1246. [Google Scholar] [CrossRef]
- Natural Resource Analysis Center at West Virginia University. WV Land Use Land Cover (NAIP 2016). Available online: http://wvgis.wvu.edu/data/dataset.php?ID=489 (accessed on 15 February 2020).
- Knight, H.G. Reymann Memorial Farms; West Virginia Agicultural and Forestry Experiemnt Station: Morgantown, WV, USA, 1925. [Google Scholar]
- West Virginia University Reymann Memorial Farm. Available online: https://www.davis.wvu.edu/about-davis-college/farms-and-forests/reymann-memorial-farm (accessed on 16 April 2020).
- National Oceanic and Atmospheric Administration Climate Data Online Search. Available online: https://www.ncdc.noaa.gov/cdo-web/search (accessed on 20 April 2020).
- Hubbart, J.A.; Kellner, E.; Zeiger, S.J. A case-study application of the experimental watershed study design to advance adaptive management of contemporary watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.W.; Dicken, C.L.; Horton, J.D.; Labay, K.A.; Foose, M.P.; Mueller, J.A.L. Preliminary integrated geologic map databases for the United States: Kentucky, Ohio, Tennessee, and West Virginia; U.S. Geological Survey: Reston, VA, USA, 2005.
- Natural Resources Conservation Service Soil Texture Calculator. Available online: http://soils.usda.gov/technical/aids/investigations/texture/%5Cnhttp://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (accessed on 15 April 2020).
- Gootman, K.S.; Kellner, E.; Hubbart, J.A. A comparison and validation of saturated hydraulic conductivity models. Water 2020, 12, 2040. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A. Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed. Sci. Total Environ. 2018, 615, 1164–1175. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. D 2540 Standard Methods For the Examination of Water and Wastewater; American Water Works Association: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Plantz, P.E. Blue Laser Technology Applied to the Microtrac Unified Scatter Technique for Full- Range Particle Size Measurement; Microtrac, Inc.: Montgomeryville, PA, USA, 2007. [Google Scholar]
- Plantz, P.E. Pigment Particle Size Using Microtrac Laser Technology; Microtrac, Inc.: Montgomeryville, PA, USA, 2008. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; J. Wiley: New York, NY, USA, 2002; ISBN 0471172758/9780471172758. [Google Scholar]
- Terajima, T.; Sakamoto, T.; Nakai, Y.; Kitmura, K. Subsurface discharge and suspended sediment yield interactions in a valley head of a small forested watershed. J. For. Res. 1996, 1, 131–137. [Google Scholar] [CrossRef]
- Terajima, T.; Sakamoto, T.; Nakai, Y.; Kitmura, K. Suspended seidment discharge in subsurface flow from the head hollow of a small forested watershed, northern Japan. Earth Surf. Process. Landforms. 1997, 22, 987–1000. [Google Scholar] [CrossRef]
- Smith, C.M. Sediment, phosphorus, and nitrogen in channelised surface run-off from a New Zealand pastoral catchment. N. Z. J. Mar. Freshw. Res. 1987, 21, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Borda, T.; Celi, L.; Zavattaro, L.; Sacco, D.; Barberis, E. Effect of agronomic management on risk of suspended solids and phosphorus losses from soil to waters. J. Soils Sediments 2011, 11, 440–451. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, S.M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L. From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed. Geomorphology 2011, 132, 272–286. [Google Scholar] [CrossRef]
- McCarthy, J.F.; Zachara, J.M. Subsurface Transport of Contaminants. Environ. Sci. Technol. 1989, 23, 752. [Google Scholar] [CrossRef]
- Goldenberg, L.C.; Mandel, S.; Magaritz, M. Fluctuating, non-homogeneous changes of hydraulic conductivity in porous media. Q. J. Eng. Geol. 1986, 19, 183–190. [Google Scholar] [CrossRef]
- Caissie, D.; Pollock, T.L.; Cunjak, R.A. Variation in stream water chemistry and hydrograph separation in a small drainage basin. J. Hydrol. 1996, 178, 137–157. [Google Scholar] [CrossRef]
- Meybeck, M. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1935–1955. [Google Scholar] [CrossRef]
- Walling, D.E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 2005, 344, 159–184. [Google Scholar] [CrossRef]
- Powers, S.M.; Robertson, D.M.; Stanley, E.H. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes. Hydrol. Process. 2014, 28, 5919–5937. [Google Scholar] [CrossRef]
- Gootman, K.S.; Hubbart, J.A. Rainfall, runoff and shallow groundwater response in a mixed-use, agro-forested watershed of the Northeast, USA. Hydrol. Process. 2021, 35, e14312. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; U.S. Department of Agriculture, National Soil Survey Center Natural Resources Conservation Service: Washington, DC, USA, 2014. [CrossRef]
- Frostick, L.E.; Lucas, P.M.; Reid, I. The infiltration of fine matrices into coarse-grained alluvial sediments and its implications for stratigraphical interpretation. J. Geol. Soc. Lond. 1984, 141, 955–965. [Google Scholar] [CrossRef]
- Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.; Harvey, J.W.; Jackman, A.P. A mini drivepoint sampler for measuring pore-water solute concentrations in the hyporheic zone of sand-bottom streams. Limnol. Oceanogr. 1998, 43, 1378–1383. [Google Scholar] [CrossRef]
- Woessner, W.W. Building a compact, low-cost, and portable peristaltic sampling pump. Ground Water 2007, 45, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuyfzand, P.J. Concentration and size distribution of particles in abstracted groundwater. Water Res. 2010, 44, 868–878. [Google Scholar] [CrossRef]
- Imbrigiotta, T.E.; Harte, P.T. Passive Sampling of Groundwater Wells for Determination of Water Chemistry; U.S. Geological Survey: Reston, VA, USA, 2020; pp. 1–94.
Month | PPT (mm) | Ta (°C) | ||
---|---|---|---|---|
Totals | Mean | Min | Max | |
January | 79 | 2.28 | 1.95 | 2.66 |
February | 58.7 | 4.05 | 3.67 | 4.44 |
March | 64.3 | 8.82 | 8.40 | 9.24 |
April | 128.5 | 9.42 | 8.99 | 9.88 |
May | 51.8 | 14.76 | 14.35 | 15.20 |
June | 110.6 | 20.51 | 20.06 | 20.99 |
July | 106 | 24.01 | 23.50 | 24.53 |
August | 114.6 | 22.18 | 21.78 | 22.59 |
September | 41.9 | 16.70 | 16.29 | 17.12 |
October | 57.9 | 12.27 | 11.85 | 12.70 |
November | 67.9 | 8.50 | 8.06 | 8.97 |
December | 80.3 | 1.43 | 1.08 | 1.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gootman, K.S.; Hubbart, J.A. A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed. Land 2022, 11, 506. https://doi.org/10.3390/land11040506
Gootman KS, Hubbart JA. A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed. Land. 2022; 11(4):506. https://doi.org/10.3390/land11040506
Chicago/Turabian StyleGootman, Kaylyn S., and Jason A. Hubbart. 2022. "A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed" Land 11, no. 4: 506. https://doi.org/10.3390/land11040506
APA StyleGootman, K. S., & Hubbart, J. A. (2022). A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed. Land, 11(4), 506. https://doi.org/10.3390/land11040506