Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Research Framework
- According to the characteristics that forest disturbance is usually accompanied by an increase in soil composition and a decrease in greenness, the normalized difference fraction index (NDFI) and soil index based on the spectral mixture analysis (SMA) model was adopted. The normalized burn ratio (NBR) and the normalized difference vegetation index (NDVI) index are also used for breakpoint identification, for they are frequently used in forest disturbance detection [30,31]. That is, only when the multiply features have changed the pattern is judged as a forest disturbance event;
- To further improve the disturbance detection accuracy and precisely record the change time at a monthly scale, the continuous harmonic fitting segments are used to extract the disturbance time. The sum confidence was defined as the sum value of the confidences of NDVI, NBR, and NDFI (Equation (4)). For every breakpoint in the yearly time-series curve fitted by the harmonic model, only the breakpoint with the highest sum confidences of NBR, NDVI, and NDFI was extracted. To eliminate salt and pepper noises, the morphological closing method and the superpixel clustering algorithm are adopted.
2.3.1. Forest Monitoring Indexes
2.3.2. Breakpoint Detection and Time Series Segmentation Fitting
2.3.3. Landcover Classification by Feature Subset Optimization
2.3.4. Forest Disturbance Detection Based on Spectral Trajectory Breakpoint Recognition
2.3.5. Verification and Comparison of Forest Disturbance Detection
3. Results
3.1. Landcover Classification Results
3.2. Validation and Comparison of Forest Disturbance Detection Results
3.3. Forest Disturbance Results
4. Discussion
- The algorithm is fully automated, and no empirical or global thresholds need to be specified in the detection process;
- The algorithm can diagnose both interannual and intra-annual trends.
4.1. Forest Distribution Classification
4.2. Forest Disturbance Detection Based on CCDC-STBR Algorithm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Westoby, J. Introduction to World Forestry: People and Their Trees; AGRIS: Klidi, Greece, 1989. [Google Scholar]
- Wulder, M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. Earth Environ. 1998, 22, 449–476. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Marland, G. The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 1996, 10, 275–300. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Turubanova, S. Timing of Tree Density Increases, Influence of Climate Change, and a Land Use Proxy for Tree Density Increases in the Eastern United States. Land 2021, 10, 1121. [Google Scholar] [CrossRef]
- Lohbeck, M.; Poorter, L.; Paz, H.; Pla, L.; van Breugel, M.; Martínez-Ramos, M.; Bongers, F. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 89–96. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S.J.P.E.; Sensing, R. Historical record of Landsat global coverage. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.J.F.i.E.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Bruzzone, L.; Cossu, R.; Vernazza, G. Detection of land-cover transitions by combining multidate classifiers. Pattern Recognit. Lett. 2004, 25, 1491–1500. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Cui, X.; Chen, J. Change vector analysis in posterior probability space: A new method for land cover change detection. IEEE Geosci. Remote Sens. Lett. 2011, 8, 317–321. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2010, 25, 2365–2401. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, C. Advance and Future Development of Change Detection for Multi-temporal Remote Sensing Imagery. Acta Geod. Cartogr. Sin. 2017, 46, 1447. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series Landsat data for the Australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Joseph Hughes, M.; Douglas Kaylor, S.; Hayes, D.J. Patch-Based Forest Change Detection from Landsat Time Series. Forests 2017, 8, 166. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Campbell, L.B. Mass data processing of time series Landsat imagery: Pixels to data products for forest monitoring. Int. J. Digit. Earth 2016, 9, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 2015, 158, 220–234. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote Sens. 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, M.; Workman, J. Salivary gland scintigram in inflammatory disease. Am. Surg. 1969, 35, 765–772. [Google Scholar] [PubMed]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, S.; Lu, W.; Liu, M.; Feng, S.; Cong, P. Continuous Change Mapping to Understand Wetland Quantity and Quality Evolution and Driving Forces: A Case Study in the Liao River Estuary from 1986 to 2018. Remote Sens. 2021, 13, 4900. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- De Wasseige, C.; Defourny, P. Remote sensing of selective logging impact for tropical forest management. For. Ecol. Manag. 2004, 188, 161–173. [Google Scholar] [CrossRef]
- Wensheng, D.; Yuanpeng, C.; Li, W.; Ni, H.; Yuanhuizi, H.; ChanSai, Z.; Yangjian, Z.; Quan, Z.; Zheng, N. Information extraction of temporal and spatial distribution of short-rotation plantations in Guangxi Zhuang Autonomous Region. Natl. Remote Sens. Bull. 2022, 1–12. Available online: https://www.ygxb.ac.cn/thesisDetails#10.11834/jrs.20221059&lang=zh (accessed on 14 March 2022).
- Brooks, E.B.; Thomas, V.A.; Wynne, R.H.; Coulston, J.W. Fitting the multitemporal curve: A fourier series approach to the missing data problem in remote sensing analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3340–3353. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Woodcock, C.E.; Chen, S.; Wang, J.A.; Sulla-Menashe, D.; Zuo, Z.; Olofsson, P.; Wang, Y.; Friedl, M.A. Mapping causal agents of disturbance in boreal and arctic ecosystems of North America using time series of Landsat data. Remote Sens. Environ. 2022, 272, 112935. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region. Remote Sens. 2019, 11, 2833. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Susstrunk, S. Superpixels and Polygons Using Simple Non-Iterative Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4651–4660. [Google Scholar]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, C.X.; Chen, W. Remotely Sensed Diagnosing Temporal and Spatial Variation of Vegetation Coverage in Guangxi Based on MODIS NDVI Data. Sci. Silvae Sin. 2019, 55, 27–37. Available online: http://www.linyekexue.net/EN/10.11707/j.1001-7488.20191004 (accessed on 14 March 2022).
Data | Description | Source |
---|---|---|
Landsat 4, 5, 7, 8 | 4053 Landsat surface reflectance images of Nanning City, with all water and snow pixels masked. Spatial resolution = 30 m. Seven bands were used for change detection: NIR, Red, Green, Blue, Swir1, Swir2, and Temp | Google Earth Engine Data Catalog |
High-resolution images | For verification of land surface change detection results and Landsat image classification | Google Earth |
Global Forest Change | Nanning Forest Mask in 2000 | Google Earth Engine Data Catalog |
Coefficients | Options | Description |
---|---|---|
Harmonic coefficients | Sin, Cos, Sin2, Cos2, Sin3, Cos3, Slope, Intercept | Parameters of the harmonic model |
Derivatives coefficients | AMPLITUDE, PHASE, AMPLITUDE2, PHASE2, AMPLITUDE3, PHASE3, RMSE, Magnitude | Seasonal metrics extracted from the harmonic model |
Interval coefficients | tStart, tBreak, tEnd | Segment indicators |
Band | Index Features | Auxillary Features |
---|---|---|
Blue, Green, Red, Nir, Swir1, Swir2, Temperature | NDFI, NDVI, NBR, Greenness, Brightness, Wetness, GV, NPV, Shade, Soil | Elevation, Aspect, DEM, Rainfall, Tree cover |
Overall Accuracy = (167 + 39 + 109)/(167 + 39+9 + 7 + 109) = 95.16% Kappa Coefficient = 0.93 | |||||
---|---|---|---|---|---|
Class | Forest | Water | Other | Total | User’s Accuracy |
Forest | 167 | 0 | 0 | 167 | 100% |
Water | 0 | 39 | 7 | 46 | 81.25% |
Other | 0 | 9 | 109 | 118 | 93.97% |
Total | 167 | 48 | 116 | 331 | |
Producer accuracy | 100% | 84.78% | 92.37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, L.; Zhou, Q.; Tang, F.; Zhang, B.; Huang, N.; Nath, B. Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring. Land 2022, 11, 504. https://doi.org/10.3390/land11040504
Zhang Y, Wang L, Zhou Q, Tang F, Zhang B, Huang N, Nath B. Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring. Land. 2022; 11(4):504. https://doi.org/10.3390/land11040504
Chicago/Turabian StyleZhang, Yangjian, Li Wang, Quan Zhou, Feng Tang, Bo Zhang, Ni Huang, and Biswajit Nath. 2022. "Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring" Land 11, no. 4: 504. https://doi.org/10.3390/land11040504
APA StyleZhang, Y., Wang, L., Zhou, Q., Tang, F., Zhang, B., Huang, N., & Nath, B. (2022). Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring. Land, 11(4), 504. https://doi.org/10.3390/land11040504