Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Treatment Design
2.3. Precipitation and Runoff
2.4. Event-Based Sediment Load
2.5. Data Analysis and Statistics
3. Results
3.1. Precipitation and Its Variability
3.2. Impact of Land-Use Change on Watershed Behavior
3.3. Runoff Coefficient
3.4. Accumulated Runoff and Sediment Responses
4. Discussion
4.1. Impact of Land-Use Change on Watershed Behavior
4.2. Responses of Accumulated Runoff and Sediment Yield
4.3. Climate and Land Management Impact
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, K.N.; Zou, C.B.; Kakani, V.G.; Zhong, Y.; Will, R.E. Improved productivity, water yield, and water use efficiency by incorporating switchgrass cultivation and native ecosystems in an integrated biofuel feedstock system. GCB Bioenergy 2020, 13, 369–381. [Google Scholar] [CrossRef]
- Næss, J.S.; Cavalett, O.; Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 2021, 4, 525–536. [Google Scholar] [CrossRef]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Barnieh, B.A.; Jia, L.; Menenti, M.; Zhou, J.; Zeng, Y. Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa. Sustainability 2020, 12, 8565. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Chang. Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, B.P.; Birt, A.; Archer, S.R.; Fuhlendorf, S.D.; Kreuter, U.P.; Sorice, M.G.; Van Leeuwen, W.J.D.; Zou, C. Viewing Woody-Plant Encroachment through a Social–Ecological Lens. BioScience 2018, 68, 691–705. [Google Scholar] [CrossRef]
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R. Woody plant encroachment: Causes and consequences. In Rangeland Systems; Briske, D., Ed.; Springer Series on Environmental Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.H.; Janssen, M.A. Rangelands, pastoralists and governments: Interlinked systems of people and nature. Philos. Trans. R. Soc. B Biol. Sci. 2002, 357, 719–725. [Google Scholar] [CrossRef]
- Archer, S.R.; Predick, K.I. An ecosystem services perspective on brush management: Research priorities for competing land-use objectives. J. Ecol. 2014, 102, 1394–1407. [Google Scholar] [CrossRef] [Green Version]
- Barger, N.N.; Archer, S.R.; Campbell, J.L.; Huang, C.-Y.; Morton, J.A.; Knapp, A.K. Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- USGS (United State Geological System). Southern Great Plains Rapid Ecoregional Assessment-Pre-Assessment Report; Open-File Report; United States Geological Survey: Fairfax, VA, USA, 2015.
- NASS. 2017 USDA National Agricultural Statistics Service (NASS), 2017 Census of Agriculture. Available online: www.nass.usda.gov/AgCensus (accessed on 18 March 2022).
- Berg, M.D.; Marcantonio, F.; Allison, M.A.; McAlister, J.; Wilcox, B.P.; Fox, W.E. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning. Hydrol. Earth Syst. Sci. 2016, 20, 2295–2307. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.D.; Popescu, S.C.; Wilcox, B.; Angerer, J.P.; Rhodes, E.; McAlister, J.; Fox, W.E. Small farm ponds: Overlooked features with important impacts on watershed sediment transport. JAWRA J. Am. Water Resour. Assoc. 2015, 52, 67–76. [Google Scholar] [CrossRef]
- Wine, M.L.; Zou, C.B.; Bradford, J.A.; Gunter, S.A. Runoff and sediment responses to grazing native and introduced species on highly erodible Southern Great Plains soil. J. Hydrol. 2012, 450–451, 336–341. [Google Scholar] [CrossRef]
- Zou, C.B.; Twidwell, D.; Bielski, C.H.; Fogarty, D.T.; Mittelstet, A.R.; Starks, P.J.; Will, R.E.; Zhong, Y.; Acharya, B.S. Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA—Current State of Knowledge. Water 2018, 10, 1768. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.; Parton, W.J.; Joyce, L.A.; Lauenroth, W.K. Primary Production of the Central Grassland Region of the United States. Ecology 1988, 69, 40–45. [Google Scholar] [CrossRef]
- Coles, A.; McConkey, B.; McDonnell, J. Climate change impacts on hillslope runoff on the northern Great Plains, 1962–2013. J. Hydrol. 2017, 550, 538–548. [Google Scholar] [CrossRef]
- Ojima, D.; Garcia, L.; Elgaali, E.; Miller, K.; Kittel, T.G.; Lackett, J. Potential climate change impacts on water resources in the Great Plains. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1443–1454. [Google Scholar] [CrossRef]
- Smith, S.; Renwick, W.; Bartley, J.; Buddemeier, R. Distribution and significance of small, artificial water bodies across the United States landscape. Sci. Total Environ. 2002, 299, 21–36. [Google Scholar] [CrossRef]
- Baumhardt, R.L. The Dust Bowl Era. In Encyclopedia of Water Science; Stewart, B.A., Howell, T.A., Eds.; Marcel-Dekker: New York, NY, USA, 2003; pp. 187–191. [Google Scholar]
- USDA. USDA Expands and Renews Conservation Reserve Program in Effort to Boost Enrollment and Address Climate Change. 2021. Available online: https://www.fsa.usda.gov/news-room/news-releases/2021/usda-expands-and-renews-conservation-reserve-program-in-effort-to-boost-enrollment-and-address-climate-change (accessed on 18 March 2022).
- McLaughlin, S.B.; Kszos, L. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Wright, L. Historical Perspective on How and Why Switchgrass Was Selected as a “Model” High-Potential Energy Crop; ORNL/TM-2007/109; Bioenergy Resources and Engineering Systems: Oak Ridge, TN, USA, 2007; pp. 1–59. [Google Scholar]
- Miao, R.; Khanna, M. Are Bioenergy Crops Riskier than Cor? Implications for Biomass Price. Choices 2014, 29, 1–6. [Google Scholar]
- Dumortier, J.; Kauffman, N.; Hayes, D.J. Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost. Energy Econ. 2017, 67, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Morrow, W.R.; Gopal, A.; Fitts, G.; Lewis, S.; Dale, L.; Masanet, E. Feedstock loss from drought is a major economic risk for biofuel producers. Biomass Bioenergy 2014, 69, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Skevas, T.; Swinton, S.M.; Tanner, S.; Sanford, G.; Thelen, K.D. Investment risk in bioenergy crops. GCB Bioenergy 2016, 8, 1162–1177. [Google Scholar] [CrossRef] [Green Version]
- Emery, I.; Mueller, S.; Qin, Z.; Dunn, J.B. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States. Environ. Sci. Technol. 2017, 51, 733–741. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.T.; Di Vittorio, A.; Alexander, P.; Arneth, A.; Barton, C.M.; Brown, D.G.; Kettner, A.; Lemmen, C.; O’Neill, B.C.; Janssen, M.; et al. Modelling feedbacks between human and natural processes in the land system. Earth Syst. Dyn. 2018, 9, 895–914. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-Use Choices: Balancing Human Needs and Ecosystem Function. Front. Ecol. Environ. 2004, 2, 249. [Google Scholar] [CrossRef]
- Nelson, R.G.; Ascough, J.C., II; Langemeier, M.R. Environmental and economic analysis of switchgrass production for water quality improvement in northeast Kansas. J. Environ. Manag. 2006, 79, 336–347. [Google Scholar] [CrossRef]
- Wilson, H.; Cruse, R.; Burras, C.L. Perennial grass management impacts on runoff and sediment export from vegetated channels in pulse flow runoff events. Biomass Bioenergy 2011, 35, 429–436. [Google Scholar] [CrossRef]
- Gu, R.R.; Sahu, M.K.; Jha, M.K. Simulating the impacts of bio-fuel crop production on nonpoint source pollution in the Upper Mississippi River Basin. Ecol. Eng. 2015, 74, 223–229. [Google Scholar] [CrossRef]
- Wang, E.; Cruse, R.M.; Sharma-Acharya, B.; Herzmann, D.E.; Gelder, B.K.; James, D.E.; Flanagan, D.C.; Blanco-Canqui, H.; Mitchell, R.B.; Laird, D.A. Strategic switchgrass (Panicum virgatum) production within row cropping systems: Regional-scale assessment of soil erosion loss and water runoff impacts. GCB Bioenergy 2020, 12, 955–967. [Google Scholar] [CrossRef]
- Meyer, L.D.; Dabney, S.M.; Harmon, W.C. Sediment-trapping Effectiveness of Stiff-grass Hedges. Trans. Am. Soc. Agric. Eng. 1995, 38, 809–815. [Google Scholar] [CrossRef]
- Gilley, J.E.; Eghball, B.; Kramer, L.A.; Moorman, T.B. Narrow grass hedge effects on runoff and soil loss. J. Soil Water Conserv. 2000, 55, 190–196. [Google Scholar]
- Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv. 2003, 58, 1–8. [Google Scholar]
- Wu, Y.; Liu, S. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 2012, 36, 182–191. [Google Scholar] [CrossRef]
- Guo, T.; Cibin, R.; Chaubey, I.; Gitau, M.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R.; Engel, B.A. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Sci. Total Environ. 2018, 613–614, 724–735. [Google Scholar] [CrossRef]
- Nyakatawa, E.; Mays, D.; Tolbert, V.; Green, T.; Bingham, L. Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama. Biomass Bioenergy 2006, 30, 655–664. [Google Scholar] [CrossRef]
- Feng, Q.; Chaubey, I.; Cibin, R.; Engel, B.; Sudheer, K.P.; Volenec, J. Simulating Establishment Periods of Switchgrass and Miscanthus in the Soil and Water Assessment Tool (SWAT). Trans. ASABE 2017, 60, 1621–1632. [Google Scholar] [CrossRef]
- Zhong, Y.; Will, R.E.; Ochsner, T.E.; Saenz, A.; Zhu, L.; Zou, C.B. Response of sediment concentration and load to removal of juniper woodland and subsequent establishment of grasslands–A paired experimental watershed study. Catena 2021, 209, 105816. [Google Scholar] [CrossRef]
- Love, B.J.; Nejadhashemi, A.P. Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass Bioenergy 2011, 35, 2200–2216. [Google Scholar] [CrossRef]
- Woodbury, P.B.; Kemanian, A.R.; Jacobson, M.; Langholtz, M. Improving water quality in the Chesapeake bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production. Biomass Bioenergy 2018, 114, 132–142. [Google Scholar] [CrossRef]
- De La Torre Ugarte, D.G.; He, L.; Jensen, K.L.; English, B.C. Expanded ethanol production: Implications for agriculture, water demand, and water quality. Biomass Bioenergy 2010, 34, 1586–1596. [Google Scholar] [CrossRef]
- Wu, M.; Demissie, Y.; Yan, E. Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi River Basin. Biomass Bioenergy 2012, 41, 44–56. [Google Scholar] [CrossRef]
- Lambert, D.M.; Cavasos, K.; English, B.C.; Wilson, B.; Clark, C.D. Projected changes in stream system nitrogen runoff associated with a mature cellulosic ethanol industry in the Southeastern United States. Land Use Policy 2016, 56, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.B.; Turton, D.J.; Will, R.E.; Engle, D.M.; Fuhlendorf, S.D. Alteration of hydrological processes and streamflow with juniper (Juniperus virginiana) encroachment in a mesic grassland catchment. Hydrol. Process. 2014, 28, 6173–6182. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Stebler, E.; Will, R.E. Woody plant encroachment reduces annual runoff and shifts runoff mechanisms in the tallgrass prairie, U SA. Water Resour. Res. 2017, 53, 4838–4849. [Google Scholar] [CrossRef]
- Wagle, P.; Kakani, V.G.; Huhnke, R.L. Evapotranspiration and Ecosystem Water Use Efficiency of Switchgrass and High Biomass Sorghum. Agron. J. 2016, 108, 1007–1019. [Google Scholar] [CrossRef]
- Yimam, Y.T.; Ochsner, T.E.; Fox, G. Hydrologic cost-effectiveness ratio favors switchgrass production on marginal croplands over existing grasslands. PLoS ONE 2017, 12, e0181924. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- UCSUSA (Union of Concerned Scientists) Biomass Resources in the United States. Union of Concerned Scientists. 2012. Available online: http://www.ucsusa.org/biomassresources (accessed on 18 March 2022).
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Neary, D. Long-term forest paired catchment studies: What do they tell us that landscape-level monitoring does not? Forests 2016, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Tocachi, B.F.; Buytaert, W.; Antiporta, J.; Acosta, L.; Bardales, J.D.; Célleri, R.; Crespo, P.; Fuentes, P.; Gil-Ríos, J.; Guallpa, M.; et al. High-resolution hydrometeorological data from a network of headwater catchments in the tropical Andes. Sci. Data 2018, 5, 180080. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Fowler, G.D.; Guo, Q.; Houle, J. Sediment monitoring bias by automatic sampler in comparison with large volume sampling for parking lot runoff. J. Irrig. Drain. Eng. 2011, 137, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zou, C.; Saenz, A.; Stebler, E.; Kakani, G.; Will, R. Conversion of encroached juniper woodland back to native prairie and to switchgrass increases root zone soil moisture and watershed runoff. J. Hydrol. 2020, 584, 124640. [Google Scholar] [CrossRef]
- McPherson, R.A.; Fiebrich, C.A.; Crawford, K.C.; Kilby, J.R.; Grimsley, D.L.; Martinez, J.E.; Basara, J.; Illston, B.G.; Morris, D.A.; Kloesel, K.A.; et al. Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet. J. Atmos. Ocean. Technol. 2007, 24, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Field, J.P.; Breshears, D.D.; Whicker, J.J.; Zou, C.B. Sediment capture by vegetation patches: Implications for desertification and increased resource redistribution. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- West, A.L.; Zou, C.B.; Stebler, E.; Fuhlendorf, S.D.; Allred, B. Pyric-herbivory and Hydrological Responses in Tallgrass Prairie. Rangel. Ecol. Manag. 2016, 69, 20–27. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Tongway, D.J.; Freudenberger, D.; Noble, J.; Hodgkinson, K. Landscape Ecology Function and Management: Principles from Australia’s Rangelands; CSI-RO Publications: Collingwood, Australia, 1997. [Google Scholar]
- Wilcox, B.P.; Breshears, D.D.; Allen, C.D. Ecohydrology of a resource conserving semiarid woodland: Effects of scale and disturbance. Ecol. Monogr. 2003, 73, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.D.; Trimble, S.W. Environmental Hydrology; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
Phase | Time | Impact Watershed |
---|---|---|
Calibration | October 2014–April 2016 | Pretreatment |
Conversion | May 2016–March 2017 | Herbicide spray |
April 2017 | Plant switchgrass | |
May 2017–September 2017 | Establishing switchgrass | |
Switchgrass | October 2017–September 2019 | Established switchgrass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.B.; Lambert, L.H.; Everett, J.; Will, R.E. Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System. Land 2022, 11, 540. https://doi.org/10.3390/land11040540
Zou CB, Lambert LH, Everett J, Will RE. Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System. Land. 2022; 11(4):540. https://doi.org/10.3390/land11040540
Chicago/Turabian StyleZou, Chris B., Lixia H. Lambert, Josh Everett, and Rodney E. Will. 2022. "Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System" Land 11, no. 4: 540. https://doi.org/10.3390/land11040540
APA StyleZou, C. B., Lambert, L. H., Everett, J., & Will, R. E. (2022). Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass (Panicum virgatum) Bioenergy Feedstock System. Land, 11(4), 540. https://doi.org/10.3390/land11040540