Soil Aggregate Stability in Salt-Affected Vineyards: Depth-Wise Variability Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Soil Analysis
3. Results
3.1. Soil Morphology
3.2. Soil Physio-Chemical Properties
3.3. Soil Aggregate Stability
4. Discussion
4.1. Factors Explaining Soil Aggregate Stability
4.2. Soil Structure Remediation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.; Pankovoy, E.I.; Balyuk, S.A.; Krasilnikov, P.V.; Hasanhanova, G.M. Handbook for Saline Soil Management. Eurasian Soil Partnership Implementation Plan; FAO: Rome, Italy, 2018; p. 142. [Google Scholar]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabolcs, I. Salt Affected Soils; CRC Press: Boca Raton, FL, USA, 1989; p. 274. [Google Scholar]
- Martinez-Beltran, J.; Manzur, C.L. Overview of salinity problems in the world and FAO strategies to address the problem. In Proceedings of the International Salinity Forum, Riverside, CA, USA, 25–27 April 2005; pp. 311–313. [Google Scholar]
- FAO. Management of Some Problem of Soil. Food and Agriculture Organization of the United Nations. 2019. Available online: https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ (accessed on 1 July 2020).
- Bless, A.E.; Colin, F.; Crabit, A.; Devaux, N.; Philippon, O.; Follain, S. Landscape evolution and agricultural land salinization in coastal area: A conceptual model. Sci. Total Environ. 2018, 625, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Herrick, J.E. Soil quality: An indicator of sustainable land management. Appl. Soil Ecol. 2000, 15, 75–83. [Google Scholar] [CrossRef]
- White, R.E. Soils for Fine Wines; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Fayolle, E.; Follain, S.; Marchal, P.; Chéry, P.; Colin, F. Identification of environmental factors controlling wine quality: A case study in Saint-Emilion Grand Cru appellation, France. Sci. Total Environ. 2019, 694, 133718. [Google Scholar] [CrossRef]
- Deloire, A.; Vaudour, E.; Carey, V.A.; Bonnardot, V.; Van Leeuwen, C. Grapevine Responses to Terroir: A Global Approach. OENO One 2005, 39, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Vaudour, E. The quality of grapes and wine in relation to geography: Notions of terroir at various scales. J. Wine Res. 2002, 13, 117–141. [Google Scholar] [CrossRef]
- Ferreira, S.S.C.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Blotevogel, S.; Schreck, E.; Laplanche, C.; Besson, P.; Saurin, N.; Audry, S.; Viers, J.; Priscia, O. Soil chemistry and meteorological conditions influence the elemental profiles of West European wines. Food Chem. 2019, 298, 125033. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Ibrahim, H.; Gallego, P.; Puig, P.H. Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Negrette, grown hydroponically. II. Acidity of musts and wines. S. Afr. J. Enol. Vitic. 2001, 22, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, D.E.; Christy, A.G. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water Sci. Technol. 2005, 51, 27–37. [Google Scholar] [CrossRef]
- Mausel, P.W. Soil quality in Illinois-An example of a soil’s geography resource analysis. Prof. Geogr. 1971, 23, 127–136. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Quantitative Indicators of Soil Quality: A Minimum Data Set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; SSSA Special Publication No. 49; Soil Science Society of America: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality-A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 2016, 67, 11–21. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Edwards, A.P.; Bremner, J.M. Microaggregates in soils 1. J. Soil Sci. 1967, 18, 64–73. [Google Scholar] [CrossRef]
- Angers, D. Changes in soil aggregation and organic carbon under corn and alfalfa. Soil Sci. Soc. Am. J. 1992, 56, 1244–1249. [Google Scholar] [CrossRef]
- Allison, F.E. Soil Aggregation-Some Facts and Fallacies as Seen by a Microbiologist. Soil Sci. 1968, 106, 136–143. [Google Scholar] [CrossRef]
- Setia, R.; Gottschalk, P.; Smith, P.; Marschner, P.; Baldock, J.; Setia, D.; Smith, J. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 2013, 465, 267–272. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Warrence, N.J.; Bauder, J.W.; Pearson, K.E. The Basics of Salinity and Sodicity Effects on Soil Physical Properties; Montana State University, Land Resources and Environmental Sciences Department: Bozeman, MT, USA, 2006; p. 29. [Google Scholar]
- Quirk, J.P.; Schofield, R.K. Landmark Papers: No. 2. The effect of electrolyte concentration on soil permeability. Eur. J. Soil Sci. 2013, 64, 8–15. [Google Scholar] [CrossRef]
- Crescimanno, G.; Iovino, M.; Provenzano, G. Influence of Salinity and Sodicity on Soil Structural and Hydraulic Characteristics. Soil Sci. Soc. Am. J. 1995, 59, 1701–1708. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Onus, A. Spatial Analysis of Soil Salinity and Soil Structural Stability in a Semiarid Region of New South Wales, Australia. Environ. Manag. 2008, 42, 265–278. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Prieto, I.; Roumet, C.; Nespoulous, J.; Metayer, J.; Huon, S.; Villatoro, M.; Stokes, A. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: Effect of plant roots and soil characteristics. Plant Soil 2018, 424, 303–317. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247–248, 24–37. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Cave Cooperative de Viticulteurs de Sérignan. Analyses de Terre des Viticulteurs de Sérignan; Personal communication; Cave Cooperative de Viticulteurs de Sérignan: Sérignan, France, 2016. [Google Scholar]
- WRB. World Reference Base for Soil Resource 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; p. 192. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nation: Rome, Italy, 2006; p. 97. [Google Scholar]
- Le Bissonnais, Y. Aggregate stability and assessment of crustability and erodibility: 1. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Part 1. Agronomy Monograph 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2007; p. 993. [Google Scholar] [CrossRef]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkaline Soils. In Agricultural. Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954. Available online: https://www.ars.usda.gov/pacific-west-area/riverside-ca/us-salinity-laboratory/docs/handbook-no-60/ (accessed on 17 July 2020).
- Salome, C.; Coll, P.; Lardo, E.; Villenave, C.; Blanchart, E.; Hinsinger, P.; Marsden, C.; Le Cadre, E. Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of Mediterranean vineyards. Ecol. Indic. 2014, 43, 83–93. [Google Scholar] [CrossRef]
- Quirk, J.P. Comments on “The application of double-layer theory to drainage, drying and wetting, and the Gapon Exchange constant in a soil with mono- and divalent cations”, by N. Collis-George. Eur. J. Soil Sci. 2003, 54, 211–213. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Arrouays, D. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 1997, 48, 39–48. [Google Scholar] [CrossRef]
- Agnelli, A.; Bol, R.; Trumbore, S.E.; Dixon, L.; Cocco, S.; Corti, G. Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agric. Ecosyst. Environ. 2014, 193, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Le Bissonnais, Y.; Blavet, D.; De Noni, G.; Laurent, J.Y.; Asseline, J.; Chenu, C. Erodibility of Mediterranean vineyard soils: Relevant aggregate stability methods and significant soil variables. Eur. J. Soil Sci. 2007, 58, 188–195. [Google Scholar] [CrossRef]
- Chenu, C.; Stotzky, G. Interactions between microorganisms and soil particles: An overview. In Interactions between Soil Particles and Microorganisms and the Terrestrial Ecosystem; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Lehmann, J.; Kinyangi, J.; Solomon, D. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 2007, 85, 45–57. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Chang. Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Chotte, J.L. Important of microorganisms for soil aggregation. In Soil Biology Volume 3. Microorganisms in Soils: Role in Genesis and Function; Springer: Berlin/Heidelberg, Germany, 2005; pp. 107–119. [Google Scholar]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Doran, J.W. Soil Microbial and Biochemical Changes Associated with Reduced Tillage. Soil Sci. Soc. Am. J. 1980, 44, 765–771. [Google Scholar] [CrossRef]
- Du, Z.L.; Ren, T.S.; Hu, C.S.; Zhang, Q.Z.; Blanco-Canqui, H. Soil Aggregate Stability and Aggregate-Associated Carbon Under Different Tillage Systems in the North China Plain. J. Integr. Agric. 2013, 12, 2114–2123. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Albaladejo, J.; Almagro, M.; Martinez-Mena, M. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil Tillage Res. 2015, 153, 66–75. [Google Scholar] [CrossRef]
- Bormann, H.; Klaassen, K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 2008, 145, 295–302. [Google Scholar] [CrossRef]
- Berisso, F.E.; Schjønning, P.; Keller, T.; Lamandé, M.; Etana, A.; de Jonge, L.W.; Iversen, B.V.; Arvidsson, J.; Forkman, J. Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil Tillage Res. 2012, 122, 42–51. [Google Scholar] [CrossRef]
- Biswas, A.; Biswas, A. Comprehensive Approaches in Rehabilitation Salt Affected Soils: A Review on Indian Perspective. Open Trans. Geosci. 2014, 1, 13–24. [Google Scholar] [CrossRef]
- Rengasamy, P.; Olsson, K.A. Sodicity and soil structure. Soil Res. 1991, 29, 935–952. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Jansen, B.; Kalbitz, K.; Martinez-Martinez, S. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J. Arid. Environ. 2011, 75, 1056–1066. [Google Scholar] [CrossRef]
- Sastre-Conde, I.; Lobo, M.C.; Beltrán-Hernández, R.I.; Poggi-Varaldo, H.M. Remediation of saline soils by a two-step process: Washing and amendment with sludge. Geoderma 2014, 247–248, 140–150. [Google Scholar] [CrossRef]
- Igwe, C.A.; Akamigbo, F.O.R.; Mbagwu, J.S.C. Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability. Geoderma 1999, 92, 111–123. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Duiker, S.W.; Rhoton, F.E.; Torrent, J.; Smeck, N.E.; Lal, R. Iron (Hydr)Oxide Crystallinity Effects on Soil Aggregation. Soil Sci. Soc. Am. J. 2003, 67, 606–611. [Google Scholar] [CrossRef]
- USDA. Soil bulk density/ Moisture and Aeration. In Soil Quality Kit-Guides for Educators; United States Department of Agricultre and Natural Resources Conservation Services: Washington, DC, USA, 1999; p. 88. [Google Scholar]
- Garcia, L.; Damour, G.; Gary, C.; Follain, S.; Le Bissonnais, Y.; Metay, A. Trait-based approach for agroecology: Contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant Soil 2019, 435, 1–14. [Google Scholar] [CrossRef] [Green Version]
ECsp | ESP | GW | BD | SOC | Saturated Paste Extracted | CEC | Total Carbonate | pH | Soil Texture | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | (%) | (%) | (g cm−3) | (%) | (cmol(+) kg−1) | (%) | H2O | (%) | ||||||||
Field | Horizon | Depth (m) | Ca | Na | Cl | Clay | Silt | Sand | ||||||||
Trellised | ||||||||||||||||
T1 | Apk | 0.00–0.40 | 7.02 | 9.17 | 17.38 | 1.49 | 2.25 | 1.75 | 1.18 | 2.18 | 12.85 | 5.70 | 8.04 | 21.3 | 59.4 | 19.3 |
T1 | Bk1 | 0.40–0.60 | 7.38 | 11.77 | 19.71 | 1.48 | 1.77 | 1.13 | 1.45 | 1.97 | 12.35 | 6.50 | 8.19 | 18.3 | 60.5 | 21.2 |
T1 | Bk2 | 0.60–0.90 | 8.01 | 12.82 | 23.75 | 1.51 | 1.81 | 0.97 | 1.44 | 2.37 | 11.25 | 5.90 | 8.26 | 17.8 | 69.5 | 12.7 |
T1 | Bk3 | 0.90–1.00 | 9.11 | 19.40 | 26.27 | 1.40 | 1.71 | 0.76 | 2.39 | 2.86 | 12.35 | 5.70 | 8.45 | 16.2 | 70.9 | 12.9 |
T1 | Bk4 | 1.00–1.40 | 8.92 | 35.48 | 25.70 | 1.46 | 1.67 | 0.67 | 3.14 | 3.10 | 8.85 | 6.10 | 8.58 | 12.7 | 64.3 | 23.0 |
T1 | Bk5 | >1.40 | ||||||||||||||
T2 | Apk | 0.00–0.20 | 0.85 | 0.53 | 14.61 | 1.64 | 2.32 | 0.22 | 0.06 | 0.07 | 11.50 | 5.70 | 8.41 | 19.5 | 53.4 | 27.1 |
T2 | Ak | 0.20–0.40 | 2.34 | 3.16 | 14.12 | 1.57 | 2.29 | 0.59 | 0.39 | 0.37 | 12.25 | 6.50 | 8.26 | 17.4 | 53.2 | 29.4 |
T2 | Bk1 | 0.40–0.60 | 1.64 | 3.92 | 13.32 | 1.57 | 1.78 | 0.51 | 0.45 | 0.38 | 11.55 | 6.10 | 8.34 | 14.6 | 52.7 | 32.7 |
T2 | Bk2 | 0.60–1.20 | 2.66 | 6.08 | 17.04 | 1.50 | 1.71 | 0.31 | 0.69 | 0.35 | 11.35 | 6.70 | 8.51 | 14.7 | 61.5 | 23.8 |
T2 | Bk3 | >1.20 | 2.34 | 7.22 | 21.06 | 1.52 | 1.44 | 0.11 | 0.79 | 0.29 | 11.05 | 7.00 | 8.87 | 16.6 | 63.3 | 20.1 |
Goblet | ||||||||||||||||
G1 | Apk | 0.00–0.15 | 2.50 | 0.27 | 32.90 | 1.28 | 2.31 | 0.88 | 0.03 | 0.01 | 12.60 | 6.22 | 7.96 | 17.9 | 57.3 | 24.8 |
G1 | Ak | 0.15–0.40 | 0.69 | 0.30 | 24.21 | 1.57 | 1.65 | 0.25 | 0.03 | 0.02 | 9.70 | 7.19 | 8.32 | 17.4 | 55.6 | 27.0 |
G1 | Bk1 | 0.40–0.80 | 0.89 | 0.48 | 31.77 | 1.41 | 1.45 | 0.31 | 0.05 | 0.07 | 10.60 | 6.51 | 8.30 | 12.2 | 54.8 | 33.0 |
G1 | Bk2 | 0.80–1.00 | 1.92 | 2.21 | 1.24 | 0.62 | 0.24 | 0.42 | 10.70 | 8.03 | 8.38 | 12.1 | 69.9 | 18.0 | ||
G1 | Bwk | >1.00 | ||||||||||||||
G2 | Apk | 0.00–0.23 | 2.13 | 1.48 | 26.08 | 1.41 | 2.02 | 0.75 | 0.16 | 0.07 | 10.80 | 8.04 | 8.16 | 18.0 | 52.8 | 29.2 |
G2 | Ak | 0.23–0.52 | 0.79 | 1.06 | 25.18 | 1.53 | 1.20 | 0.23 | 0.12 | 0.10 | 11.30 | 7.79 | 8.43 | 14.6 | 70.7 | 14.7 |
G2 | Bk1 | 0.52–0.71 | 1.22 | 2.74 | 19.78 | 1.67 | 0.58 | 0.31 | 0.21 | 0.25 | 7.60 | 9.51 | 8.48 | 13.6 | 43.6 | 42.8 |
G2 | Bk2 | 0.71–1.00 | 0.95 | 5.45 | 47.52 | 1.60 | 0.23 | 0.20 | 0.13 | 0.15 | 2.41 | 13.94 | 8.76 | 5.6 | 6.8 | 87.6 |
G2 | Bwk | >1.00 | ||||||||||||||
Fallow | ||||||||||||||||
F1 | Apk | 0.00–0.20 | 2.38 | 0.38 | 23.63 | 1.31 | 2.08 | 0.86 | 0.04 | 0.03 | 11.30 | 5.79 | 8.04 | 18.5 | 53.9 | 27.6 |
F1 | Ak | 0.20–0.60 | 0.80 | 0.57 | 17.56 | 1.64 | 1.53 | 0.26 | 0.06 | 0.08 | 10.50 | 5.66 | 8.30 | 18.6 | 56.2 | 25.2 |
F1 | Bk1 | 0.60–0.91 | 0.49 | 0.52 | 19.46 | 1.62 | 0.97 | 0.18 | 0.05 | 0.04 | 10.50 | 6.59 | 8.39 | 14.0 | 51.3 | 34.7 |
F1 | Bk2 | >0.91 | 0.53 | 0.84 | 17.48 | 1.76 | 1.03 | 0.1 | 0.08 | 0.02 | 9.80 | 6.10 | 8.44 | 14.2 | 55.7 | 30.1 |
F2 | ApK | 0.00–0.25 | ||||||||||||||
F2 | Ak | 0.25–0.60 | ||||||||||||||
F2 | Bwk | 0.60–1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bless, A.E.S.; Colin, F.; Crabit, A.; Follain, S. Soil Aggregate Stability in Salt-Affected Vineyards: Depth-Wise Variability Analysis. Land 2022, 11, 541. https://doi.org/10.3390/land11040541
Bless AES, Colin F, Crabit A, Follain S. Soil Aggregate Stability in Salt-Affected Vineyards: Depth-Wise Variability Analysis. Land. 2022; 11(4):541. https://doi.org/10.3390/land11040541
Chicago/Turabian StyleBless, Aplena E. S., François Colin, Armand Crabit, and Stéphane Follain. 2022. "Soil Aggregate Stability in Salt-Affected Vineyards: Depth-Wise Variability Analysis" Land 11, no. 4: 541. https://doi.org/10.3390/land11040541
APA StyleBless, A. E. S., Colin, F., Crabit, A., & Follain, S. (2022). Soil Aggregate Stability in Salt-Affected Vineyards: Depth-Wise Variability Analysis. Land, 11(4), 541. https://doi.org/10.3390/land11040541