A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities
Abstract
:1. Introduction
1.1. Global Geoparks in Natural Hazard Areas
1.2. Hydrogeologic Hazards in the Surroundings of the Dead Sea
1.2.1. Previous Research and Specific Geohazards at the UGGp Highlight Area
1.2.2. Challenges for the Local Inhabitants
1.2.3. Aspiring Geopark
Overview
Geological Features of International Significance in the Highlight Area—Ghor Al-Haditha Sinkhole and Subsidence Site
1.3. Ongoing and Future Research in the Territory of the Proposed Geopark
1.3.1. Ongoing Research on Environmental Changes
1.3.2. Planned International Research—The MORFES Project
Tools and Technical Background
New Approach
Goals
2. Material and Methods
2.1. Technical Methods for Hazard Monitoring and Safety Provision
- Buried electrodes (around 100 devices) and data logger to record electric signals in the monitored area. With this, water-flow patterns, both horizontal and vertical movement, can be resolved by the electric potential arising from a so-called electric double layer between the aquifer matrix and fluid. This self-potential method has been successfully used in groundwater flow determination in karstic and sand aquifer areas and sinkhole identification [26,84,85], including the location discussed here.
- Buried seismometers (around 50 devices) and data logger to record seismic waves of cracks underground. Seismic methods are widely used to investigate structural features and localize cracks and collapse processes underground, and microearthquakes (microseismicity) can occur directly before a hazardous collapse [43,83,86].
- Fixed GPS stations (5) to record horizontal and vertical ground movement. Differential GPS correction will be performed by a base station nearby.
- Installation of time-lapse cameras (5) in buildings or on telephone poles to record images that can be processed directly via photogrammetric software to see immediate changes of the surface, e.g., cracks and subsidence.
- The data will be transferred via wireless satellite links standard for seismic stations directly to the partner institutions and analyzed by experts at the research institutions and national agencies.
2.2. Datasets and Methods for Field Campaigns and Geotouristic Trail Selection
3. Results and Discussion
3.1. Safety Concepts in Hazardous Areas
3.1.1. Trails and Infrastructure Planning at the Highlight Area
3.1.2. Hydrogeophysical Investigation and Monitoring at the Highlight Area
- A0.
- Continuous data flow without anomalies in electric or seismic data.
- A1.
- Record of anomalous flow and strong electric potential related to subsurface water flow (flash flood).
- A2.
- Record of microseismic events in the subsurface (cracking, first material failure).
- A3.
- Subsidence appears at the surface, which is recorded by the GPS (late-stage).
3.1.3. Communication of the Observations to the Local Stakeholders
- (1)
- Local population (here: farmers, citizens, and workers in Ghor Al-Haditha) will be strongly involved in training, education, and long-term maintenance of the technical equipment. A direct communication link between the monitoring teams and the local partners will be constantly available and will serve to inform the community upon ad hoc changes.
- (2)
- Local authorities (the Geologic Survey of Jordan as part of the MEMR) will receive and divulgate notifications about expected dangerous subsidence or sinkhole/landslide formation and important changes of the hazard from the monitoring teams (local population, MEMR, GEOMAR, and other scientific institutions).
- (3)
- Regular and event-driven local workshops/information meetings will be held to communicate the stable and unstable zones and the flood risk in the region. Part of the information concerns the link between excessive water usage and dissolution of the salt-rich underground.
- (4)
- Upon recommendation by the MEMR and local technical experts, suggestions for recovering/rebuilding and moving agriculture and infrastructure will be provided. The areas will be updated where touristic activity can be safely performed sustainably and where new sites of potential geotourism can be added.
- (5)
- The information on infrastructure change will vice versa be transferred to the scientific monitoring teams to update the vulnerability of the areas, hence the risk maps. This links back to point safety point 1 in a two-way dialogue.
3.1.4. Expected Costs and Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO IGGP UGG Statutes and Guidelines. Available online: http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/pdf/IGGP_UGG_Statutes_Guidelines_EN.pdf (accessed on 12 January 2022).
- UNESCO UGGp—Fundamental Areas—Main Focus Areas—Sustainable Development Goals. Available online: https://en.unesco.org/global-geoparks/focus (accessed on 29 March 2022).
- CEI International Conference GeoHazards and Climate Change in Geoparks—MakGeopark Demir Kapija, North Macedonia, 6–7 May 2022. Available online: https://makgeopark.mk/events/International_Conference_GCCG.pdf (accessed on 1 April 2022).
- Geopoderes Geoheritage for Resilience. Available online: http://www.geopoderes.com (accessed on 29 March 2022).
- Europeangeoparks International Intensive Course on UNESCO Global Geoparks | Climate Change Adaptation and Geo-Hazard Risk Mitigation Case Studies. Available online: http://www.europeangeoparks.org/?p=7461 (accessed on 29 March 2022).
- Fassoulas, C.B. Geohazards WG. In Proceedings of the 2nd GGN Digital Forum, Virtual Conference, 23–24 February 2021. [Google Scholar]
- Fassoulas, C.; Watanabe, M.; Pavlova, I.; Amorfini, A.; Dellarole, E.; Dierickx, F. UNESCO Global Geoparks: Living Laboratories to Mitigate Natural Induced Disasters and Strengthen Communities’ Resilience. Nat. Hazards Disaster Risk Reduct. Policies 2018, 10, 175–197. [Google Scholar]
- Lin, J.-C.; Su, S.-J. Geo-Hazards and Geo-Tourism as Stimulators for GeoparksG. In eoparks of Taiwan: Their Development and Prospects for a Sustainable Future; Eder, W., Bobrowsky, P., Martínez-Frías, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030048938. [Google Scholar]
- UNESCO Unzen Volcanic Area UNESCO Global Geopark (Japan). Available online: https://en.unesco.org/global-geoparks/unzen-volcanic-area (accessed on 29 March 2022).
- UNESCO Katla Unesco Global Geopark (Iceland). Available online: https://en.unesco.org/global-geoparks/katla (accessed on 29 March 2022).
- Bovolin, V.; Cuomo, A.; Guida, D. Hydraulic Modeling of Flood Pulses in the Middle Bussento Karst System (MBSKS), UNESCO Cilento Global Geopark, Southern Italy. Hydrol. Process. 2017, 31, 639–653. [Google Scholar] [CrossRef]
- Cloudburst Closes UNESCO-Tagged Geopark in Iran’s Qeshm—Tehran Times. Available online: https://www.tehrantimes.com/news/444124/Cloudburst-closes-UNESCO-tagged-geopark-in-Iran-s-Qeshm (accessed on 29 March 2022).
- Peulvast, J.-P.; Bétard, F. Landforms and Landscape Evolution of the Equatorial Margin of Northeast Brazil; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Burrengeopark Geohazards | The Burren and Cliffs of Moher UNESCO Global Geopark. Available online: https://www.burrengeopark.ie/learn-engage/geohazards/ (accessed on 29 March 2022).
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; Core Writing Team: Geneva, Switzerland, 2014.
- Wang, G.; Ye, W.; Lv, Y. Loess Geoheritage and Geohazard Protective Measures at Luochuan Loess National Geopark in NW China. Geoheritage 2019, 11, 1089–1100. [Google Scholar] [CrossRef]
- Apuanegeopark Landslides—The 1996 Flood in Versilia and Garfagnana (Apuan Alps). Available online: http://www.apuanegeopark.it/english_version/apuanegeopark_geohazards_landslides.html (accessed on 29 March 2022).
- EGN 5th International UNESCO Conference on Geoparks—Shimabara Declaration. Available online: http://www.europeangeoparks.org/?p=1974 (accessed on 29 March 2022).
- Nakada, S. Characteristics of Recent Geohazards and Roles of Geoparks. Rend. Online Soc. Geol. Ital. 2013, 28, 117–120. [Google Scholar]
- Al-Halbouni, D.; Alrabayah, O.; Rüpke, L. A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—Geosites and Conceptual Approach. Land 2022, 11, 549. [Google Scholar] [CrossRef]
- Willner, S.E.; Lipchin, C.; Aloni, Z. Salt Storms, Sinkholes and Major Economic Losses: Can the Deteriorating Dead Sea Be Saved from the Looming Eco Crisis ? Negev. Dead Sea Arav. Stud. 2015, 7, 27–37. [Google Scholar]
- Ezersky, M.; Frumkin, A. Identification of Sinkhole Origin Using Surface Geophysical Methods, Dead Sea, Israel. Geomorphology 2020, 364, 107225. [Google Scholar] [CrossRef]
- Vey, S.; Al-Halbouni, D.; Haghshenas, M.; Alshawaf, F.; Vüllers, J.; Güntner, A.; Dick, G.; Ramatschi, M.; Teatini, P.; Wickert, J.; et al. Delayed Subsidence of the Dead Sea Shore Due to Hydro-Meteorological Changes. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.A.; Holohan, E.P.; Al-Halbouni, D.; Saberi, L.; Sawarieh, A.; Closson, D.; Alrshdan, H.; Abou Karaki, N.; Siebert, C.; Walter, T.R.; et al. Sinkholes and Uvalas in Evaporite Karst: Spatio-Temporal Development with Links to Base-Level Fall on the Eastern Shore of the Dead Sea. Solid Earth 2019, 10, 1451–1468. [Google Scholar] [CrossRef] [Green Version]
- Nof, R.N.; Abelson, M.; Raz, E.; Magen, Y.; Atzori, S.; Salvi, S.; Baer, G. SAR Interferometry for Sinkhole Early Warning and Susceptibility Assessment along the Dead Sea, Israel. Remote Sens. 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Al-Halbouni, D.; Watson, R.A.; Holohan, E.P.; Meyer, R.; Polom, U.; Santos, F.M.; Comas, X.; Alrshdan, H.; Krawczyk, C.M.; Dahm, T. Dynamics of Hydrological and Geomorphological Processes in Evaporite Karst at the Eastern Dead Sea—A Multidisciplinary Study. Hydrol. Earth Syst. Sci. 2021, 25, 3351–3395. [Google Scholar] [CrossRef]
- Siebert, C.; Mallast, U.; Rödiger, T.; Strey, M.; Ionescu, D.; Häusler, S.; Noriega, B. Submarine Groundwater Discharge at the Dead Sea. In Proceedings of the 23rd Water Intrusion Meeting, Husum, Germany, 16–20 June 2014; pp. 366–370. [Google Scholar]
- Kottmeier, C.; Agnon, A.; Al-Halbouni, D.; Alpert, P.; Corsmeier, U.; Dahm, T.; Eshel, A.; Geyer, S.; Haas, M.; Holohan, E.; et al. New Perspectives on Interdisciplinary Earth Science at the Dead Sea: The DESERVE Project. Sci. Total Environ. 2016, 544, 1045–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Halbouni, D.; Holohan, E.P.; Saberi, L.; Alrshdan, H.; Sawarieh, A.; Closson, D.; Walter, T.R.; Dahm, T. Sinkholes, Subsidence and Subrosion on the Eastern Shore of the Dead Sea as Revealed by a Close-Range Photogrammetric Survey. Geomorphology 2017, 285, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Arav, R.; Filin, S.; Avni, Y. Geomorphology Sinkhole Swarms from Initiation to Stabilisation Based on in Situ High-Resolution 3-D Observations. Geomorphology 2020, 351, 106916. [Google Scholar] [CrossRef]
- Avni, Y.; Lensky, N.; Dente, E.; Shviro, M.; Arav, R.; Gavrieli, I.; Yechieli, Y.; Abelson, M.; Lutzky, H.; Filin, S.; et al. Self-Accelerated Development of Salt Karst during Flash Floods along the Dead Sea Coast, Israel. J. Geophys. Res. Earth Surf. 2016, 121, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Polom, U.; Alrshdan, H.; Al-Halbouni, D.; Dahm, T.; Sawarieh, A.; Atallah, M.Y.; Krawczyk, C.M.; Holohan, E.P.; Dahm, T.; Sawarieh, A.; et al. Shear Wave Reflection Seismics Yields Subsurface Dissolution and Subrosion Patterns: Application to the Ghor Al-Haditha Sinkhole Site, Dead Sea, Jordan. Solid Earth 2018, 9, 1079–1098. [Google Scholar] [CrossRef] [Green Version]
- El-Isa, Z.; Rimawi, O.; Jarrar, G.; Abou Karaki, N.; Taqieddin, S.; Atallah, M.; Seif El-Din, N.; Al Saed, A. Assessment of the Hazard of Subsidence and Sinkholes in Ghor Al-Haditha Area; University of Jordan: Amman, Jordan, 1995. [Google Scholar]
- Sawarieh, A.; Al Adas, A.; Al Bashish, A.; Al Seba’i, E. Sinkholes Phenomena At Ghor Al Haditha Area—Internal Report No. 12; Natural Resources Authority: Amman, Jordan, 2000. [Google Scholar]
- Camerlynck, C.; Al-Ruzouq, R.; Al-Zoubi, A.S.; Boucher, M.; Bodet, L.; Dhemaied, A.; Galibert, P.Y.; Abueladas, A. Geophysical Assessment of Sinkhole Hazard Evaluation at Ghor Haditha (Dead Sea, Jordan). In Proceedings of the EAGE Workshop on Dead Sea Sinkholes—Causes, Effects and Solutions, European Association of Geoscientists, Amman, Jordan, 23–25 September 2012. [Google Scholar]
- Bodet, L.; Galibert, P.Y.; Dhemaied, A.; Camerlynck, C.; Al- Zoubi, A. Surface-Wave Profiling for Sinkhole Hazard Assessment along the Eastern Dead Sea Shoreline (Ghor Al-Haditha, Jordan). In Proceedings of the 72nd EAGE Conference & Exhibition Incorporating SPE EUROPEC, Barcelona, Spain, 14–17 June 2010. [Google Scholar]
- Keydar, S.; Pelman, D.; Ezersky, M.G. Application of Seismic Diffraction Imaging for Detecting Near-Surface Inhomogeneities in the Dead Sea Area. J. Appl. Geophys. 2010, 71, 47–52. [Google Scholar] [CrossRef]
- Alrshdan, H. Geophysical Investigations of Ghor Haditha Sinkholes, Jordan. In Proceedings of the 74th EAGE Workshop on Dead Sea Sinkholes—Causes, Effects and Solutions, Copenhagen, Denmark, 23–26 June 2012. [Google Scholar]
- Ezersky, M.G.; Eppelbaum, L.V.; Al-Zoubi, A.S.; Keydar, S.; Abueladas, A.; Akkawi, E.; Medvedev, B. Geophysical Prediction and Following Development Sinkholes in Two Dead Sea Areas, Israel and Jordan. Environ. Earth Sci. 2013, 70, 1463–1478. [Google Scholar] [CrossRef]
- Ezersky, M.G.; Frumkin, A. Fault—Dissolution Front Relations and the Dead Sea Sinkhole Problem. Geomorphology 2013, 201, 35–44. [Google Scholar] [CrossRef]
- Closson, D.; Abou Karaki, N. Salt Karst and Tectonics: Sinkholes Development along Tension Cracks between Parallel Strike-Slip Faults, Dead Sea, Jordan. Earth Surf. Process. Landforms 2009, 34, 1408–1421. [Google Scholar] [CrossRef]
- Oz, I.; Eyal, S.; Yoseph, Y.; Ittai, G.; Elad, L.; Haim, G. Salt Dissolution and Sinkhole Formation: Results of Laboratory Experiments. J. Geophys. Res. Earth Surf. 2016, 121, 1746–1762. [Google Scholar] [CrossRef]
- Krawczyk, C.M.; Polom, U.; Trabs, S.; Dahm, T. Sinkholes in the City of Hamburg—New Urban Shear-Wave Reflection Seismic System Enables High-Resolution Imaging of Subrosion Structures. J. Appl. Geophys. 2012, 78, 133–143. [Google Scholar] [CrossRef]
- Wadas, S.H.; Polom, U.; Krawczyk, C. High-Resolution Shear Wave Reflection Seismics as a Tool to Image near-Surface Subrosion Structures—a Case Study in Bad Frankenhausen, Germany. Solid Earth 2016, 7, 1491–1508. [Google Scholar] [CrossRef] [Green Version]
- Kersten, T.; Kobe, M.; Gabriel, G.; Timmen, L.; Schön, S.; Vogel, D. Geodetic Monitoring of Subrosion-Induced Subsidence Processes in Urban Areas. J. Appl. Geod. 2017, 11, 21–29. [Google Scholar] [CrossRef]
- Al-Halbouni, D.; Holohan, E.P.; Taheri, A.; Schöpfer, M.P.J.; Emam, S.; Dahm, T. Geomechanical Modelling of Sinkhole Development Using Distinct Elements: Model Verification for a Single Void Space and Application to the Dead Sea Area. Solid Earth 2018, 9, 1341–1373. [Google Scholar] [CrossRef] [Green Version]
- Al-Halbouni, D.; Holohan, E.P.; Taheri, A.; Watson, R.A.; Polom, U.; Schöpfer, M.P.J.; Emam, S.; Dahm, T. Distinct Element Geomechanical Modelling of the Formation of Sinkhole Clusters within Large-Scale Karstic Depressions. Solid Earth 2019, 10, 1219–1241. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.A. Sinkholes, Stream Channels and Base Level Fall: A Fifty-Year Record of Spatio- Temporal Development on the Eastern Shore of the Dead Sea; University College Dublin: Dublin, Ireland, 2019. [Google Scholar]
- Cityfacts Ghor Al-Haditha, Southern Ghour, Jordan—Population—CityFacts. Available online: https://www.city-facts.com/ghor-al-haditha-southern-ghour-jordan (accessed on 17 March 2022).
- Nortcliff, S.; Black, E.; Potter, R. Current Water Demands and Future Strategies under Changing Climatic Conditions. In Water, Life and Civilisation: Climate, Environment and Society in the Jordan Valley; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mariotti, A.; Zeng, N.; Yoon, J.-H.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z.X. Mediterranean Water Cycle Changes: Transition to Drier 21st Century Conditions in Observations and CMIP3 Simulations. Environ. Res. Lett. 2008, 3, 44001. [Google Scholar] [CrossRef]
- Evans, J.P. 21st Century Climate Change in the Middle East. Clim. Change 2009, 92, 417–432. [Google Scholar] [CrossRef]
- Salameh, E.; Shteiwi, M.; Al Raggad, M. Water Resources of Jordan: Political, Social and Economic Implications of Scarce Water Resources; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1, ISBN 3319777483. [Google Scholar]
- Mithen, S.; Black, E. Water, Life and Civilisation: Climate, Environment and Society in the Jordan Valley; Cambridge University Press: Cambridge, UK, 2011; ISBN 1139496670. [Google Scholar]
- US Geological Survey; Goode, D.J.; Senio, L.A.; Subah, A.; Jaber, A. Groundwater-Level Trends and Forecasts, and Salinity Trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa Groundwater Basins, Jordan (No. 2013-1061). USGS: Reston, VA, USA, 2013. [Google Scholar]
- Mkurdi سد ابن حماد—Ibn Hamad Dam. Available online: http://www.mkurdi.com/project.php?id=8 (accessed on 17 March 2022).
- What Are the Water Dams in Jordan? | ArabiaWeather | ArabiaWeather. Available online: https://www.arabiaweather.com/en/content/what-are-the-water-dams-in-jordan (accessed on 17 March 2022).
- Closson, D.; Abou Karaki, N.; Hallot, F. Landslides along the Jordanian Dead Sea Coast Triggered by the Lake Level Lowering. Environ. Earth Sci. 2009, 59, 1417–1430. [Google Scholar] [CrossRef]
- Closson, D.; Abou Karaki, N. Earthen Dike Leakage at the Dead Sea. In Engineering Geology for Society and Territory—Volume 5; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 461–464. ISBN 978-3-319-09047-4. [Google Scholar]
- Royanews Partial Closing of Dead Sea Road between Ghor Al-Safi and Ghor Al-Mazra’a Due to Mud Flood—إغلاق جزئي على طريق.غور الصافي بسبب اﻻنهيارات. Available online: https://royanews.tv/news/167068 (accessed on 18 March 2022).
- Khaberni Collapse of a Bridge at the Dead Sea Area—انهيار جسر في البحر الميت. Available online: https://www.khaberni.com/news (accessed on 17 March 2022).
- Munwes, Y.Y.; Geyer, S.; Katoshevski, D.; Ionescu, D.; Licha, T.; Lott, C.; Laronne, J.B.; Siebert, C. Discharge Estimation of Submarine Springs in the Dead Sea Based on Velocity or Density Measurements in Proximity to the Water Surface. Hydrol. Process. 2020, 34, 455–472. [Google Scholar] [CrossRef]
- Mallast, U.; Siebert, C. Combining Continuous Spatial and Temporal Scales for SGD Investigations Using UAV-Based Thermal Infrared Measurements. Hydrol. Earth Syst. Sci. 2019, 23, 1375–1392. [Google Scholar] [CrossRef] [Green Version]
- Khlaifat, A.; Al-Khashman, O.; Qutob, H. Physical and Chemical Characterization of Dead Sea Mud. Mater. Charact. 2010, 61, 564–568. [Google Scholar] [CrossRef]
- RSCN Royal Society for the Conservation of Nature—Conservation Monitoring Center. Available online: https://www.rscn.org.jo/nature-conservation-monitoring-center (accessed on 23 March 2022).
- JGov Jordan Valley Authority. Available online: https://portal.jordan.gov.jo/wps/portal/Home/GovernmentEntities/Ministries/Ministry/Ministry of Water and Irrigation/Jordan Valley Authority (accessed on 23 March 2022).
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Fidolini, F.; Casagli, N. Sinkhole Monitoring and Early Warning: An Experimental and Successful GB-InSAR Application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Sevil, J.; Benito-Calvo, A.; Gutiérrez, F. Sinkhole Subsidence Monitoring Combining Terrestrial Laser Scanner and High-Precision Levelling. Earth Surf. Process. Landf. 2021, 46, 1431–1444. [Google Scholar] [CrossRef]
- Lebert, F.; Bernardie, S.; Mainsant, G. Hydroacoustic Monitoring of a Salt Cavity: An Analysis of Precursory Events of the Collapse. Nat. Hazards Earth Syst. Sci. 2011, 11, 2663–2675. [Google Scholar] [CrossRef] [Green Version]
- Abelson, M.; Aksinenko, T.; Kurzon, I.; Pinsky, V.; Baer, G.; Nof, R.; Yechieli, Y. Nanoseismicity Forecasts Sinkhole Collapse in the Dead Sea Coast Years in Advance. Geology 2018, 46, 83–86. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Bolève, A.; Crespy, A.; Dupont, J.-P.; Barrash, W.; Malama, B. Tomography of the Darcy Velocity from Self-Potential Measurements. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Jardani, A. The Self-Potential Method: Theory and Applications in Environmental Geosciences; Cambridge University Press: Cambridge, UK, 2013; ISBN 1107244714. [Google Scholar]
- Eppelbaum, L.V. Review of Processing and Interpretation of Self-Potential Anomalies: Transfer of Methodologies Developed in Magnetic Prospecting. Geosci. 2021, 11, 194. [Google Scholar] [CrossRef]
- Malehmir, A.; Socco, L.V.; Bastani, M.; Krawczyk, C.M.; Pfaffhuber, A.A.; Miller, R.D.; Maurer, H.; Frauenfelder, R.; Suto, K.; Bazin, S.; et al. Near-Surface Geophysical Characterization of Areas Prone to Natural Hazards: A Review of the Current and Perspective on the Future. Adv. Geophys. 2016, 57, 51–146. [Google Scholar] [CrossRef]
- Pazzi, V.; Di Filippo, M.; Di Nezza, M.; Carlà, T.; Bardi, F.; Marini, F.; Fontanelli, K.; Intrieri, E.; Fanti, R. Integrated Geophysical Survey in a Sinkhole-Prone Area: Microgravity, Electrical Resistivity Tomographies, and Seismic Noise Measurements to Delimit Its Extension. Eng. Geol. 2018, 243, 282–293. [Google Scholar] [CrossRef]
- Krawczyk, C.M. Joint Project SIMULTAN-Sinkhole Characterization and Monitoring with Supplementing Geophysical Methods. In Proceedings of the NCKRI Symposium 7–15th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst; Sasowsky, I.D., Byle, M.J., Land,, L., Eds.; SIMULTAN Research Group: Shepherdstown, WV, USA, 2018; pp. 315–321. [Google Scholar]
- Kotyrba, A.; Kortas, Ł. Sinkhole Hazard Assessment in the Area of Abandoned Mining Shaft Basing on Microgravity Survey and Modelling—Case Study from the Upper Silesia Coal Basin in Poland. J. Appl. Geophys. 2016, 130, 62–70. [Google Scholar] [CrossRef]
- Kaufmann, G.; Romanov, D.; Tippelt, T.; Vienken, T.; Werban, U.; Dietrich, P.; Mai, F.; Börner, F. Mapping and Modelling of Collapse Sinkholes in Soluble Rock: The Münsterdorf Site, Northern Germany. J. Appl. Geophys. 2018, 154, 64–80. [Google Scholar] [CrossRef]
- Andriani, G.F.; Parise, M. On the Applicability of Geomechanical Models for Carbonate Rock Masses Interested by Karst Processes. Environ. Earth Sci. 2015, 74, 7813–7821. [Google Scholar] [CrossRef]
- Perrotti, M.; Lollino, P.; Fazio, N.L.; Pisano, L.; Vessia, G.; Parise, M.; Fiore, A.; Luisi, M. Finite Element–Based Stability Charts for Underground Cavities in Soft Calcarenites. Int. J. Geomech. 2018, 18, 4018071. [Google Scholar] [CrossRef]
- Lollino, P.; Martimucci, V.; Parise, M. Geological Survey and Numerical Modeling of the Potential Failure Mechanisms of Underground Caves. Geosystem. Eng. 2013, 16, 37–41. [Google Scholar] [CrossRef]
- Romanov, D.; Kaufmann, G.; Al-Halbouni, D.; Geophysics, S. Basic Processes and Factors Determining the Evolution of Collapse Sinkholes—A Sensitivity Study. Eng. Geol. 2020, 270, 105589. [Google Scholar] [CrossRef]
- Wust-Bloch, G.H.; Joswig, M. Pre-Collapse Identification of Sinkholes in Unconsolidated Media at Dead Sea Area by ‘Nanoseismic Monitoring’ (Graphical Jackknife Location of Weak Sources by Few, Low-SNR Records). Geophys. J. Int. 2006, 167, 1220–1232. [Google Scholar] [CrossRef] [Green Version]
- Muzirafuti, A.; Boualoul, M.; Barreca, G.; Allaoui, A.; Bouikbane, H.; Lanza, S.; Crupi, A.; Randazzo, G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources 2020, 9, 51. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Santos, F.; Fauchard, C.; Dupont, J.P.P. Detection of Preferential Infiltration Pathways in Sinkholes Using Joint Inversion of Self-Potential and EM-34 Conductivity Data. Geophys. Prospect. 2007, 55, 749–760. [Google Scholar] [CrossRef]
- Contrucci, I.; Ineris, C.B.; Ineris, P.B.; Ineris, M.B.; Ipgp, P.B.; Cao, N.; Ineris, X.D. Collapse of the Cerville—Buissoncourt Salt Cavity: Multi- Parameters Monitoring; INERIS: Verneuil-en-Halatte, France, 2013. [Google Scholar]
- GFZ GEOFON Program GFZ Potsdam. Available online: https://geofon.gfz-potsdam.de (accessed on 17 March 2022).
- Kinscher, J.; Cesca, S.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J.P.; Bigarré, P. Resolving Source Mechanisms of Microseismic Swarms Induced by Solution Mining. Geophys. J. Int. 2016, 206, 696–715. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.; Baniasadi, M.; Baniasadi, M.; Besseron, X.; Donoso, A.E.; Mohseni, M.; Pozzetti, G. XDEM Multi-Physics and Multi-Scale Simulation Technology: Review of DEM–CFD Coupling, Methodology and Engineering Applications. Particuology 2019, 44, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Luu, L.-H.; Noury, G.; Benseghier, Z.; Philippe, P. Hydro-Mechanical Modeling of Sinkhole Occurrence Processes in Covered Karst Terrains during a Flood. Eng. Geol. 2019, 260, 105249. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Barreca, G.; Crupi, A.; Faina, G.; Paltrinieri, D.; Lanza, S.; Randazzo, G. The Contribution of Multispectral Satellite Image to Shallow Water Bathymetry Mapping on the Coast of Misano Adriatico, Italy. J. Mar. Sci. Eng. 2020, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Schöntag, P.; Nakath, D.; Röhrl, S.; Köser, K. Towards Cross Domain Transfer Learning for Underwater Correspondence Search. In Proceedings of the ICIAP-Image Analysis and Processing, 23–27 May 2021; Springer International Publishing: Lecce, Italy, 2022. [Google Scholar]
- Pardo-Igúzquiza, E.; Dowd, P.A. The Mapping of Closed Depressions and Its Contribution to the Geodiversity Inventory. Int. J. Geoheritage Park. 2021, 9, 480–495. [Google Scholar] [CrossRef]
- Rahbari, M.; Motahari, S.; Behbahaninia, A.; Khadivi, S. Environmental Risk Assessment of Tourist Routes; the Case of Dohezar Forest Road, Iran. Plant Arch. 2019, 19, 78–86. [Google Scholar]
- Al Numeira Environmental Association. Available online: https://alnumeirae.wordpress.com (accessed on 22 March 2022).
- Kinscher, J.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J.P.; Bigarre, P. Location of Microseismic Swarms Induced by Salt Solution Mining. Geophys. J. Int. 2014, 200, 337–362. [Google Scholar] [CrossRef] [Green Version]
- Richards, K.; Revil, A.; Jardani, A.; Henderson, F.; Batzle, M.; Haas, A. Pattern of Shallow Ground Water Flow at Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods. J. Volcanol. Geotherm. Res. 2010, 198, 217–232. [Google Scholar] [CrossRef]
- ESA User Guides—Sentinel-2 MSI—Revisit and Coverage—Sentinel Online—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage (accessed on 18 March 2022).
- Vassileva, M.S.; Al-Halbouni, D.; Motagh, M.; Walter, T.R.; Dahm, T.; Wetzel, H.-U. A Decade-Long Silent Ground Subsidence Hazard Culminating in a Metropolitan Disaster in Maceió, Brazil. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Halbouni, D.; AlRabayah, O.; Nakath, D.; Rüpke, L. A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities. Land 2022, 11, 553. https://doi.org/10.3390/land11040553
Al-Halbouni D, AlRabayah O, Nakath D, Rüpke L. A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities. Land. 2022; 11(4):553. https://doi.org/10.3390/land11040553
Chicago/Turabian StyleAl-Halbouni, Djamil, Osama AlRabayah, David Nakath, and Lars Rüpke. 2022. "A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities" Land 11, no. 4: 553. https://doi.org/10.3390/land11040553
APA StyleAl-Halbouni, D., AlRabayah, O., Nakath, D., & Rüpke, L. (2022). A Vision on a UNESCO Global Geopark at the Southeastern Dead Sea in Jordan—How Natural Hazards May Offer Geotourism Opportunities. Land, 11(4), 553. https://doi.org/10.3390/land11040553