Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System
Abstract
:1. Introduction
1.1. Pressures on Land Resources in Switzerland
1.2. Land Use/Land Cover Data in Switzerland
1.3. Downscaling as a Possible Approach for High-Resolution LU/LC Data
2. Materials and Methods
2.1. Data Inputs
2.1.1. Land Use Statistics
2.1.2. National Base Map (Land Cover)
2.1.3. Resolution
2.1.4. Data Quality of Inputs
2.2. Downscaling Algorithm and Expert System
2.2.1. Downscaling Algorithm
- Rasterize a land use grid at 100 m resolution from the lattice of points of the land use statistics (Landuse100).
- Convert to Non-Applicable (NA) land use categories that correspond to linear features (rivers, roads, rails).
- Rasterize the primary surfaces of the land cover vector base map at a 25 m resolution (BaseMap25).
- Visit each BaseMap25 pixel (target pixel).
- Then, according to the expert system table (Figure 4), select the land use categories that could be eligible for the target pixel. In some rare cases, assign the only possible category (then go to point 10).
- Select among the 36 nearest Landuse100 neighbors those with eligible categories.
- Calculate the inverse distance to each neighbor.
- Sum up the inverse distances for each category.
- Assign to the BaseMap25 pixel the category obtaining the higher score or, in case of lack of decision, assign the best replacement choice according to the expert system table.
- Repeat steps 4 to 9 for each BaseMap25 pixel.
- Replace categories wherever river, road, or rail linear features are available from BaseMap25. Only main roads (>3 m wide) and main railways were considered without tunnels and bridges. Underground rivers were ignored. Rivers, railways, roads, and freeways were rasterized at 25 m and added in this order after the first phase of downscaling.
2.2.2. Expert System
2.3. Implementation
2.4. Validation and Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DETEC. Stratégie 2016 du DETEC; DETEC: Bern, Switzerland, 2016. [Google Scholar]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The Ravages of Guns, Nets and Bulldozers. Nat. News 2016, 536, 143. [Google Scholar] [CrossRef] [PubMed]
- Conféderation Suisse. Swiss Position on a Framework for Sustainable Development Post-2015; BAFU: Bern, Switzerland, 2016. [Google Scholar]
- Lehmann, A.; Guigoz, Y.; Ray, N.; Mancosu, E.; Abbaspour, K.C.; Freund, E.R.; Allenbach, K.; Bono, A.D.; Fasel, M.; Gago-Silva, A.; et al. A Web Platform for Landuse, Climate, Demography, Hydrology and Beach Erosion in the Black Sea Catchment. Sci. Data 2017, 4, sdata201787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artmann, M.; Bastian, O.; Grunewald, K. Using the Concepts of Green Infrastructure and Ecosystem Services to Specify Leitbilder for Compact and Green Cities—The Example of the Landscape Plan of Dresden (Germany). Sustainability 2017, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, S.; Leemans, R.; Metzger, M.J.; et al. A Coherent Set of Future Land Use Change Scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
- Swiss Federal Statistical Office. Land Use in Switzerland—Results of the Swiss Land Use Statistics; SFO: Neuchâtel, Switzerland, 2013. [Google Scholar]
- Swiss Federal Statistical Office. The Changing Face of Land Use: Land Use Statistics of Switzerland; SFO: Neuchâtel, Switzerland, 2001; p. 32. [Google Scholar]
- European Environment Agency. Land Cover 2012—Country Fact Sheet; EEA: Copenhagen, Denmark, 2017; p. 18. [Google Scholar]
- Office Fédéral de la Statistique. Statistique de la Superficie 2013/18; Office Fédéral de la Statistique: Neuchâtel, Switzerland, 2020. [Google Scholar]
- IPBES. Summary for Policymakers of the Thematic Assessment of Land Degradation and Restoration; IPBES Secretariat: Bonn, Germany, 2018. [Google Scholar]
- United Nations Department of Economic and Social Affairs. Sustainable Land Use for the 21st Century; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2012; p. 82. [Google Scholar]
- State of the Environment. Environment Switzerland 2015; Swiss Federal Council: Bern, Switzerland, 2015; p. 144. [Google Scholar]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes‘ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Mander, Ü.; Kull, A.; Kuusemets, V. Nutrient Flows and Land Use Change in a Rural Catchment: A Modelling Approach. Landsc. Ecol. 2000, 15, 187–199. [Google Scholar] [CrossRef]
- Hörmann, G.; Horn, A.; Fohrer, N. The Evaluation of Land-Use Options in Mesoscale Catchments: Prospects and Limitations of Eco-Hydrological Models. Ecol. Model. 2005, 187, 3–14. [Google Scholar] [CrossRef]
- Snyder, C.D.; Young, J.A.; Villella, R.; Lemarié, D.P. Influences of Upland and Riparian Land Use Patterns on Stream Biotic Integrity. Landsc. Ecol. 2003, 18, 647–664. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the Effects of Landscape Pattern on River Water Quality at Multiple Scales: A Case Study of the Dongjiang River Watershed, China. Ecol. Indic. 2012, 23, 166–175. [Google Scholar] [CrossRef]
- dos Reis Oliveira, P.C.; van der Geest, H.G.; Kraak, M.H.S.; Verdonschot, P.F.M. Land Use Affects Lowland Stream Ecosystems through Dissolved Oxygen Regimes. Sci. Rep. 2019, 9, 19685. [Google Scholar] [CrossRef] [Green Version]
- Oja, T.; Alamets, K.; Pärnamets, H. Modelling Bird Habitat Suitability Based on Landscape Parameters at Different Scales. Ecol. Indic. 2005, 5, 314–321. [Google Scholar] [CrossRef]
- Boone, R.B.; Hunter, M.L. Using Diffusion Models to Simulate the Effects of Land Use on Grizzly Bear Dispersal in the Rocky Mountains. Landsc. Ecol. 1996, 11, 51–64. [Google Scholar] [CrossRef]
- Akçakaya, H.R. Linking Population-Level Risk Assessment with Landscape and Habitat Models. Sci. Total Environ. 2001, 274, 283–291. [Google Scholar] [CrossRef]
- van Langevelde, F.; Schotman, A.; Claassen, F.; Sparenburg, G. Competing Land Use in the Reserve Site Selection Problem. Landsc. Ecol. 2000, 15, 243–256. [Google Scholar] [CrossRef]
- Crist, P.J.; Kohley, T.W.; Oakleaf, J. Assessing Land-Use Impacts on Biodiversity Using an Expert Systems Tool. Landsc. Ecol. 2000, 15, 47–62. [Google Scholar] [CrossRef]
- Theobald, D.M.; Hobbs, N.T.; Bearly, T.; Zack, J.A.; Shenk, T.; Riebsame, W.E. Incorporating Biological Information in Local Land-Use Decision Making: Designing a System for Conservation Planning. Landsc. Ecol. 2000, 15, 35–45. [Google Scholar] [CrossRef]
- Bock, M.; Rossner, G.; Wissen, M.; Remm, K.; Langanke, T.; Lang, S.; Klug, H.; Blaschke, T.; Vrščaj, B. Spatial Indicators for Nature Conservation from European to Local Scale. Ecol. Indic. 2005, 5, 322–338. [Google Scholar] [CrossRef]
- Szantoi, Z.; Geller, G.N.; Tsendbazar, N.-E.; See, L.; Griffiths, P.; Fritz, S.; Gong, P.; Herold, M.; Mora, B.; Obregón, A. Addressing the Need for Improved Land Cover Map Products for Policy Support. Environ. Sci. Policy 2020, 112, 28–35. [Google Scholar] [CrossRef]
- Nativi, S.; Santoro, M.; Giuliani, G.; Mazzetti, P. Towards a Knowledge Base to Support Global Change Policy Goals. Int. J. Digit. Earth 2019, 13, 188–216. [Google Scholar] [CrossRef] [Green Version]
- Owers, C.J.; Lucas, R.M.; Clewley, D.; Planque, C.; Punalekar, S.; Tissott, B.; Chua, S.M.T.; Bunting, P.; Mueller, N.; Metternicht, G. Living Earth: Implementing National Standardised Land Cover Classification Systems for Earth Observation in Support of Sustainable Development. Big Earth Data 2021, 5, 368–390. [Google Scholar] [CrossRef]
- Kavvada, A.; Metternicht, G.; Kerblat, F.; Mudau, N.; Haldorson, M.; Laldaparsad, S.; Friedl, L.; Held, A.; Chuvieco, E. Towards Delivering on the Sustainable Development Goals Using Earth Observations. Remote Sens. Environ. 2020, 247, 111930. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No Pixel Left behind: Toward Integrating Earth Observations for Agriculture into the United Nations Sustainable Development Goals Framework. Remote Sens. Environ. 2019, 235, 111470. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge Generation Using Satellite Earth Observations to Support Sustainable Development Goals (SDG): A Use Case on Land Degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Mander, Ü.; Müller, F.; Wrbka, T. Functional and Structural Landscape Indicators: Upscaling and Downscaling Problems. Ecol. Indic. 2005, 5, 267–272. [Google Scholar] [CrossRef]
- Dennis, M.; Barlow, D.; Cavan, G.; Cook, P.; Gilchrist, A.; Handley, J.; James, P.; Thompson, J.; Tzoulas, K.; Wheater, C.P.; et al. Mapping Urban Green Infrastructure: A Novel Landscape-Based Approach to Incorporating Land Use and Land Cover in the Mapping of Human-Dominated Systems. Land 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and Species Richness: Towards a General, Hierarchical Theory of Species Diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G. Consistent Global Land Cover Maps for Climate Modelling Communities: Current Achievements of the ESA’s Land Cover CCI; European Space Agency: Frascati, Italy, 2013; pp. 9–13. [Google Scholar]
- Haack, B.; Mahabir, R.; Kerkering, J. Remote Sensing-Derived National Land Cover Land Use Maps: A Comparison for Malawi. Geocarto Int. 2015, 30, 270–292. [Google Scholar] [CrossRef]
- Randin, C.F.; Ashcroft, M.B.; Bolliger, J.; Cavender-Bares, J.; Coops, N.C.; Dullinger, S.; Dirnböck, T.; Eckert, S.; Ellis, E.; Fernández, N.; et al. Monitoring Biodiversity in the Anthropocene Using Remote Sensing in Species Distribution Models. Remote Sens. Environ. 2020, 239, 111626. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential Biodiversity Variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Egger, E.; Italiano, J.; Poussin, C.; Richard, J.-P.; Chatenoux, B. Essential Variables for Environmental Monitoring: What Are the Possible Contributions of Earth Observation Data Cubes? Data 2020, 5, 100. [Google Scholar] [CrossRef]
- Lehmann, A.; Masò, J.; Nativi, S.; Giuliani, G. Towards Integrated Essential Variables for Sustainability. Int. J. Digit. Earth 2020, 13, 158–165. [Google Scholar] [CrossRef]
- Lucas, R.; Mitchell, A. Integrated Land Cover and Change Classifications. In The Roles of Remote Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017; pp. 295–308. ISBN 978-3-319-64330-4. [Google Scholar]
- Pettorelli, N.; Bühne, H.S.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite Remote Sensing of Ecosystem Functions: Opportunities, Challenges and Way Forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Moll, G.; Kay, K.; Maharjan, B. Remote Sensing & Classified Land Cover—Essential Land Use Decision Support Tools Using High-Resolution Imagery; Global Ecosystem Center: Washington, DC, USA, 2012. [Google Scholar]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.; Damm, A.; Hein, L.; Petchey, O.L.; Schaepman, M.E. Spatio-Temporal Trends and Trade-Offs in Ecosystem Services: An Earth Observation Based Assessment for Switzerland between 2004 and 2014. Ecol. Indic. 2018, 89, 828–839. [Google Scholar] [CrossRef]
- Price, B.; Kienast, F.; Seidl, I.; Ginzler, C.; Verburg, P.H.; Bolliger, J. Future Landscapes of Switzerland: Risk Areas for Urbanisation and Land Abandonment. Appl. Geogr. 2015, 57, 32–41. [Google Scholar] [CrossRef]
- Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.; van Vliet, J. Beyond Land Cover Change: Towards a New Generation of Land Use Models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M.W., Mohamed, A., Yap, B.W., Eds.; Unsupervised and Semi-Supervised Learning; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–21. ISBN 978-3-030-22475-2. [Google Scholar]
- Costa, H.; Foody, G.M.; Boyd, D.S. Supervised Methods of Image Segmentation Accuracy Assessment in Land Cover Mapping. Remote Sens. Environ. 2018, 205, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Yokoya, N.; Ge, N.; Chanussot, J.; Zhu, X.X. Learnable Manifold Alignment (LeMA): A Semi-Supervised Cross-Modality Learning Framework for Land Cover and Land Use Classification. ISPRS J. Photogramm. Remote Sens. 2019, 147, 193–205. [Google Scholar] [CrossRef]
- Li, Y.; Tao, C.; Tan, Y.; Shang, K.; Tian, J. Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 157–161. [Google Scholar] [CrossRef]
- Lary, D.J.; Zewdie, G.K.; Liu, X.; Wu, D.; Levetin, E.; Allee, R.J.; Malakar, N.; Walker, A.; Mussa, H.; Mannino, A.; et al. Machine Learning Applications for Earth Observation. In Earth Observation Open Science and Innovation; ISSI Scientific Report Series; Springer: Cham, Switzerland, 2018; pp. 165–218. ISBN 978-3-319-65632-8. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, Y.; Luo, J. Deep Learning for Processing and Analysis of Remote Sensing Big Data: A Technical Review. Big Earth Data 2021, 1–34. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Wang, T.; Kazak, J.; Han, Q.; de Vries, B. A Framework for Path-Dependent Industrial Land Transition Analysis Using Vector Data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, J.; Farkoushi, M.G.; Lee, E.; Sohn, H.-G. Automatic Generation of Land Use Maps Using Aerial Orthoimages and Building Floor Data with a Conv-Depth Block (CDB) ResU-Net Architecture. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102678. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, A.J.; Bush, A.; Gilmore, J.; Harwood, T.; Hudson, L.N.; Ware, C.; Williams, K.J.; Ferrier, S. Downscaling Land-Use Data to Provide Global 30″ Estimates of Five Land-Use Classes. Ecol. Evol. 2016, 6, 3040–3055. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Wigley, T.M.L. Downscaling General Circulation Model Output: A Review of Methods and Limitations. Prog. Phys. Geogr. Earth Environ. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Huth, R. Statistical Downscaling of Daily Temperature in Central Europe. J. Clim. 2002, 15, 1731–1742. [Google Scholar] [CrossRef]
- Coulibaly, P.; Dibike, Y.B.; Anctil, F. Downscaling Precipitation and Temperature with Temporal Neural Networks. J. Hydrometeorol. 2005, 6, 483–496. [Google Scholar] [CrossRef]
- Bogardi, I.; Matyasovzky, I. Estimating Daily Wind Speed under Climate Change. Sol. Energy 1996, 57, 239–248. [Google Scholar] [CrossRef]
- Huth, R. Downscaling of Humidity Variables: A Search for Suitable Predictors and Predictands. Int. J. Climatol. 2005, 25, 243–250. [Google Scholar] [CrossRef]
- Müller-Wohlfeil, D.-I.; Bürger, G.; Lahmer, W. Response of a River Catchment to Climatic Change: Application of Expanded Downscaling to Northern Germany. Clim. Chang. 2000, 47, 61–89. [Google Scholar] [CrossRef]
- Wilby, R.L.; Hay, L.E.; Gutowski, W.J., Jr.; Arritt, R.W.; Takle, E.S.; Pan, Z.; Leavesley, G.H.; Clark, M.P. Hydrological Responses to Dynamically and Statistically Downscaled Climate Model Output. Geophys. Res. Lett. 2000, 27, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Lehmann, A.; Leathwick, J.R.; Overton, J.M. Assessing New Zealand Fern Diversity from Spatial Predictions of Species Assemblages. Biodivers. Conserv. 2002, 11, 2217–2238. [Google Scholar] [CrossRef]
- Dehn, M.; Bürger, G.; Buma, J.; Gasparetto, P. Impact of Climate Change on Slope Stability Using Expanded Downscaling. Eng. Geol. 2000, 55, 193–204. [Google Scholar] [CrossRef]
- Le Page, Y.; West, T.O.; Link, R.; Patel, P. Downscaling Land Use and Land Cover from the Global Change Assessment Model for Coupling with Earth System Models. Geosci. Model Dev. 2016, 9, 3055–3069. [Google Scholar] [CrossRef] [Green Version]
- Mancosu, E.; Gago-Silva, A.; Barbosa, A.; de Bono, A.; Ivanov, E.; Lehmann, A.; Fons, J. Future Land-Use Change Scenarios for the Black Sea Catchment. Environ. Sci. Policy 2015, 46, 26–36. [Google Scholar] [CrossRef]
- Bardossy, A.; Bogardi, I.; Matyasovszky, I. Fuzzy Rule-Based Downscaling of Precipitation. Theor. Appl. Climatol. 2005, 82, 119–129. [Google Scholar] [CrossRef]
- Bürger, G.; Chen, Y. Regression-Based Downscaling of Spatial Variability for Hydrologic Applications. J. Hydrol. 2005, 311, 299–317. [Google Scholar] [CrossRef]
- Biau, G.; Zorita, E.; von Storch, H.; Wackernagel, H. Estimation of Precipitation by Kriging in the EOF Space of The Sea Level Pressure Field. J. Clim. 1999, 12, 1070–1085. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F.; Dubayah, R. Potential for Downscaling Soil Moisture Maps Derived from Spaceborne Imaging Radar Data. J. Geophys. Res. Atmos. 2000, 105, 2203–2212. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized Regression Analysis and Spatial Prediction. Ecol. Model. 2003, 160, 165–183. [Google Scholar] [CrossRef]
- Remm, K. Case-Based Predictions for Species and Habitat Mapping. Ecol. Model. 2004, 177, 259–281. [Google Scholar] [CrossRef]
- Aha, D.W. The Omnipresence of Case-Based Reasoning in Science and Application. Knowl. Based Syst. 1998, 11, 261–273. [Google Scholar] [CrossRef]
- Karpatne, A.; Jiang, Z.; Vatsavai, R.R.; Shekhar, S.; Kumar, V. Monitoring Land-Cover Changes: A Machine-Learning Perspective. IEEE Geosci. Remote Sens. Mag. 2016, 4, 8–21. [Google Scholar] [CrossRef]
- Ban, Y.F.; Gong, P.; Gini, C. Global Land Cover Mapping Using Earth Observation Satellite Data: Recent Progresses and Challenges. Isprs J. Photogramm. Remote Sens. 2015, 103, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gellrich, M.; Zimmermann, N.E. Investigating the Regional-Scale Pattern of Agricultural Land Abandonment in the Swiss Mountains: A Spatial Statistical Modelling Approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Nippel, T.; Klingl, T. Swiss Land Use in the European Context—Integration of Swiss Land Use Statistics with CORINE Land Cover; Swiss Federal Statistical Office: Neuchâtel, Switzerland, 1998; p. 47. [Google Scholar]
- Conedera, M.; Tonini, M.; Oleggini, L.; Orozco, C.V.; Leuenberger, M.; Pezzatti, G.B. Geospatial Approach for Defining the Wildland-Urban Interface in the Alpine Environment. Comput. Environ. Urban Syst. 2015, 52, 10–20. [Google Scholar] [CrossRef]
- Holloway, J.; Helmstedt, K.J.; Mengersen, K.; Schmidt, M. A Decision Tree Approach for Spatially Interpolating Missing Land Cover Data and Classifying Satellite Images. Remote Sens. 2019, 11, 1796. [Google Scholar] [CrossRef] [Green Version]
- Ling, F.; Du, Y.; Li, X.; Li, W.; Xiao, F.; Zhang, Y. Interpolation-Based Super-Resolution Land Cover Mapping. Remote Sens. Lett. 2013, 4, 629–638. [Google Scholar] [CrossRef]
- Gardner, R.H.; Lookingbill, T.R.; Townsend, P.A.; Ferrari, J. A New Approach for Rescaling Land Cover Data. Landsc. Ecol. 2008, 23, 513–526. [Google Scholar] [CrossRef]
- Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 22 February 2022).
- PyCharm: The Python IDE for Professional Developers by JetBrains. Available online: https://www.jetbrains.com/pycharm/ (accessed on 22 February 2022).
- Gdal. Available online: https://gdal.org (accessed on 22 February 2022).
- NumPy. Available online: https://numpy.org/ (accessed on 22 February 2022).
- Xlrd. Available online: https://xlrd.readthedocs.io/en/latest/ (accessed on 22 February 2022).
- Pandas—Python Data Analysis Library. Available online: https://pandas.pydata.org/ (accessed on 22 February 2022).
- High Performance Computing—EResearch—UNIGE. Available online: https://www.unige.ch/eresearch/en/services/hpc/ (accessed on 22 February 2022).
- Giuliani, G. Lulcdown. 2022. Available online: https://github.com/ggiuliani/LULCdown (accessed on 22 February 2022).
- Yareta—Portal. Available online: https://yareta.unige.ch/#/home/detail/6ab4b715-904f-4cb9-961c-6a25b4c1116b (accessed on 22 February 2022).
- Dendoncker, N.; Bogaert, P.; Rounsevell, M. A Statistical Method to Downscale Aggregated Land Use Data and Scenarios. J. Land Use Sci. 2006, 1, 63–82. [Google Scholar] [CrossRef]
- Sherba, J.T.; Sleeter, B.M.; Davis, A.W.; Parker, O.; Sherba, J.T.; Sleeter, B.M.; Davis, A.W.; Parker, O. Downscaling Global Land-Use/Land-Cover Projections for Use in Region-Level State-and-Transition Simulation Modeling. AIMS Environ. Sci. 2015, 2, 623–647. [Google Scholar] [CrossRef]
- Zheng, H.; Du, P.; Chen, J.; Xia, J.; Li, E.; Xu, Z.; Li, X.; Yokoya, N. Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use and Land Cover Classification by Spectral-Spatial Features. Remote Sens. 2017, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- West, T.O.; Page, Y.L.; Huang, M.; Wolf, J.; Thomson, A.M. Downscaling Global Land Cover Projections from an Integrated Assessment Model for Use in Regional Analyses: Results and Evaluation for the US from 2005 to 2095. Environ. Res. Lett. 2014, 9, 64004. [Google Scholar] [CrossRef] [Green Version]
- Ivits, E.; Koch, B.; Blaschke, T.; Jochum, M.; Adler, P. Landscape Structure Assessment with Image Grey-values and Object-based Classification at Three Spatial Resolutions. Int. J. Remote Sens. 2005, 26, 2975–2993. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gen. Tech. Rep. PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351, pp. 1–122. [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale Dependence of Landscape Metrics and Their Indicatory Value for Nutrient and Organic Matter Losses from Catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Riitters, K.H. Downscaling Indicators of Forest Habitat Structure from National Assessments. Ecol. Indic. 2005, 5, 273–279. [Google Scholar] [CrossRef]
- Levins, R. The strategy of model building in population biology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.G.; Walker, R.; Manson, S.; Seto, K. Modeling Land Use and Land Cover Change. In Land Change Science; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2012; pp. 395–409. ISBN 978-94-007-4306-9. [Google Scholar]
- Giuliani, G.; Dao, H.; De Bono, A.; Chatenoux, B.; Allenbach, K.; De Laborie, P.; Rodila, D.; Alexandris, N.; Peduzzi, P. Live Monitoring of Earth Surface (LiMES): A Framework for Monitoring Environmental Changes from Earth Observations. Remote Sens. Environ. 2017, 202, 222–233. [Google Scholar] [CrossRef]
- Purss, M.B.J.; Lewis, A.; Oliver, S.; Ip, A.; Sixsmith, J.; Evans, B.; Edberg, R.; Frankish, G.; Hurst, L.; Chan, T. Unlocking the Australian landsat archive—From dark data to high performance data infrastructures. GeoResJ 2015, 6, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Ryan, B. The Benefits from Open Data Are Immense. Geospat. World 2016, 10, 72–73. [Google Scholar]
- Pasquarella, V.J.; Holden, C.E.; Kaufman, L.; Woodcock, C.E. From imagery to ecology: Leveraging Time series of all available landsat observations to map and monitor ecosystem state and dynamics. Remote Sens. Ecol. Conserv. 2016, 2, 152–170. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Campbell, L.B. Mass Data Processing of Time Series Landsat Imagery: Pixels to Data Products for Forest Monitoring. Int. J. Digit. Earth 2016, 9, 1035–1054. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Arias, M.; Vincent, A.; Tardy, B.D.M.; Michel, J. Large Scale Automatic Land Cover Map Production with Sentinel-2 Image Time Series: Current Status and Outlooks. 2016. Available online: https://www.jordiinglada.net/stok/LivingPlanet/LandCoverSlides.pdf (accessed on 22 February 2022).
- Zioti, F.; Ferreira, K.R.; Queiroz, G.R.; Neves, A.K.; Carlos, F.M.; Souza, F.C.; Santos, L.A.; Simoes, R.E.O. A Platform for Land Use and Land Cover Data Integration and Trajectory Analysis. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102655. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Dearing, J.A.; Dyke, J.G.; van der Leeuw, S.; Seitzinger, S.; Steffen, W.; Syvitski, J. Methods and Approaches to Modelling the Anthropocene. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 39, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Killough, B. CEOS Land Surface Imaging Analysis Ready Data (ARD) Description Document; CEOS: London, UK, 2016. [Google Scholar]
- Strobl, P.; Baumann, P.; Lewis, A.; Szantoi, Z.; Killough, B.; Purss, M.; Craglia, M.; Nativi, S.; Held, A.; Dhu, T. The Six Faces of the Data Cube. In Proceedings of the 2017 Conference on Big Data from Space, Toulouse, France, 28 November 2017; pp. 32–35. [Google Scholar]
- Chatenoux, B.; Richard, J.-P.; Small, D.; Roeoesli, C.; Wingate, V.; Poussin, C.; Rodila, D.; Peduzzi, P.; Steinmeier, C.; Ginzler, C.; et al. The Swiss Data Cube, Analysis Ready Data Archive Using Earth Observations of Switzerland. Sci. Data 2021, 8, 295. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Bono, A.D.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons Learned from the Swiss Data Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
Input | Name | Resolution | Provider | URL |
---|---|---|---|---|
Land Use Statistics (1992/97, 2004/09, 2013/18) | Arealstatistik | 100 m | Swiss Federal Statistical Office | www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability.html (accessed on 10 December 2021). |
National Base Map (2003, 2008) | Vector 25 | 25 m | swisstopo | www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html (accessed on 10 December 2021). |
National Base Map (2021) | swissTLM3D | 25 m | swisstopo | www.swisstopo.admin.ch/en/geodata/landscape/tlm3d.html (accessed on 10 December 2021). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliani, G.; Rodila, D.; Külling, N.; Maggini, R.; Lehmann, A. Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land 2022, 11, 615. https://doi.org/10.3390/land11050615
Giuliani G, Rodila D, Külling N, Maggini R, Lehmann A. Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land. 2022; 11(5):615. https://doi.org/10.3390/land11050615
Chicago/Turabian StyleGiuliani, Gregory, Denisa Rodila, Nathan Külling, Ramona Maggini, and Anthony Lehmann. 2022. "Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System" Land 11, no. 5: 615. https://doi.org/10.3390/land11050615
APA StyleGiuliani, G., Rodila, D., Külling, N., Maggini, R., & Lehmann, A. (2022). Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land, 11(5), 615. https://doi.org/10.3390/land11050615