Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples Collection and Analysis
2.3. Data Analysis
2.3.1. Correlation Analysis of Heavy Metal Content in Soil–Rice Systems
2.3.2. Quantification of Qualitative Variables
2.3.3. The Multiple Regression Model
2.3.4. Nonlinear Principal Component Analysis
2.3.5. Data Analysis
3. Results and Discussion
3.1. Summarized Statistics of Cd Content in the Soil–Rice System
3.2. Correlation Analysis of Cd Content in a Soil–Rice System
3.3. Identifying the Main Controls of Cd in Soil and Rice via Multivariate Statistical Analysis
3.4. Identifying Main Controls of Cd in Rice via Nonlinear PCA
3.5. Recommendations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.F.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.C.; Lin, Q.; Shi, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.L.; Fu, T.T.; Hu, B.F.; Shi, Z.; Zhou, L.Q.; Zhu, Y.W. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. J. Hazard. Mater. 2020, 393, 122424. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, R.Z.; Yang, Z.F.; Kuikka, S. Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks. Environ. Pollut. 2021, 269, 116125. [Google Scholar] [CrossRef] [PubMed]
- Ogundele, L.T.; Oluwajana, O.A.; Ogunyele, A.C.; Inuyomi, S.O. Heavy metals, radionuclides activity and mineralogy of soil samples from an artisanal gold mining site in Ile-Ife, Nigeria: Implications on human and environmental health. Environ. Earth Sci. 2021, 80, 202. [Google Scholar] [CrossRef]
- Sanaei, F.; Amin, M.M.; Alavijeh, Z.P.; Esfahani, R.A.; Sadeghi, M.; Bandarrig, N.S.; Fatehizadeh, A.; Taheri, E.; Rezakazemi, M. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environ. Sci. Pollut. Res. 2021, 28, 1479–1490. [Google Scholar] [CrossRef]
- Sellami, S.; Zeghouan, O.; Dhahri, F.; Mechi, L.; Moussaoui, Y.; Kebabi, B. Assessment of heavy metal pollution in urban and peri-urban soil of Setif city (High Plains, eastern Algeria). Environ. Monit. Assess. 2022, 194, 1–17. [Google Scholar] [CrossRef]
- Chen, H.R.; Wang, L.; Hu, B.F.; Xu, J.M.; Liu, X.M. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere 2021, 263, 128135. [Google Scholar] [CrossRef]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Xia, F.; Zhu, Y.W.; Hu, B.F.; Chen, X.Y.; Li, H.Y.; Shi, K.J.; Xu, L.C. Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. Land 2021, 10, 1126. [Google Scholar] [CrossRef]
- Tang, M.; Lu, G.; Fan, B.; Xiang, W.; Bao, Z. Bioaccumulation and risk assessment of heavy metals in soil-crop systems in Liujiang karst area, Southwestern China. Environ. Sci. Pollut. Res. 2021, 28, 9657–9669. [Google Scholar] [CrossRef] [PubMed]
- Dudka, S.; Piotrowska, M.; Terelak, H. Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants: A field study. Environ. Pollut. 1996, 94, 181–188. [Google Scholar] [CrossRef]
- Chen, B.Y.; Wang, H.J.; Cao, T.H.; Liang, X.H.; Yang, J.; Ren, J. Spatio-temporal characteristics of heavy metal accumulation in soil-rice cropping systems under different phosphate fertilizer concentrations. J. Agro Environ. Sci. 2010, 29, 2274–2280. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. China Soil Pollution Survey Communique; MEEPRC: Beijing, China, 2014. (In Chinese)
- DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant. Biol. 2008, 50, 1268–1280. [Google Scholar] [CrossRef]
- Qian, Y.Z.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.J.; Li, M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control 2010, 21, 1757–1763. [Google Scholar] [CrossRef]
- Ronzan, M.; Piacentini, D.; Fattorini, L.; Della Rovere, F.; Eiche, E.; Riemann, M.; Falasca, G. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ. Exp. Bot. 2018, 151, 64–75. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ. Sci. Pollut. Res. 2017, 24, 14945–14956. [Google Scholar] [CrossRef]
- Sawut, R.; Kasim, N.; Maihemuti, B.; Hu, L.; Abliz, A.; Abdujappar, A.; Kurban, M. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Sci. Total Environ. 2018, 642, 864–878. [Google Scholar] [CrossRef]
- Tokatli, C.; Ustaoğlu, F. Health risk assessment of toxicants in Meriç river delta wetland, thrace region, Turkey. Environ. Earth Sci. 2020, 79, 426. [Google Scholar] [CrossRef]
- Hu, B.F.; Jia, X.L.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, M.A.; Jamshidi-Zanjani, A.; Darban, A.K. Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: A comprehensive study. Environ. Earth Sci. 2020, 79, 1–18. [Google Scholar]
- Ugulu, I.; Ahmad, K.; Khan, Z.I.; Munir, M.; Wajid, K.; Bashir, H. Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.). Environ. Sci. Pollut. R 2021, 28, 12533–12545. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.B.; Yan, X.L.; Liao, X.Y.; Lin, L.Y. Screening of Chemical Extracting Agents for Characterizing Soil Bio-effective Arsenic on Panax Notoginseng. J. Agro. Environ. Sci. 2011, 30, 1573–1579. [Google Scholar]
- Yan, S.H.; Wu, C.F.; Hu, Y.B.; Li, Z.X.; Lu, Q.S.; Chen, S.; Yang, Q.J. Optimization of CaCl2 extraction of abvailable Cadmium in Typical Soils. Chinese. Agric. Sci. Bull. 2013, 29, 99–104. [Google Scholar]
- Deng, M.H.; Malik, A.; Zhang, Q.; Sadeghpour, A.; Zhu, Y.W.; Li, Q.R. Improving Cd risk managements of rice cropping system by integrating source-soil-rice-human chain for a typical intensive industrial and agricultural region. J. Clean. Prod. 2021, 313, 127883. [Google Scholar] [CrossRef]
- Liu, X.; Yu, T.; Yang, Z.F.; Hou, Q.Y.; Yang, Q.; Li, C.; Ji, W.B.; Li, B.; Duan, Y.R.; Zhang, Q.Z.; et al. Transfer mechanism and bioaccumulation risk of potentially toxic elements in soil–rice systems comparing different soil parent materials. Ecotox. Environ. Saf. 2021, 216, 112214. [Google Scholar] [CrossRef]
- Wiggenhauser, M.; Aucour, A.M.; Bureau, S.; Campillo, S.; Telouk, P.; Romani, M.; Ma, F.Q.; Landrot, G.; Sarret, G. Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation. Environ. Pollut. 2021, 269, 115934. [Google Scholar] [CrossRef]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Huang, M.X.; Chen, Q.X.; Shi, Z. Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environ. Pollut. 2021, 270, 116196. [Google Scholar] [CrossRef]
- Wang, Q.H.; Dong, Y.X.; Zhou, G.H.; Zheng, W. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang province. J. Ecol. Rural Environ. 2007, 2, 81–88. (In Chinese) [Google Scholar]
- Liu, Y.Z.; Xiao, T.F.; Xiong, Y.; Ning, Z.P.; Shuang, Y.; Li, H.; Ma, L.; Chen, H.Y. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of Cadmium, Southwestern China. Environ. Sci. 2019, 40, 2877–2884. (In Chinese) [Google Scholar]
- Zhao, W.F.; Song, Y.X.; Guan, D.X.; Ma, Q.; Guo, C.; Wen, Y.B.; Ji, J.F. Pollution status and bioavailability of heavy metals in soils of a typical black shale area. J. Agro Environ. Sci. 2018, 37, 1332–1341. (In Chinese) [Google Scholar]
- Dai, L.; Wang, L.; Liang, T.; Zhang, Y.Y.; Li, J.; Xiao, J.; Dong, L.L.; Zhang, H.D. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern QingHai-Tibet Plateau, China. Sci. Total Environ. 2019, 653, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.Q.; Yang, Y.J. Erroneous zone identification and improvement of synthesis evaluation based on principal component analysis. J. Quant. Tech. Econ. 2016, 10, 142–153. (In Chinese) [Google Scholar]
- Hu, B.F.; Zhou, Y.; Jiang, Y.F.; Ji, W.J.; Fu, Z.Y.; Shao, S.; Li, S.; Huang, M.X.; Zhou, L.Q.; Shi, Z. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). J. Environ. Manag. 2020, 271, 110943. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.F.; Shao, S.; Fu, Z.Y.; Li, Y.; Ni, H.; Chen, S.C.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total. Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Brun, L.A.; Maillet, J.; Richarte, J.; Herrmann, P.; Remy, J.C. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ. Pollut. 1998, 102, 151–161. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil testing for heavy metals. Commun. Soil. Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, Y.L.; Wang, Y.; Chen, S.Z.; Yang, K.M.; Zhang, X.C.; Liao, Y.Q. Correlation analysis of the heavy metal contents and the effective contents in the combination of planting and breeding recycling mode. J. Southwest Univ. Natl. 2010, 36, 970–974. (In Chinese) [Google Scholar]
- Xie, M.D.; Li, H.Y.; Zhu, Y.W.; Xue, J.; You, Q.H.; Jin, B.; Shi, Z. Predicting bioaccumulation of potentially toxic element in soil-rice systems using multi-source data and machine learning methods: A case study of an industrial city in southeast China. Land 2021, 10, 558. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2014, 49, 750–759. [Google Scholar] [CrossRef]
- Gupta, S.; Nayek, S.; Saha, R.N.; Satpati, S. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ. Earth Sci. 2008, 55, 731–739. [Google Scholar] [CrossRef]
- Shen, X.Y.; Chen, S.G.; Wang, Y.; Wang, Y.M.; Cai, W.X. Study on different clays as adsorbents in heavy metals-containing waste water treatment. Environ. Pollut. Control 1998, 20, 15–18. [Google Scholar]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian. J. Pharmacol. 2011, 43, 246. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.R.; Ali, S.; Zhang, H.T.; Ouyang, Y.N.; Qiu, B.Y.; Wu, F.B.; Zhang, G.P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Antoniadis, V.; Robinson, J.S.; Alloway, B.J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008, 71, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Guan, D.S.; Peart, M.R.; Chen, Y.J.; Li, Q.Q.; Dai, J. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. Chemosphere 2017, 185, 868–878. [Google Scholar] [CrossRef]
- Liu, C.S.; Chang, C.Y.; Fei, Y.H.; Li, F.B.; Wang, Q.; Zhai, G.S.; Lei, J. Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Environ. Pollut. 2018, 233, 880–888. [Google Scholar] [CrossRef]
- Zhang, J.R.; Li, H.Z.; Zhou, Y.Z.; Dou, L.; Cai, L.M.; Mo, L.P.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.; Li, Z.; Fu, Y.; Liu, X.; Brookes, P.C.; Xu, J. A comprehensive mitigation strategy for heavy metal contamination of farmland around mining areas—Screening of low accumulated cultivars, soil remediation and risk assessment. Environ. Pollut. 2019, 245, 820–828. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.L.; Nan, Z.R.; Ma, J.M.; Zhang, Q.; Chen, Y.Z.; Li, Y.P. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 2017, 305, 188–196. [Google Scholar] [CrossRef]
- Mao, C.P.; Song, Y.X.; Chen, L.X.; Ji, J.F.; Li, J.Z.; Yuan, X.Y.; Yang, Z.F.; Godwin, A.A.; Ray, L.F.; Frederick, T. Human health risks of heavy metals in paddy rice-based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
Variables | Site | n | Mean mg kg−1 | Min mg kg−1 | Max mg kg−1 | SD mg kg−1 | CV % | Skewness | Kurtosis | Approximate Shapiro–Wilk |
---|---|---|---|---|---|---|---|---|---|---|
CdT | A | 94 | 1.50 | 0.21 | 12.90 | 1.86 | 124 | 3.65 | 17.02 | Non-normal |
B | 106 | 0.49 | 0.13 | 8.59 | 1.06 | 218 | 6.17 | 41.49 | Normal | |
C | 17 | 0.68 | 0.21 | 3.50 | 0.79 | 121 | 3.21 | 11.22 | Normal | |
CdA | A | 94 | 0.26 | 0.00 | 3.13 | 0.47 | 181 | 3.94 | 18.65 | Non-normal |
B | 106 | 0.07 | 0.00 | 1.33 | 0.18 | 257 | 6.34 | 41.88 | Normal | |
C | 17 | 0.18 | 0.02 | 1.05 | 0.24 | 140 | 3.46 | 12.84 | Normal | |
CdN | A | 94 | 0.83 | 0.03 | 6.76 | 1.03 | 123 | 2.74 | 11.02 | Non-normal |
B | 106 | 0.22 | 0.02 | 2.24 | 0.31 | 142 | 3.66 | 17.50 | Normal | |
C | 17 | 0.25 | 0.02 | 1.22 | 0.32 | 120 | 2.08 | 4.44 | Normal |
Qualitative Variable | Soil Texture | Soil Type | Soil Parent Material | |||
---|---|---|---|---|---|---|
Soil Cd | Rice Cd | Soil Cd | Rice Cd | Soil Cd | Rice Cd | |
P | 0.931 | 0.968 | 0.007 | 0.000 | 0.067 | 0.004 |
Coefficients | Standard Error | t Stat | p Value | |
---|---|---|---|---|
Intercept | 2.771 | 2.153 | 1.287 | 0.199 |
ST | 0.512 | 0.086 | 5.955 | 0.000 |
log10 (SOM) | −0.721 | 0.239 | −3.013 | 0.003 |
log10 (CdT) | 0.378 | 0.205 | 1.839 | 0.047 |
PmT | −0.159 | 0.086 | −1.858 | 0.065 |
Ele | 0.001 | 0.001 | 1.621 | 0.107 |
OuI | −0.787 | 0.646 | −1.219 | 0.224 |
log10 (CEC) | 0.275 | 0.299 | 0.920 | 0.359 |
pH | −0.054 | 0.117 | −0.460 | 0.646 |
log10 (CdA) | 0.083 | 0.191 | 0.434 | 0.665 |
log10 (BD) | 0.990 | 4.374 | 0.226 | 0.821 |
EnP | −0.010 | 0.068 | −0.146 | 0.884 |
PC | Eigenvalue | Variance % | Cumulative Contribution Rate% |
---|---|---|---|
1 | 4.426 | 34.049 | 34.049 |
2 | 2.713 | 20.870 | 54.919 |
3 | 2.130 | 16.381 | 71.300 |
4 | 1.150 | 8.844 | 80.144 |
Factor Load after Rotation | ||||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Zscore (CdT) | 0.117 | 0.211 | 0.322 | 0.214 |
Zscore (pH) | −0.037 | −0.003 | 0.008 | 0.347 |
Zscore (CdA) | 0.119 | 0.244 | −0.408 | −0.004 |
Zscore (SOM) | −0.118 | 0.067 | −0.057 | 0.546 |
Zscore (CEC) | −0.159 | 0.105 | 0.093 | 0.400 |
Zscore (Ele) | 0.162 | −0.164 | −0.180 | 0.177 |
Zscore (BD) | −0.130 | 0.143 | 0.154 | −0.360 |
Zscore (EnP) | 0.163 | −0.106 | −0.030 | 0.283 |
Zscore (IrW) | 0.189 | −0.053 | 0.226 | −0.003 |
Zscore (Pes) | −0.034 | −0.102 | −0.093 | 0.055 |
Zscore (Fer) | 0.190 | −0.056 | 0.220 | −0.002 |
Zscore (ST) | 0.099 | 0.294 | −0.046 | −0.036 |
Zscore (PmT) | 0.070 | 0.296 | −0.143 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fu, T.; Chen, X.; Guo, H.; Li, H.; Hu, B. Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls. Land 2022, 11, 617. https://doi.org/10.3390/land11050617
Zhang Y, Fu T, Chen X, Guo H, Li H, Hu B. Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls. Land. 2022; 11(5):617. https://doi.org/10.3390/land11050617
Chicago/Turabian StyleZhang, Yingfan, Tingting Fu, Xueyao Chen, Hancheng Guo, Hongyi Li, and Bifeng Hu. 2022. "Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls" Land 11, no. 5: 617. https://doi.org/10.3390/land11050617
APA StyleZhang, Y., Fu, T., Chen, X., Guo, H., Li, H., & Hu, B. (2022). Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls. Land, 11(5), 617. https://doi.org/10.3390/land11050617