Functional Evaluation of Digital Soil Hydraulic Property Maps through Comparison of Simulated and Remotely Sensed Maize Canopy Cover
Abstract
:1. Introduction
- Evaluate and compare the time series of the AquaCrop simulated maize canopy cover (CC) with the time series of the canopy cover derived from the MODIS-satellite LAI-product (MODIS-CC), whereby AquaCrop is alimented by the available digital soil hydraulic property maps (AquaCrop-CC-DSM).
- Investigate whether the AquaCrop-CC-DSM is closer to the MODIS-CC than the CC time series generated by the AquaCrop alimented with the soil hydraulic properties that were estimated by the widely used PTFs of Reference [38].
- Examine whether the performance of the AquaCrop-CC-DSM and the AquaCrop-CC-Saxton depend upon the reference soil group (RSG) and/or upon the rainfall abundance.
2. Materials and Methods
2.1. Study Area and Land Units
2.2. AquaCrop Model Inputs and Outputs
2.2.1. Climate Data
2.2.2. Crop Data
2.2.3. Soils and Soil Hydraulic Properties Data
2.2.4. Simulation Outputs
2.2.5. Statistical Analysis
3. Results
3.1. Maize Canopy Cover (CC)
3.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimm, R.; Behrens, T. Uncertainty Analysis of Sample Locations within Digital Soil Mapping Approaches. Geoderma 2010, 155, 154–163. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça-Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Kalumba, M.; Nyirenda, E.; Nyambe, I.; Dondeyne, S.; Van Orshoven, J. Machine Learning Techniques for Estimating Hydraulic Properties of the Topsoil across the Zambezi River Basin. Land 2022, 11, 591. [Google Scholar] [CrossRef]
- Brown, J.D.; Heuvelink, G.B.M. Assessing Uncertainty Propagation through Physically Based Models of Soil Water Flow and Solute Transport. In Encyclopedia of Hydrological Sciences; Wiley: Hoboken, NJ, USA, 2005; pp. 1181–1195. [Google Scholar]
- Minasny, B.; McBratney, A.B. Uncertainty Analysis for Pedotransfer Functions. Eur. J. Soil Sci. 2002, 53, 417–429. [Google Scholar] [CrossRef]
- Shein, E.V.; Arkhangel’skaya, T.A. Pedotransfer Functions: State of the Art, Problems, and Outlooks. Eurasian Soil Sci. 2006, 39, 1089–1099. [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.G.; Wösten, J.H.M. Functional Evaluation of Pedotransfer Functions Derived from Different Scales of Data Collection. Soil Sci. Soc. Am. J. 2003, 67, 1093–1102. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Diels, J.; Van Orshoven, J.; Feyen, J.; Bouma, J. Functional Evaluation of Pedotransfer Functions for the Estimation of Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1992, 56, 1371–1378. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Bannink, M.H.; De Gruijter, J.J.; Bouma, J. A Procedure to Identify Different Groups of Hydraulic-Conductivity and Moisture-Retention Curves for Soil Horizons. J. Hydrol. 1986, 86, 133–145. [Google Scholar] [CrossRef]
- Chirico, G.B.; Medina, H.; Romano, N. Functional Evaluation of PTF Prediction Uncertainty: An Application at Hillslope Scale. Geoderma 2010, 155, 193–202. [Google Scholar] [CrossRef]
- Nasta, P.; Romano, N.; Chirico, G.B. Functional Evaluation of a Simplified Scaling Method for Assessing the Spatial Variability of Soil Hydraulic Properties at the Hillslope Scale. Hydrol. Sci. J. 2013, 58, 1059–1071. [Google Scholar] [CrossRef]
- Basile, A.; Bonfante, A.; Coppola, A.; De Mascellis, R.; Bolognesi, S.F.; Terribile, F.; Manna, P. How Does PTF Interpret Soil Heterogeneity? A Stochastic Approach Applied to a Case Study on Maize in Northern Italy. Water 2019, 11, 275. [Google Scholar] [CrossRef] [Green Version]
- Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C.D.; Coquet, Y.; Jarvis, N.J. Functional Test of Pedotransfer Functions to Predict Water Flow and Solute Transport with the Dual-Permeability Model MACRO. Hydrol. Earth Syst. Sci. 2012, 16, 2069–2083. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yao, X.; Cao, N.; Xu, Z.; Yu, J. Integration of Soil Hydraulic Characteristics Derived from Pedotransfer Functions into Hydrological Models: Evaluation of Its Effects on Simulation Uncertainty. Hydrol. Res. 2016, 47, 964–978. [Google Scholar] [CrossRef] [Green Version]
- Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; Van Dam, J.C. Uncertainty in the Determination of Soil Hydraulic Parameters and Its Influence on the Performance of Two Hydrological Models of Different Complexity. Hydrol. Earth Syst. Sci. 2010, 14, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Garrigues, S.; Boone, A.; Decharme, B.; Olioso, A.; Albergel, C.; Calvet, J.C.; Moulin, S.; Buis, S.; Martin, E. Impacts of the Soil Water Transfer Parameterization on the Simulation of Evapotranspiration over a 14-Year Mediterranean Crop Succession. J. Hydrometeorol. 2018, 19, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Gunarathna, M.H.J.P.; Sakai, K.; Kumari, M.K.N.; Ranagalage, M. A Functional Analysis of Pedotransfer Functions Developed for Sri Lankan Soils: Applicability for Process-Based Crop Models. Agronomy 2020, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Nemes, A.; Czinege, E.; Farkas, C. Use of Simulation Modeling and Pedotransfer Functions to Evaluate Different Irrigation Scheduling Scenarios in a Heterogeneous Field. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 186–189. [Google Scholar]
- Timlin, D.J.; Pachepsky, Y.A.; Acock, B.; Whisler, F. Indirect Estimation of Soil Hydraulic Properties to Predict Soybean Yield Using GLYCIM. Agric. Syst. 1996, 52, 331–353. [Google Scholar] [CrossRef] [Green Version]
- Gijsman, A.J.; Jagtap, S.S.; Jones, J.W. Wading through a Swamp of Complete Confusion: How to Choose a Method for Estimating Soil Water Retention Parameters for Crop Models. Eur. J. Agron. 2003, 18, 77–106. [Google Scholar] [CrossRef]
- Kalumba, M.; Bamps, B.; Nyambe, I.; Dondeyne, S.; Van Orshoven, J. Development and Functional Evaluation of Pedotransfer Functions for Soil Hydraulic Properties for the Zambezi River Basin. Eur. J. Soil Sci. 2020, 72, 1559–1574. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Lungu, O.N.; Chabala, L.M.; Shepande, C. Satellite-Based Crop Monitoring and Yield Estimation—A Review. J. Agric. Sci. 2020, 13, 180–194. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Liu, J.; Shang, J.; Qian, B.; Huffman, T.; Zhang, Y.; Dong, T.; Jing, Q.; Martin, T. Crop Yield Estimation Using Time-Series MODIS Data and the Effects of Cropland Masks in Ontario, Canada. Remote Sens. 2019, 11, 2419. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.M. An Assessment of Pre- and within-Season Remotely Sensed Variables for Forecasting Corn and Soybean Yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Ban, H.Y.; Kim, K.S.; Park, N.W.; Lee, B.W. Using MODIS Data to Predict Regional Corn Yields. Remote Sens. 2017, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Huang, J.; Wu, W.; Fan, J.; Zou, J.; Wu, S. Assimilation of MODIS-LAI into the WOFOST Model for Forecasting Regional Winter Wheat Yield. Math. Comput. Model. 2013, 58, 634–643. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Xie, D.; Yin, X.; Liu, C.; Liu, G. Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Liaqat, M.U.; Cheema, M.J.M.; Huang, W.; Mahmood, T.; Zaman, M.; Khan, M.M. Evaluation of MODIS and Landsat Multiband Vegetation Indices Used for Wheat Yield Estimation in Irrigated Indus Basin. Comput. Electron. Agric. 2017, 138, 39–47. [Google Scholar] [CrossRef]
- Bala, S.K.; Islam, A.S. Correlation between Potato Yield and MODIS-Derived Vegetation Indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Towers, P.C.; Strever, A.; Poblete-Echeverría, C. Comparison of Vegetation Indices for Leaf Area Index Estimation in Vertical Shoot Positioned Vine Canopies with and without Grenbiule Hail-Protection Netting. Remote Sens. 2019, 11, 1073. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Silvestro, P.C.; Pignatti, S.; Pascucci, S.; Yang, H.; Li, Z.; Yang, G.; Huang, W.; Casa, R. Estimating Wheat Yield in China at the Field and District Scale from the Assimilation of Satellite Data into the Aquacrop and Simple Algorithm for Yield (SAFY) Models. Remote Sens. 2017, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.; Knyazikhin, Y.; Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V006; 2015. Available online: https://lpdaac.usgs.gov/products/mcd15a3hv006/ (accessed on 20 November 2021).
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montzka, C.; Herbst, M.; Weihermüller, L.; Verhoef, A.; Vereecken, H. A Global Data Set of Soil Hydraulic Properties and Sub-Grid Variability of Soil Water Retention and Hydraulic Conductivity Curves. Earth Syst. Sci. Data 2017, 9, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Leenaars, J.G.B.; Claessens, L.; Heuvelink, G.B.M.; Hengl, T.; Ruiperez González, M.; van Bussel, L.G.J.; Guilpart, N.; Yang, H.; Cassman, K.G. Mapping Rootable Depth and Root Zone Plant-Available Water Holding Capacity of the Soil of Sub-Saharan Africa. Geoderma 2018, 324, 18–36. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of Agro-Climatic Zones to Upscale Simulated Crop Yield Potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Dewitte, O.; Jones, A.; Spaargaren, O.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Gallali, T.; Hallett, S.; Jones, R.; et al. Harmonisation of the Soil Map of Africa at the Continental Scale. Geoderma 2013, 211–212, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; pp. 1–327. [Google Scholar]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. Aquacrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A Comparison of Methods for Smoothing and Gap Filling Time Series of Remote Sensing Observations—Application to MODIS LAI Products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R.; Prasad, A.K.; El-Askary, H.; Lee, W.K.; Kwak, D.A.; Lee, S.H.; Kafatos, M. Application of the Savitzky-Golay Filter to Land Cover Classification Using Temporal MODIS Vegetation Indices. Photogramm. Eng. Remote Sens. 2014, 80, 675–685. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Jiang, B.; Li, X. Real-Time Retrieval of Leaf Area Index from MODIS Time Series Data. Remote Sens. Environ. 2011, 115, 97–106. [Google Scholar] [CrossRef]
- Agrhymet Methodologie de Suivi Des Zones a Risque. AGRHYMET FLASH, Bulletin de Suivi de La Campagne Agricole Au Sahel. Cent. Reg. AGRHYMET 2006, 16, 1–26. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; ISBN 9789251083697. [Google Scholar]
- Raes, D.; Willems, P.; GBaguidi, F. RAINBOW—A Software Package for Analyzing Data and Testing the Homogeneity of Historical Data Sets. In Proceedings of the 4th International Workshop on ‘Sustainable Management of Marginal Drylands’, Islamabad, Pakistan, 27–31 January 2006. [Google Scholar]
- Sandhu, R.; Irmak, S. Assessment of AquaCrop Model in Simulating Maize Canopy Cover, Soil-Water, Evapotranspiration, Yield, and Water Productivity for Different Planting Dates and Densities under Irrigated and Rainfed Conditions. Agric. Water Manag. 2019, 224, 105–753. [Google Scholar] [CrossRef]
- de Roos, S.; De Lannoy, G.J.M.; Raes, D. Performance Analysis of Regional AquaCrop (v6.1) Biomass and Surface Soil Moisture Simulations Using Satellite and In Situ Observations. EGU Geosci. Model Dev. 2021, 65, 7309–7328. [Google Scholar] [CrossRef]
Official Name | Platform | Raster Type | Spatial Resolution | Temporal Granularity |
---|---|---|---|---|
MOD15A2H | Terra | Tile | 500 m | 8 Days |
MYD15A2H | Aqua | Tile | 500 m | 8 Days |
MCD15A2H | Terra + Aqua Combined | Tile | 500 m | 8 Days |
MCD15A3H | Terra + Aqua Combined | Tile | 500 m | 4 Days |
Land Unit, RSG and Climate Station | Soil Profile Depth Layer (cm) | FAO Textural Class | Soil Hydraulic Properties Data Used in AquaCrop Simulations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Digital Soil Mapping (DSM) | Saxton & Rawls PTFs | |||||||||||
pF0.0 vol % | pF2.0 vol % | pF4.2 vol % | AWC vol % | Ksat mm/h | pF0.0 vol % | pF2.0 vol % | pF4.2 vol % | AWC vol % | Ksat mm/h | |||
1 Acrisol Kabwe | 30 60 100 | Sandy loam Sandy Clay loam Sandy Clay loam | 31.7 29.6 31.1 | 17.3 17.1 17.4 | 6.7 6.1 7.0 | 10.6 11.0 10.4 | 204.6 201.8 185.8 | 38.8 39.5 40.4 | 20.0 26.2 29.3 | 12.0 16.8 19.2 | 8.0 9.4 10.1 | 15.7 5.8 3.4 |
2 Ferralsol Kabwe | 30 60 100 | Sandy Clay loam Sandy Clay loam Clay loam | 36.6 36.5 37.3 | 22.6 21.5 21.8 | 9.1 9.7 10.3 | 13.5 12.0 11.5 | 100.8 66.4 69.3 | 40.0 41.3 42.9 | 26.2 31.1 34.6 | 15.7 19.8 22.7 | 10.5 11.3 11.9 | 6.6 2.7 1.45 |
3 Ferralsol Mpika | 30 60 100 | Sandy Clay loam Sandy Clay Sandy Clay | 37.7 36.5 38.3 | 23.1 22.2 21.3 | 9.8 9.6 9.4 | 13.3 12.6 11.9 | 120.5 98.5 101.9 | 40.3 41.3 42.4 | 28.1 31.7 34.6 | 18.1 21.1 23.4 | 10.0 10.6 11.2 | 4.5 2.2 1.2 |
4 Luvisol Mumbwa | 30 60 100 | Sandy Clay loam Sandy Clay loam Sandy Clay | 37.0 36.6 37.4 | 25.6 24.9 23.5 | 11.6 10.2 10.7 | 14.0 14.7 12.8 | 69.8 71.8 73.8 | 39.7 41.0 42.1 | 25.1 30.0 33.0 | 15.1 19.3 21.6 | 10.0 10.7 11.4 | 7.8 3.3 1.9 |
5 Acrisol Mumbwa | 30 60 100 | Sandy Clay loam Sandy Clay loam Clay loam | 38.2 38.8 39.5 | 26.5 26.6 23.8 | 11.3 11.3 11.5 | 15.2 15.3 12.3 | 68.3 50.3 48.0 | 40.0 41.6 43.0 | 26.7 31.3 34.6 | 16.3 19.9 22.8 | 10.4 11.4 11.8 | 5.9 2.8 1.5 |
6 Acrisol Choma | 30 60 100 | Sandy loam Sandy Clay loam Sandy Clay loam | 30.5 29.3 30.6 | 18.3 17.9 17.6 | 6.8 6.7 7.2 | 11.5 11.2 10.4 | 163.1 190.4 197.1 | 38.7 38.9 39.5 | 19.0 23.6 26.2 | 11.4 15.0 16.8 | 7.6 8.6 9.4 | 18.4 8.6 5.7 |
7 Acrisol Choma | 30 60 100 | Sandy loam Sandy Clay loam Sandy Clay loam | 28.5 28.3 28.7 | 21.1 21.0 20.8 | 7.2 7.0 7.3 | 13.9 14.0 13.5 | 208.4 232.5 242.2 | 38.7 38.8 39.0 | 18.6 22.5 24.1 | 11.4 14.4 15.6 | 7.2 8.1 8.5 | 19.3 10.3 7.9 |
8 Arenosol Livingstone | 30 60 100 | Sandy loam Sandy loam Sandy loam | 33.3 32.1 32.0 | 21.2 21.4 21.0 | 9.3 8.8 7.9 | 11.9 12.6 13.1 | 187.8 180.0 225.8 | 38.9 39.1 39.5 | 22.8 24.5 26.1 | 14.4 15.6 16.8 | 8.4 8.9 9.3 | 10.1 7.6 5.9 |
9 Arenosol Livingstone | 30 60 100 | Sandy loam Sandy loam Sandy loam | 30.3 31.5 31.4 | 20.5 20.8 20.3 | 7.8 8.0 8.0 | 12.7 12.8 12.3 | 182.5 198.8 233.5 | 38.9 39.1 39.4 | 22.5 24.9 26.5 | 14.4 16.2 17.4 | 8.1 8.7 9.1 | 10.6 6.9 5.2 |
10 Podzol Mongu | 30 60 100 | Sandy loam Sandy loam Sandy loam | 26.3 26.0 26.1 | 17.5 16.6 16.0 | 5.2 5.2 5.4 | 12.3 11.4 10.6 | 336.7 351.4 342.2 | 39.2 38.5 38.5 | 12.6 17.1 18.1 | 6.9 10.6 11.3 | 5.7 6.5 6.8 | 44.7 22.8 19.9 |
11 Arenosol Mongu | 30 60 100 | Sandy loam Sandy loam Sandy loam | 25.7 25.7 25.8 | 15.8 14.7 14.0 | 4.6 4.4 4.6 | 11.2 10.3 9.4 | 386.1 392.5 383.2 | 39.4 38.7 38.5 | 12.1 13.4 14.8 | 6.4 7.5 8.7 | 5.7 5.9 6.1 | 49.2 38.8 31.6 |
12 Cambisol Mongu | 30 60 100 | Sandy Clay loam Sandy Clay loam Sandy Clay | 36.9 36.1 36.8 | 21.8 21.4 21.5 | 8.3 9.0 9.8 | 13.5 12.4 11.7 | 84.7 78.1 75.2 | 39.7 40.8 42.2 | 26.9 30.8 34.4 | 17.5 20.4 23.4 | 9.4 10.4 11.0 | 5.2 2.5 1.2 |
Digital Soil Mapping (DSM) | Saxton & Rawls PTFs | |||
---|---|---|---|---|
Variable | Coefficients | p Values | Coefficients | p Values |
Intercept | 0.312 | 0.754 | −0.879 | 0.379 |
Rainfall | −6.288 | 3.330 × 10−10 *** | −6.990 | 2.910 × 10−12 *** |
Arenosol | 4.459 | 8.320 × 10−06 *** | 1.138 | 0.255 |
Cambisol | −0.349 | 0.727 | −3.407 | 6.580 × 10−4 *** |
Ferralsol | −5.044 | 4.620 × 10−07 *** | −3.726 | 1.960 × 10−4 *** |
Acrisol | −1.131 | 0.258 | −2.050 | 0.040 * |
Luvisol | 4.883 | 1.060 × 10−06 *** | 4.036 | 5.480 × 10−05 *** |
Podzol | 10.266 | <2.000 × 10−16 *** | 6.797 | 1.120 × 10−11 *** |
Arenosol * Rainfall | 6.794 | 1.150 × 10−11 *** | 4.777 | 1.800 × 10−06 *** |
Cambisol * Rainfall | 2.717 | 0.007 ** | −0.340 | 0.734 |
Ferralsol * Rainfall Acrisol * Rainfall Luvisol * Rainfall | −3.429 0.650 5.941 | 6.080 × 10−4 *** 0.516 2.910 × 10−09 *** | −2.336 −0.726 5.188 | 0.019 * 0.467 2.16 × 10−07 *** |
Podzol * Rainfall | 9.499 | <2.000 × 10−16 *** | 7.443 | 1.060 × 10−13 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalumba, M.; Dondeyne, S.; Vanuytrecht, E.; Nyirenda, E.; Van Orshoven, J. Functional Evaluation of Digital Soil Hydraulic Property Maps through Comparison of Simulated and Remotely Sensed Maize Canopy Cover. Land 2022, 11, 618. https://doi.org/10.3390/land11050618
Kalumba M, Dondeyne S, Vanuytrecht E, Nyirenda E, Van Orshoven J. Functional Evaluation of Digital Soil Hydraulic Property Maps through Comparison of Simulated and Remotely Sensed Maize Canopy Cover. Land. 2022; 11(5):618. https://doi.org/10.3390/land11050618
Chicago/Turabian StyleKalumba, Mulenga, Stefaan Dondeyne, Eline Vanuytrecht, Edwin Nyirenda, and Jos Van Orshoven. 2022. "Functional Evaluation of Digital Soil Hydraulic Property Maps through Comparison of Simulated and Remotely Sensed Maize Canopy Cover" Land 11, no. 5: 618. https://doi.org/10.3390/land11050618
APA StyleKalumba, M., Dondeyne, S., Vanuytrecht, E., Nyirenda, E., & Van Orshoven, J. (2022). Functional Evaluation of Digital Soil Hydraulic Property Maps through Comparison of Simulated and Remotely Sensed Maize Canopy Cover. Land, 11(5), 618. https://doi.org/10.3390/land11050618