Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation
Abstract
:1. Introduction
2. Models, Experiments, Data, and Methods
2.1. Models
2.1.1. GRAPES
2.1.2. CoLM and Its Upgrade
- Update of Global Soil Texture
- 2.
- Improvement of Parameterization Scheme for Surface and Subsurface Runoff
- 3.
- Update of CoLM Lake Model
2.2. Experimental Design
2.3. Validation Datasets
2.4. Data Processing and Evaluation Metrics
3. Results
3.1. Atmospheric Variables
3.1.1. Geopotential Height
3.1.2. Wind Speed at 10 m
3.1.3. Air Temperature at 2 m
3.1.4. Precipitation
3.2. Land Variables
3.2.1. Surface Soil Moisture
3.2.2. Surface Soil Temperature
3.2.3. Evapotranspiration
3.2.4. Sensible Heat Flux
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Y. Issues in Research and Development of Land Surface Process Model. Trans. Atmos. Sci. 2020, 43, 33–38. [Google Scholar] [CrossRef]
- Zhuang, Z.; Xue, J.; Li, X.; Zhang, L. Estimation of Model Error for the Global GRAPES Model. Chin. J. Atmos. Sci. 2010, 34, 591–598. [Google Scholar] [CrossRef]
- Tong, L.; Peng, X.; Fan, G.; Chang, J. Error Evaluation and Correction for GRAPES Global Forecasts. Chin. J. Atmos. Sci. 2017, 41, 333–344. [Google Scholar] [CrossRef]
- Yang, X.; Shen, Y.; Xu, G. The Impacts of Radiation Schemes on the GRAPES Global Model. Chin. J. Atmos. Sci. 2009, 33, 593–599. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Sun, J. Modification of Cumulus Convection and Planetary Boundary Layer Schemes in the GRAPES Global Model. J. Meteorol. Res. 2015, 29, 806–822. [Google Scholar] [CrossRef]
- Xu, D.; Chen, D. A Vertical Second-Order Difference Scheme for Non-uniformly Distributed Layers and Its Application in GRAPES Model. Chin. J. Atmos. Sci. 2020, 44, 975–983. [Google Scholar] [CrossRef]
- Yang, J.; Shen, X. The Construction of SCM in GRAPES and Its Applications in Two Field Experiment Simulations. Adv. Atmos. Sci. 2011, 28, 534–550. [Google Scholar] [CrossRef]
- Shen, X.; Su, Y.; Hu, J.; Wang, J.; Sun, J.; Xue, J.; Han, W.; Zhang, H.; Lu, H.; Zhang, H.; et al. Development and Operation Transformation of GRAPES Global Middle-Range Forecast System. J. Appl. Meteorol. Sci. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Dai, Y.; Dickinson, R.E.; Wang, Y.-P. A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Yuan, H.; Shangguan, W.; Zhang, S.-P.; Wei, N.; Lu, X.; Liu, S.; Wei, Z.; Zhang, S.-L.; Li, L. The Common Land Model (CoLM) Version 2014. Available online: http://globalchange.bnu.edu.cn/research/models (accessed on 20 July 2020).
- Li, C.; Lu, H.; Yang, K.; Wright, J.S.; Yu, L.; Chen, Y.; Huang, X.; Xu, S. Evaluation of the Common Land Model (CoLM) from the Perspective of Water and Energy Budget Simulation: Towards Inclusion in CMIP6. Atmosphere 2017, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Shen, X. Recent Progress on GRAPES Research and Application. J. Appl. Meteorol. Sci. 2006, 17, 773–777. [Google Scholar]
- Huang, L.; Chen, D.; Deng, L.; Xu, Z.; Yu, F.; Jiang, Y.; Zhou, F. Main Technical Improvements of GRAPES_Meso v4.0 and Verification. J. Appl. Meteorol. Sci. 2017, 28, 25–37. [Google Scholar] [CrossRef]
- Wu, X.; Jin, Z.; Huang, L.; Chen, D. The Software Framework and Application of GRAPES Model. J. Appl. Meteorol. Sci. 2005, 16, 539–546. [Google Scholar]
- Dickinson, E.; Henderson-Sellers, A.; Kennedy, J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model; NCAR Technical Note; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 1993. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, Q. A Land Surface Model (IAP94) for Climate Studies Part I: Formulation and Validation in Off-line Experiment. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar] [CrossRef]
- Bonan, G.B. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’ s Guide; NCAR Technical Note; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 1996. [Google Scholar]
- Zhu, J.; Zeng, X.; Zhang, M.; Dai, Y.; Ji, D.; Li, F.; Zhang, Q.; Zhang, H.; Song, X. Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM. Adv. Atmos. Sci. 2018, 35, 659–670. [Google Scholar] [CrossRef]
- Ji, D.; Wang, L.; Feng, J.; Wu, Q.; Cheng, H.; Zhang, Q.; Yang, J.; Dong, W.; Dai, Y.; Gong, D.; et al. Description and Basic Evaluation of BNU-ESM Version 1. Geosci. Model Dev. Discuss. 2014, 7, 1601–1647. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.-Z.; Xu, M.; Yuan, X.; Ling, T.; Choi, H.I.; Zhang, F.; Chen, L.; Liu, S.; Su, S.; Qiao, F.; et al. Regional Climate-Weather Research and Forecasting Model. Bull. Am. Meteorol. Soc. 2012, 93, 1363–1387. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A Global Soil Data Set for Earth System Modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Wei, N.; Xin, Q.; Yuan, H.; Zhang, S.; Liu, S.; Lu, X.; Wang, D.; Yan, F. A Review of the Global Soil Property Maps for Earth System Models. Soil 2019, 5, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E. A Simple TOPMODEL-Based Runoff Parameterization (SIMTOP) for Use in Global Climate Models. J. Geophys. Res. Atmos. 2005, 110, D21106. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Clapp, R.B.; Hornberger, G.M. Empirical Equations for Some Soil Hydraulic Properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces. J. Clim. 1995, 8, 2691–2704. [Google Scholar] [CrossRef]
- Hostetler, S.W.; Bartlein, P.J. Simulation of Lake Evaporation with Application to Modeling Lake Level Variations of Harney-Malheur Lake, Oregon. Water Resour. Res. 1990, 26, 2603–2612. [Google Scholar] [CrossRef]
- Henderson-Sellers, B. New Formulation of Eddy Diffusion Thermocline Models. Appl. Math. Model. 1985, 9, 441–446. [Google Scholar] [CrossRef]
- Hostetler, S.W.; Bates, G.T.; Giorgi, F. Interactive Coupling of a Lake Thermal Model with a Regional Climate Model. J. Geophys. Res. Atmos. 1993, 98, 5045–5057. [Google Scholar] [CrossRef]
- Hostetler, S.W.; Giorgi, F.; Bates, G.T.; Bartlein, P.J. Lake-Atmosphere Feedbacks Associated with Paleolakes Bonneville and Lahontan. Science 1994, 263, 665–668. [Google Scholar] [CrossRef]
- Dai, Y.; Wei, N.; Huang, A.; Zhu, S.; Shangguan, W.; Yuan, H.; Zhang, S.; Liu, S. The Lake Scheme of the Common Land Model and Its Performance Evaluation. Chin. Sci. Bull. 2018, 63, 3002–3021. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhao, C.; Gong, J.; Zhang, J.; Li, Z.; Sun, J.; Liu, Y.; Chen, J.; Jiang, Q. Spin-up Characteristics with Three Types of Initial Fields and the Restart Effects on Forecast Accuracy in the GRAPES Global Forecast System. Geosci. Model Dev. 2021, 14, 205–221. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Kim, J.-H.; Lim, J.; Dudhia, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Pan, H.L. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Wea. Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Pan, H.-L. Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Quart. J. Roy. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document (ATBD) Version 06; NASA Goddard Space Flight Center (GSFC): Greenbelt, MD, USA, 2019. [Google Scholar]
- Skofronick-Jackson, G.; Kirschbaum, D.; Petersen, W.; Huffman, G.; Kidd, C.; Stocker, E.; Kakar, R. The Global Precipitation Measurement (GPM) Mission’s Scientific Achievements and Societal Contributions: Reviewing Four Years of Advanced Rain and Snow Observations. Quart. J. Roy. Meteorol. Soc. 2018, 144, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Rui, H.; Beaudoing, H.; Loeser, C. README Document for NASA GLDAS Version 2 Data Products; README Document; NASA Goddard Space Flight Center (GSFC): Greenbelt, MD, USA, 2021. [Google Scholar]
- Spennemann, P.C.; Rivera, J.A.; Celeste Saulo, A.; Penalba, O.C. A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America. J. Hydrometeorol. 2015, 16, 158–171. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Cao, B.; Li, S. Soil Moisture-Precipitation Coupling and Trends in China, Based on GLDAS and CMIP5 Products. Clim. Environ. Res. 2016, 21, 188–196. [Google Scholar]
- Hu, Z.; Chen, X.; Li, Y.; Zhou, Q.; Yin, G. Temporal and Spatial Variations of Soil Moisture over Xinjiang Based on Multiple GLDAS Datasets. Front. Earth Sci. 2021, 9, 654848. [Google Scholar] [CrossRef]
- Deliry, S.I.; Pekkan, E.; Avdan, U. GIS-Based Water Budget Estimation of the Kizilirmak River Basin Using GLDAS-2.1 Noah and CLSM Models and Remote Sensing Observations. J. Indian Soc. Remote Sens. 2022, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Song, W.; Yang, S. Application of GLDAS Data to the Potential Evapotranspiration Monitoring in Weihe River Basin. J. Arid Land Resour. Environ. 2013, 27, 53–58. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Chen, D. Evaluations and Improvements of GLDAS2.0 and GLDAS2.1 Forcing Data’s Applicability for Basin Scale Hydrological Simulations in the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 13128–13148. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived from ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Bao, W.; Li, J. Applicability Evaluation of CLDAS and GLDAS Soil Temperature Data in Shannxi Province. Meteorol. Sci. Technol. 2021, 49, 604–611. [Google Scholar]
- Liu, S.; Wang, J.; Chen, Q.; Sun, J. The Main Characteristics of Forecast Deviation in Global Precipitation by GRAPES_GFS. Acta Meteorol. Sin. 2021, 79, 255–281. [Google Scholar] [CrossRef]
- Murphy, A.H.; Epstein, E.S. Skill Scores and Correlation Coefficients in Model Verification. Mon. Wea. Rev. 1989, 117, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Zhi, X.; Wu, P.; Yu, J.; Mu, J.; Zhao, Q. Impact of Topographic Altitude Bias of the GFS Model on the 2 m Air Temperature Forecast. Trans. Atmos. Sci. 2019, 42, 652–659. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Peng, X. The Development of the GRAPES_YY Model and Its Performance Verification for Meiyu Frontal Precipitation Simulation. Acta Meteorol. Sin. 2020, 78, 623–635. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, H.; Song, J.J.; Jiao, M.Y. Verification of the T213 Global Spectral Model of China National Meteorology Center over the East-Asia Area. J. Geophys. Res. Atmos. 2008, 113, D10110. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. A Study of the Predictability of a 28-Variable Atmospheric Model. Tellus 1965, 17, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C.; Allen, R.A. Note on the Accuracy of Forecasts Concerning the Rain Problem; US Weather Bureau: Silver Spring, MD, USA, 1949; p. 4. [Google Scholar]
- Ebert, E.E. Methods for Verifying Satellite Precipitation Estimates. In Measuring Precipitation from Space; Levizzani, V., Bauer, P., Turk, F.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 28, pp. 345–356. [Google Scholar]
- Barnes, L.R.; Schultz, D.M.; Gruntfest, E.C.; Hayden, M.H.; Benight, C.C. CORRIGENDUM: False Alarm Rate or False Alarm Ratio? Wea. Forecast. 2009, 24, 1452–1454. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, Z. Effect of Different Verification Schemes on Precipitation Verification and Assessment Conclusion. Meteorol. Mon. 2007, 33, 53–61. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of Recent Southern Hemisphere Climate Change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M.; Polvani, L.M.; Fyfe, J.C.; Sigmond, M. Impact of Polar Ozone Depletion on Subtropical Precipitation. Science 2011, 332, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Christidis, N.; Stott, P.A. Changes in the Geopotential Height at 500 HPa under the Influence of External Climatic Forcings. Geophys. Res. Lett. 2015, 42, 10798–10806. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurti, T.N.; Rajendran, K.; Vijaya Kumar, T.S.V.; Lord, S.; Toth, Z.; Zou, X.; Cocke, S.; Ahlquist, J.E.; Navon, I.M. Improved Skill for the Anomaly Correlation of Geopotential Heights at 500 HPa. Mon. Wea. Rev. 2003, 131, 1082–1102. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Park, C.-K.; Lee, W.-S.; Yun, W.-T. Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field. Adv. Atmos. Sci. 2008, 25, 867–884. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Li, X.-F. The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hPa Eddy Geopotential Height. Atmos. Ocean. Sci. Lett. 2015, 8, 371–375. [Google Scholar] [CrossRef]
- Pielke, R.A., Sr.; Avissar, R.; Raupach, M.; Dolman, A.J.; Zeng, X.; Denning, A.S. Interactions between the Atmosphere and Terrestrial Ecosystems: Influence on Weather and Climate. Glob. Chang. Biol. 1998, 4, 461–475. [Google Scholar] [CrossRef]
- Tett, S.F.B.; Stott, P.A.; Allen, M.R.; Ingram, W.J.; Mitchell, J.F.B. Causes of Twentieth-Century Temperature Change near the Earth’s Surface. Nature 1999, 399, 569–572. [Google Scholar] [CrossRef]
- Chen, X.; Shen, X.; Chen, H. Analysis of the Impact of Land Surface Process on Numerical Weather Prediction of Intensive Summer Rainfall over Huai River in 2007. J. Trop. Meteorol. 2010, 6, 667–679. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Yan, P.; Yang, Y.; Bai, L.; Yang, J.; Peng, X. Quantitative Assessment of GRAPES Rainfall Forecast for Four Provinces of Northwest China. Meteorol. Mon. 2020, 46, 346–356. [Google Scholar] [CrossRef]
- Betts, A.K. Land-Surface-Atmosphere Coupling in Observations and Models. J. Adv. Model. Earth Syst. 2009, 1, 18. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Lintner, B.R.; Berg, A.M.; Zhang, Y.; Keenan, T.F.; Cook, B.I.; Hagemann, S.; Seneviratne, S.I.; Gentine, P. Soil Moisture–Atmosphere Feedbacks Mitigate Declining Water Availability in Drylands. Nat. Clim. Chang. 2021, 11, 38–44. [Google Scholar] [CrossRef]
- Wang, L.; Gong, J. Application of Two OI Land Surface Assimilation Techniques in GRAPES_Meso. Meteorol. Mon. 2018, 44, 857–868. [Google Scholar]
- Manabe, S. Climate and the Ocean Circulation: I. The Atmospheric Circulation and the Hydrology of the Earth’s Surface. Mon. Wea. Rev. 1969, 97, 739–774. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Schlosser, C.A.; Brubaker, K.L. Precipitation, Recycling, and Land Memory: An Integrated Analysis. J. Hydrometeorol. 2009, 10, 278–288. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V. Precipitation and Potential Evapotranspiration Temporal Variability and Their Relationship in Two Forest Ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
Model Parameters | GRAPES_ORI | GRAPES_NEW |
---|---|---|
Horizontal Resolution | 0.25° × 0.25° | 0.25° × 0.25° |
Vertical Layers | 60 | 60 |
Integration Time Step | 300 s | 300 s |
Microphysics Scheme | WSM6 [36] | WSM6 |
Cumulus Scheme | Simplified Arakawa-Schubert Scheme [37,38] | Simplified Arakawa-Schubert Scheme |
Radiation Scheme | RRTMG [39,40] | RRTMG |
PBL Scheme | MRF PBL Scheme [41] | MRF PBL Scheme |
Land Surface Scheme | CoLM2005 | CoLM2014 |
Precipitation Events | Events Happened | ||
---|---|---|---|
Yes | No | ||
Events Forecasted | Yes | ||
No |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 0.7521 | 0.7532 | 0.7295 | 0.7312 | 0.7861 | 0.7863 | 0.5978 | 0.5997 |
48 | 0.6662 | 0.6672 | 0.6397 | 0.6411 | 0.7061 | 0.7064 | 0.5307 | 0.5333 |
72 | 0.5636 | 0.5644 | 0.5291 | 0.5303 | 0.6154 | 0.6155 | 0.4467 | 0.4478 |
96 | 0.4631 | 0.4651 | 0.4245 | 0.4273 | 0.5210 | 0.5218 | 0.3596 | 0.3602 |
120 | 0.3664 | 0.3660 | 0.3284 | 0.3279 | 0.4233 | 0.4230 | 0.2780 | 0.2793 |
144 | 0.2748 | 0.2740 | 0.2361 | 0.2348 | 0.3328 | 0.3329 | 0.2191 | 0.2143 |
168 | 0.2078 | 0.2052 | 0.1820 | 0.1791 | 0.2467 | 0.2444 | 0.1766 | 0.1696 |
192 | 0.1474 | 0.1485 | 0.1295 | 0.1303 | 0.1743 | 0.1758 | 0.1328 | 0.1314 |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 0.6666 | 0.6665 | 0.6259 | 0.6260 | 0.7275 | 0.7274 | 0.6719 | 0.6726 |
48 | 0.6293 | 0.6293 | 0.5868 | 0.5867 | 0.6930 | 0.6931 | 0.6263 | 0.6287 |
72 | 0.5802 | 0.5803 | 0.5391 | 0.5394 | 0.6417 | 0.6416 | 0.5680 | 0.5718 |
96 | 0.5176 | 0.5182 | 0.4790 | 0.4799 | 0.5756 | 0.5755 | 0.5041 | 0.5099 |
120 | 0.4513 | 0.4518 | 0.4191 | 0.4195 | 0.4996 | 0.5002 | 0.4533 | 0.4525 |
144 | 0.3832 | 0.3837 | 0.3640 | 0.3638 | 0.4119 | 0.4135 | 0.4151 | 0.4141 |
168 | 0.3236 | 0.3224 | 0.3192 | 0.3181 | 0.3303 | 0.3288 | 0.3795 | 0.3769 |
192 | 0.2660 | 0.2636 | 0.2714 | 0.2680 | 0.2578 | 0.2569 | 0.3422 | 0.3430 |
Rainfall Levels | Light Rain | Moderate Rain | Heavy Rain | Extreme Rainfall | ||||
---|---|---|---|---|---|---|---|---|
Forecast Length (Units: h) | ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW |
24 | 0.4582 | 0.4567 | 0.1268 | 0.1277 | 0.0975 | 0.0976 | 0.1375 | 0.1383 |
48 | 0.4411 | 0.4404 | 0.1148 | 0.1148 | 0.0798 | 0.0809 | 0.1250 | 0.1271 |
72 | 0.4221 | 0.4218 | 0.1025 | 0.1019 | 0.0674 | 0.0672 | 0.1079 | 0.1042 |
96 | 0.4062 | 0.4060 | 0.0924 | 0.0915 | 0.0553 | 0.0545 | 0.0805 | 0.0814 |
120 | 0.3900 | 0.3899 | 0.0842 | 0.0842 | 0.0488 | 0.0498 | 0.0630 | 0.0644 |
144 | 0.3846 | 0.3808 | 0.0826 | 0.0793 | 0.0445 | 0.0449 | 0.0523 | 0.0516 |
168 | 0.3735 | 0.3717 | 0.0751 | 0.0753 | 0.0369 | 0.0368 | 0.0354 | 0.0357 |
192 | 0.3732 | 0.3739 | 0.0729 | 0.0718 | 0.0332 | 0.0341 | 0.0276 | 0.0284 |
Rainfall Levels | Light Rain | Moderate Rain | Heavy Rain | Extreme Rainfall | ||||
---|---|---|---|---|---|---|---|---|
Forecast Length (Units: h) | ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW |
24 | 1.0294 | 1.0270 | 1.2985 | 1.3081 | 1.0962 | 1.1100 | 0.7021 | 0.6949 |
48 | 1.0207 | 1.0244 | 1.3630 | 1.3811 | 1.1737 | 1.1681 | 0.8463 | 0.8364 |
72 | 1.0192 | 1.0232 | 1.3172 | 1.3317 | 1.1499 | 1.1447 | 0.8989 | 0.8787 |
96 | 1.0102 | 1.0143 | 1.2992 | 1.3112 | 1.1296 | 1.0992 | 0.8479 | 0.8346 |
120 | 1.0142 | 1.0145 | 1.3127 | 1.3178 | 1.1175 | 1.0926 | 0.8086 | 0.7947 |
144 | 1.0230 | 1.0178 | 1.3283 | 1.3284 | 1.0783 | 1.0764 | 0.8266 | 0.8070 |
168 | 1.0263 | 1.0193 | 1.3530 | 1.3591 | 1.0864 | 1.0743 | 0.7808 | 0.7427 |
192 | 1.0298 | 1.0238 | 1.3648 | 1.3532 | 1.0437 | 1.0146 | 0.6834 | 0.6194 |
Rainfall Levels | Light Rain | Moderate Rain | Heavy Rain | Extreme Rainfall | ||||
---|---|---|---|---|---|---|---|---|
Forecast Length (Units: h) | ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW |
24 | 0.3787 | 0.3794 | 0.7998 | 0.7993 | 0.8283 | 0.8291 | 0.7077 | 0.7041 |
48 | 0.3929 | 0.3948 | 0.8204 | 0.8213 | 0.8609 | 0.8592 | 0.7475 | 0.7416 |
72 | 0.4107 | 0.4123 | 0.8355 | 0.8374 | 0.8803 | 0.8803 | 0.7904 | 0.7944 |
96 | 0.4243 | 0.4259 | 0.8489 | 0.8506 | 0.8996 | 0.8998 | 0.8362 | 0.8324 |
120 | 0.4411 | 0.4417 | 0.8617 | 0.8617 | 0.9084 | 0.9059 | 0.8565 | 0.8543 |
144 | 0.4490 | 0.4517 | 0.8642 | 0.8693 | 0.9156 | 0.9143 | 0.8831 | 0.8862 |
168 | 0.4613 | 0.4614 | 0.8766 | 0.8766 | 0.9286 | 0.9296 | 0.9161 | 0.9138 |
192 | 0.4635 | 0.4616 | 0.8799 | 0.8812 | 0.9354 | 0.9331 | 0.9317 | 0.9246 |
Rainfall Levels | Light Rain | Moderate Rain | Heavy Rain | Extreme Rainfall | ||||
---|---|---|---|---|---|---|---|---|
Forecast Length (Units: h) | ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW |
24 | 0.3624 | 0.3645 | 0.7428 | 0.7401 | 0.8135 | 0.8121 | 0.7992 | 0.7982 |
48 | 0.3815 | 0.3811 | 0.7583 | 0.7563 | 0.8395 | 0.8376 | 0.8018 | 0.8002 |
72 | 0.4009 | 0.4000 | 0.7853 | 0.7853 | 0.8629 | 0.8637 | 0.8191 | 0.8262 |
96 | 0.4196 | 0.4187 | 0.8071 | 0.8081 | 0.8878 | 0.8912 | 0.8626 | 0.8614 |
120 | 0.4349 | 0.4351 | 0.8222 | 0.8216 | 0.9021 | 0.9010 | 0.8952 | 0.8934 |
144 | 0.4380 | 0.4435 | 0.8239 | 0.8299 | 0.9113 | 0.9109 | 0.9098 | 0.9114 |
168 | 0.4491 | 0.4529 | 0.8367 | 0.8358 | 0.9263 | 0.9256 | 0.9395 | 0.9408 |
192 | 0.4485 | 0.4496 | 0.8405 | 0.8436 | 0.9333 | 0.9321 | 0.9534 | 0.9548 |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 0.0632 | 0.0562 | 0.0677 | 0.0593 | 0.0459 | 0.0444 | 0.0512 | 0.0480 |
48 | 0.0633 | 0.0563 | 0.0677 | 0.0592 | 0.0463 | 0.0450 | 0.0515 | 0.0489 |
72 | 0.0634 | 0.0565 | 0.0678 | 0.0593 | 0.0467 | 0.0458 | 0.0521 | 0.0498 |
96 | 0.0636 | 0.0568 | 0.0680 | 0.0595 | 0.0469 | 0.0463 | 0.0527 | 0.0506 |
120 | 0.0640 | 0.0573 | 0.0683 | 0.0599 | 0.0474 | 0.0470 | 0.0536 | 0.0516 |
144 | 0.0645 | 0.0578 | 0.0688 | 0.0604 | 0.0480 | 0.0478 | 0.0547 | 0.0528 |
168 | 0.0650 | 0.0583 | 0.0692 | 0.0608 | 0.0486 | 0.0487 | 0.0553 | 0.0534 |
192 | 0.0654 | 0.0589 | 0.0696 | 0.0613 | 0.0493 | 0.0496 | 0.0559 | 0.0543 |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 0.7171 | 0.7258 | 0.7301 | 0.7372 | 0.6672 | 0.6821 | 0.7624 | 0.7746 |
48 | 0.6969 | 0.7055 | 0.7082 | 0.7143 | 0.6534 | 0.6718 | 0.7286 | 0.7393 |
72 | 0.6581 | 0.6655 | 0.6648 | 0.6694 | 0.6323 | 0.6504 | 0.6819 | 0.6893 |
96 | 0.6125 | 0.6180 | 0.6139 | 0.6174 | 0.6072 | 0.6206 | 0.6337 | 0.6405 |
120 | 0.5549 | 0.5599 | 0.5538 | 0.5567 | 0.5590 | 0.5721 | 0.5803 | 0.5855 |
144 | 0.5072 | 0.5118 | 0.5012 | 0.5035 | 0.5302 | 0.5435 | 0.5287 | 0.5322 |
168 | 0.4573 | 0.4582 | 0.4483 | 0.4471 | 0.4921 | 0.5011 | 0.4917 | 0.4956 |
192 | 0.3948 | 0.3968 | 0.3918 | 0.3913 | 0.4062 | 0.4183 | 0.4416 | 0.4484 |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 2.9772 | 2.8431 | 2.8367 | 2.7501 | 3.5198 | 3.2014 | 2.8377 | 2.9193 |
48 | 3.0622 | 2.8949 | 2.9525 | 2.8300 | 3.4857 | 3.1448 | 2.9930 | 2.9701 |
72 | 3.1799 | 3.0136 | 3.0972 | 2.9747 | 3.4993 | 3.1632 | 3.1539 | 3.0972 |
96 | 3.3104 | 3.1535 | 3.2610 | 3.1456 | 3.5012 | 3.1838 | 3.3218 | 3.2636 |
120 | 3.4578 | 3.3115 | 3.4331 | 3.3264 | 3.5528 | 3.2540 | 3.4944 | 3.4377 |
144 | 3.5887 | 3.4558 | 3.5834 | 3.4913 | 3.6088 | 3.3194 | 3.6020 | 3.5513 |
168 | 3.7313 | 3.6082 | 3.7395 | 3.6578 | 3.6997 | 3.4174 | 3.6751 | 3.6230 |
192 | 3.8565 | 3.7439 | 3.8659 | 3.7967 | 3.8203 | 3.5405 | 3.7628 | 3.7276 |
Forecast Length (Units: h) | Global | Southern Hemisphere | Northern Hemisphere | East Asia | ||||
---|---|---|---|---|---|---|---|---|
ORI | NEW | ORI | NEW | ORI | NEW | ORI | NEW | |
24 | 2.9772 | 2.8431 | 2.8367 | 2.7501 | 3.5198 | 3.2014 | 2.8377 | 2.9193 |
48 | 3.0622 | 2.8949 | 2.9525 | 2.8300 | 3.4857 | 3.1448 | 2.9930 | 2.9701 |
72 | 3.1799 | 3.0136 | 3.0972 | 2.9747 | 3.4993 | 3.1632 | 3.1539 | 3.0972 |
96 | 3.3104 | 3.1535 | 3.2610 | 3.1456 | 3.5012 | 3.1838 | 3.3218 | 3.2636 |
120 | 3.4578 | 3.3115 | 3.4331 | 3.3264 | 3.5528 | 3.2540 | 3.4944 | 3.4377 |
144 | 3.5887 | 3.4558 | 3.5834 | 3.4913 | 3.6088 | 3.3194 | 3.6020 | 3.5513 |
168 | 3.7313 | 3.6082 | 3.7395 | 3.6578 | 3.6997 | 3.4174 | 3.6751 | 3.6230 |
192 | 3.8565 | 3.7439 | 3.8659 | 3.7967 | 3.8203 | 3.5405 | 3.7628 | 3.7276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Wei, N. Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation. Land 2022, 11, 770. https://doi.org/10.3390/land11060770
Yuan Z, Wei N. Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation. Land. 2022; 11(6):770. https://doi.org/10.3390/land11060770
Chicago/Turabian StyleYuan, Zhenyi, and Nan Wei. 2022. "Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation" Land 11, no. 6: 770. https://doi.org/10.3390/land11060770
APA StyleYuan, Z., & Wei, N. (2022). Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation. Land, 11(6), 770. https://doi.org/10.3390/land11060770