Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid
Abstract
:1. Introduction
- i.
- To determine the validity of social media geotagged photos as a basis, and of MaxEnt as a tool, for predictive studies of future landscape users’ behavior.
- ii.
- To determine the differences between the quantification of the future spatial distribution of geotagged photographs and their real qualitative changes.
- iii.
- To propose a comprehensive approach to the actual complexity of the photographs uploaded by users to social networks to assess future CES interest.
2. Materials and Methods
2.1. Research Area
2.2. Materials
2.3. Methodology
2.3.1. Georeferenced Database of Social Media Photographs
2.3.2. Data Processing and Confrontation
3. Results
3.1. Photograph Samples
3.2. MaxEnt Modeling
3.3. Actual Demand and Correlation
4. Discussion
4.1. Photography Samples
4.2. MaxEnt Models
5. Conclusions
- i.
- Photographs from social networks are valid for predictive modeling as long as they are at sites that remain unchanged over time. If the configuration of the sites or the interest of the people changes, a present sample is invalid for determining future interest. On the other hand, MaxEnt is a program that allows us to determine with some accuracy to which spatial variables a certain sample of photographs is related, but it is very dependent on the concentration of these photographs. From the same sample, treated differently, it is possible to obtain models that are absolutely opposite. Comparison with the real evolution of the distribution of photographs shows that in complex and changing landscapes, MaxEnt is not useful as a predictive tool.
- ii.
- There is a difference between the quantification of the future spatial distribution of geotagged photographs and their qualitative changes. MaxEnt establishes locations of potential interest of the photographs independently of the photographed element. The correspondence with the actual evolution of the photographs varies greatly depending on each category. For some categories, the model is closer in its prediction, but for others, the prediction is opposite to the actual evolution.
- iii.
- This paper opens a comprehensive approach to the actual complexity of the photographs uploaded by users to social networks to assess future CES interest. Studies using MaxEnt to model potential demand can use other testers besides the AUC. For example, they can run the predictive model with a portion of the sample and use the most current photographs to check how accurate it is. They can also run the predictive models on a year-by-year basis, adjusting it according to the actual evolution of the photographs in the following year. Taking into account that most of the studies use time ranges of five or more years, this would allow us to establish rectification coefficients from one year to another to improve a global predictive model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bubalo, M.; van Zanten, B.T.; Verburg, P.H. Crowdsourcing geo-information on landscape perceptions and preferences: A review. Landsc. Urban Plan. 2019, 184, 101–111. [Google Scholar] [CrossRef]
- Toivonen, T.; Heikinheimo, V.; Fink, C.; Hausmann, A.; Hiippala, T.; Järv, O.; Tenkanen, H.; Di Minin, E. Social media data for conservation science: A methodological overview. Biol. Conserv. 2019, 233, 298–315. [Google Scholar] [CrossRef]
- Karasov, O.; Heremans, S.; Külvik, M.; Domnich, A.; Chervanyov, I. On How Crowdsourced Data and Landscape Organisation Metrics Can Facilitate the Mapping of Cultural Ecosystem Services: An Estonian Case Study. Land 2020, 9, 158. [Google Scholar] [CrossRef]
- Leemans, R.; De Groot, R.S. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Cheng, X.; Van Damme, S.; Li, L.; Uyttenhove, P. Evaluation of cultural ecosystem services: A review of methods. Ecosyst. Serv. 2019, 37, 100925. [Google Scholar] [CrossRef]
- Milcu, A.; Ioana, A.; Hanspach, J.; Abson, D.; Fischer, J. Cultural ecosystem services: A literature review and prospects for future research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, R.; Zhang, Y.; Buhalis, D. Cultural ecosystem services evaluation using geolocated social media data: A review. Tour. Geogr. 2020, 1–23. [Google Scholar] [CrossRef]
- Ghermandi, A.; Camacho-Valdez, V.; Trejo-Espinosa, H. Social media-based analysis of cultural ecosystem services and heritage tourism in a coastal region of Mexico. Tour. Manag. 2020, 77, 104002. [Google Scholar] [CrossRef]
- Dunkel, A. Visualizing the perceived environment using crowdsourced photo geodata. Landsc. Urban Plan. 2015, 142, 173–186. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Ind. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. A rapid indicator of cultural ecosystem service usage at a fine spatial scale: Content analysis of social media photographs. Ecol. Ind. 2015, 53, 187–195. [Google Scholar] [CrossRef]
- Richards, D.R.; Tunçer, B.; Tunçer, B. Using image recognition to automate assessment of cultural ecosystem services from social media photographs. Ecos. Serv. 2018, 31, 318–325. [Google Scholar] [CrossRef]
- Abousaleh, F.S.; Cheng, W.H.; Yu, N.H.; Tsao, Y. Multimodal Deep Learning Framework for Image Popularity Prediction on Social Media. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 679–692. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Sherrouse, B.C.; Semmens, D.J. Social Values for Ecosystem Services, Version 4.0 (SolVES 4.0)—Documentation and User Manual; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2020.
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 2017, 37, 98–125. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fei, T.; Huang, Y.; Li, J.; Li, X.; Zhang, F.; Kang, Y.; Wu, G. Emotional habitat: Mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model. Int. J. Geo. Inf. Sci. 2021, 35, 227–249. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef]
- Phillips, S.J. A Brief Tutorial on Maxent; AT&T Research, American Museum of Natural History: New York, NY, USA, 2017; Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 9 May 2022).
- Yoshimura, N.; Hiura, T. Demand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Clemente, P.; Calvache, M.; Antunes, P.; Santos, R.; Cerdeira, J.O.; Martins, M.J. Combining social media photographs and species distribution models to map cultural ecosystem services: The case of a Natural Park in Portugal. Ecol. Ind. 2019, 96, 59–68. [Google Scholar] [CrossRef]
- Long, P.R.; Nogué, S.; Benz, D.; Willis, K.J. Devising a method to remotely model and map the distribution of natural landscapes in Europe with the greatest recreational amenity value (cultural services). Front. Biogeogr. 2021, 13, 1. [Google Scholar] [CrossRef]
- Arslan, E.S.; Örücü, Ö.K. MaxEnt modelling of the potential distribution areas of cultural ecosystem services using social media data and GIS. Environ. Dev. Sustain. 2021, 23, 2655–2667. [Google Scholar] [CrossRef]
- Schmitz, M.F.; De Aranzabal, I.; Pineda, F.D. Spatial analysis of visitors preferences in the outdoor recreational niche of Mediterranean cultural landscapes. Environ. Conserv. 2007, 34, 300–312. [Google Scholar] [CrossRef]
- Arnaiz-Schmitz, C.; Santos, L.; Herrero-Jáuregui, C.; Díaz, P.; Pineda, F.D.; Schmitz, M.F. Rural Tourism: Crossroads between nature, socio-ecological decoupling and urban sprawl. WIT Trans. Ecol. Environ. 2018, 227, 1–9. [Google Scholar]
- Cruz, L.; Carrión, A. (Eds.) Cien Paisajes Culturales en España; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2015. [Google Scholar]
- Sarmiento-Mateos, P.; Arnaiz-Schmitz, C.; Herrero-Jáuregui, C.; Pineda, F.D.; Schmitz, M.F. Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes. Sustainability 2019, 11, 2871. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, D. Predicting visual aesthetic preferences of landscapes near historical sites by fluency theory using social media data and GIS. Int. J. Geogr. Geogr. Educ. (IGGE) 2021, 43, 265–277. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; Van Berkel, D.B.; Meentemeyer, R.K.; Smith, J.W.; Tieskens, K.F.; Verburg, P.H. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. USA 2016, 13, 12974–12979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsi, F.; Geneletti, D. Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas. J. Nat. Conserv. 2013, 21, 359–368. [Google Scholar] [CrossRef]
- Lieskovský, J.; Rusňák, T.; Klimantová, A.; Izsóff, M.; Gašparovičová, P. Appreciation of landscape aesthetic values in Slovakia assessed by social media photographs. Open Geosci. 2017, 9, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Donaire, J.A.; Camprubí, R.; Galí, N. Tourist clusters from Flickr travel photography. Tour. Manag. Perspect. 2014, 11, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, J. Sistemas de información geográfica y Administración pública: El sistema de información de Patrimonio Histórico inmueble de la Comunidad de Madrid. In Manual de Tecnologías de la Información Geográfica Aplicadas a la Arqueología; en Minguez, M.C., Capdevila, E., Eds.; Comunidad de Madrid, Museo Arqueológico Regional: Madrid, Spain, 2016; pp. 399–424. [Google Scholar]
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J. Spatial Covariance between Aesthetic Value & Other Ecosystem Services. PLoS ONE 2013, 8, e68437. [Google Scholar]
Category | Description |
---|---|
Natural system | Majority presence of flora and fauna in a wild state. |
Urban system | Majority presence of architectural and urban elements |
Rural system | Majority presence of agrosilvopastoral elements. |
Water bodies | Majority presence of aquatic elements, very common in the zone. |
Recreational activities | Presence of people engaged in sports or walking activities |
Cultural activities | Presence of museums, monuments, food or typical products. |
Variable | Source | Processing |
---|---|---|
Land Cover | Corine Land Cover 2006 (https://land.copernicus.eu/pan-european/corine-land-cover, accessed on 7 May 2022) | Unificación de categorías |
Altitude | SDI of Spain (https://www.idee.es/, accessed on 7 May 2022) | MDT as downloaded |
Average atmospheric temperature | SDI of Spain | Kernel from medium temperature (station points) |
Distance to roads | SDI of Spain | Kernel from road lines |
Distance to cultural assets | Madrid Heritage Information System [34] | Kernel from cultural asset points |
Sample | Natural System | Urban System | Rural System | Water Bodies | Recreational Activities | Cultural Activities |
---|---|---|---|---|---|---|
Original sample | 455 | 378 | 114 | 426 | 282 | 68 |
PUD sample | 190 | 128 | 42 | 195 | 123 | 29 |
PUD Sample | Natural System | Urban System | Rural System | Water Bodies | Recreational Activities | Cultural Activities |
---|---|---|---|---|---|---|
Correlation Base Demand and Actual Demand | 0.651 | −0.07 | 0.204 | 0.246 | 0.642 | 0.244 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marine, N.; Arnaiz-Schmitz, C.; Santos-Cid, L.; Schmitz, M.F. Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid. Land 2022, 11, 715. https://doi.org/10.3390/land11050715
Marine N, Arnaiz-Schmitz C, Santos-Cid L, Schmitz MF. Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid. Land. 2022; 11(5):715. https://doi.org/10.3390/land11050715
Chicago/Turabian StyleMarine, Nicolas, Cecilia Arnaiz-Schmitz, Luis Santos-Cid, and María F. Schmitz. 2022. "Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid" Land 11, no. 5: 715. https://doi.org/10.3390/land11050715
APA StyleMarine, N., Arnaiz-Schmitz, C., Santos-Cid, L., & Schmitz, M. F. (2022). Can We Foresee Landscape Interest? Maximum Entropy Applied to Social Media Photographs: A Case Study in Madrid. Land, 11(5), 715. https://doi.org/10.3390/land11050715