Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodology and Data
3.1. Calculation Method of Planting Carbon Emissions
3.2. Panel Threshold Regression Model
3.3. Data Sources
4. Results and Discussion
4.1. Spatio-Temporal Changes in Agricultural CO2 Emissions
4.2. Unit Root Test
4.3. Threshold Effect Test
4.4. Regression Results of the Threshold Effect
5. Conclusions and Policy Implications
- (1)
- The government should establish a unified carbon accounting system, in order to monitor the scale of planting land and agricultural carbon emissions in all provinces, so as to maximize the ecological effect of planting land. In terms of carbon emissions reduction, we can establish files on the basic situation of farmers’ agricultural production and operation, calculate and formulate standards of use for pesticides, chemical fertilizers, and plastic film by farmers, and formulate reward and punishment measures, in order to achieve the effect of carbon emissions reduction. It is suggested to reduce the redundancy of agricultural production resources, promote the rational utilization of agricultural factor resources, and protect the rural ecological environment.
- (2)
- Continuously expanding the scale of agricultural land management is conducive to reducing agricultural carbon emissions. We should constantly improve China’s land transfer system, further clarify the property rights of agricultural land, issue policy documents and measures to promote and reward the legal transfer of agricultural land, and guide various forms of large-scale transfer. In particular, the main rice- and corn-producing areas should speed up large-scale operation in order to reach the inflection point of the inverted “U” shape as soon as possible. For the main wheat-producing areas, the planting scale does not have an inverted “U”-shaped impact on agricultural carbon emissions, but continuously promotes an increase in carbon emissions. Therefore, the planting area of wheat-producing areas should be reasonably planned to control carbon emissions.
- (3)
- The government should increase investment in scientific research and encourage scientific research in institutes, agricultural colleges, and enterprises, in order to carry out research and development of low-carbon production technologies related to grain production. At the same time, enterprises and scientific research institutions should be supported to establish scientific research teams, in order to provide technical support for agricultural carbon emission reduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Niu, Y.; Li, M.; Yu, Q.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, S.; Fang, X.; Chen, W. Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China. Energy 2022, 241, 122519. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Wang, Y.; Chen, W. Spatial path and determinants of carbon transfer in the process of interprovincial industrial transfer in China. Environ. Impact Assess. Rev. 2022, 95, 106810. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Cheng, L.; Tian, Y. Potential of agricultural carbon reduction under climate change and its spatial correlation characteristics in China: Based on the spatial Durbin model. China Popul. Resour. Environ. 2015, 25, 53–61. (In Chinese) [Google Scholar] [CrossRef]
- You, L.; Spoor, M.; Ulimwengu, J.; Zhang, S. Land use change and environmental stress of wheat, rice and corn production in China. China Econ. Rev. 2011, 22, 461–473. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
- Islam, S.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef]
- Fei, R.L.; Lin, Z.Y.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy. 2021, 103, 105300. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, J.; Li, C.; Xu, X.; Sun, Z.; Xu, Z.; Feng, L.; Zhang, L. Influencing factors of farmers’ cognition on agricultural mulch film pollution in rural China. Sci. Total Environ. 2021, 787, 147702. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Zeng, H.; Zhang, T.; Chen, X. How does soil pollution risk perception affect farmers’ pro-environmental behavior? The role of income level. J. Environ. Manag. 2020, 270, 110806. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Change 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–733. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Zaman, K.; Khan, M.M.; Ahmad, M.; Rustam, R. The relationship between agricultural technology and energy demand in Pakistan. Energy Policy 2012, 44, 268–279. [Google Scholar] [CrossRef]
- Glenk, K.; Eory, V.; Colombo, S.; Barnes, A. Adoption of greenhouse gas mitigation in agriculture: An analysis of dairy farmers’ perceptions and adoption behaviour. Ecol. Econ. 2014, 108, 49–58. [Google Scholar] [CrossRef]
- Dulal, H.B.; Brodnig, G.; Shah, K.U. Capital assets and institutional constraints to implementation of greenhouse gas mitigation options in agriculture. Mitig. Adapt. Strateg. Glob. Change 2010, 16, 1–23. [Google Scholar] [CrossRef]
- Yasmeen, R.; Tao, R.; Shah, W.U.H.; Padda, I.U.H.; Tang, C. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Cui, L.; Sun, Y.; Song, M.; Zhu, L. Co-financing in the green climate fund: Lessons from the global environment facility. Clim. Policy 2020, 20, 95–108. [Google Scholar] [CrossRef]
- Lin, B.; Xu, B. Factors affecting CO2 emissions in China’s agriculture sector: A quantile regression. Renew Sustain. Energy 2018, 94, 15–27. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Technology gap and CO2 emission reduction potential by technical efficiency measures: A meta-frontier modeling for the Chinese agricultural sector. Ecol. Indic. 2017, 73, 653–661. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, C. What are the impacts of demographic structure on CO2 emissions? A regional analysis in China via heterogeneous panel estimates. Sci. Total Environ. 2019, 650, 2021–2031. [Google Scholar] [CrossRef]
- Liao, C.; Feng, Z.; Li, P.; Zhang, J. Monitoring the spatio-temporal dynamics of swidden agriculture and fallow vegetation recovery using Landsat imagery in northern Laos. J. Geogr. Sci. 2015, 25, 1218–1234. [Google Scholar] [CrossRef] [Green Version]
- Squires, V.; Blumröder, J.S.; Ibisch, P.L.; Krause, A.; Missall, S.; Welp, M.; Halik, Ü.; Abliz, A.; Fernández-Giménez, M.; Andreeva, O.V.; et al. Global Land Outlook (GLO); 2019; ISBN 978-92-95110-68-7. Available online: https://portals.iucn.org/library/node/48554 (accessed on 4 May 2022).
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, A.J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- De Roest, K.; Ferrari, P.; Knickel, K. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. J. Rural. Stud. 2018, 59, 222–231. [Google Scholar] [CrossRef]
- Zuo, Y.; Ma, L.; Cai, H.; Wu, T.; Xin, X. China’s on-going debates over large-scale farming: What are the pros and cons? China Agric. Econ. Rev. 2015, 7, 338–343. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2019, 71, 170–182. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Liu, Y. Land consolidation for rural sustainability in China: Practical reflections and policy implications. Land Use Policy 2018, 74, 137–141. [Google Scholar] [CrossRef]
- Wiggins, S.; Kirsten, J.; Lambi, L. The future of small farms. World Dev. 2010, 38, 1341–1349. [Google Scholar] [CrossRef]
- Knickel, K.; Redman, M.; Darnhofer, I.; Ashkenazy, A.; Calväo Chebach, T.; Sumane, S.; Tisenkopfs, T.; Zemeckis, R.; Atkociuniene, V.; Rivera, M.; et al. Between aspirations and reality: Making farming, food systems and rural areas more resilient, sustainable and equitable. J. Rural. Stud. 2017, 59, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, A.; Chebach, T.C.; Knickel, K.; Peter, S.; Horowitz, B.; Offenbach, R. Operationalising resilience in farms and rural regions–Findings from fourteen case studies. J. Rural. Stud. 2018, 59, 211–221. [Google Scholar] [CrossRef]
- Trinh, T.A.; Feeny, S.; Posso, A. The impact of natural disasters and climate change on agriculture: Findings from Vietnam//Economic effects of natural disasters. In Economic Effects of Natural Disasters; Academic Press: Cambridge, MA, USA, 2021; pp. 261–280. [Google Scholar] [CrossRef]
- Carroccio, A.; Crescimanno, M.; Galati, A.; Tulone, A. The land grabbing in the international scenario: The role of the EU in land grabbing. Agric. Food Econ. 2016, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, H.M.G. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Salami, P.; Ahmadi, H. Energy inputs and outputs in a chickpea production system in Kurdistan, Iran. Afr. Crop Sci. J. 2010, 18, 51–57. [Google Scholar] [CrossRef]
- Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X.M. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. (In Chinese) [Google Scholar] [CrossRef]
- Gonzalez, A.; Teräsvirta, T.; Van Dijk, D.; Yang, Y. Panel Smooth Transition Regression Models; 2017; ISSN 1441-8010. Available online: https://ideas.repec.org/p/hhs/hastef/0604.html (accessed on 4 May 2022).
- Hajamini, M.; Falahi, M.A. Economic growth and government size in developed European countries: A panel threshold approach. Econ. Anal. Policy 2018, 58, 1–13. [Google Scholar] [CrossRef]
- Anatolyev, S. Inference when a nuisance parameter is weakly identified under the null hypothesis. Econ. Lett. 2004, 84, 245–254. [Google Scholar] [CrossRef]
- National Bureau of Statistics China (NBSC). China Rural Statistical Yearbook; Statistics Press: Beijing, China, 2020.
- China Water Resource Yearbook Compilation Committee. China Water Statistical Yearbook 2020; Water and Power Press: Beijing, China, 2020.
- National Bureau of Statistics of China (NBSC). China Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- China Agricultural Yearbook Editorial Committee. China Agricultural Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Qin, S.; Lü, X. Do large-scale farmers use more pesticides? Empirical evidence from rice farmers in five Chinese provinces. J. Integr. Agric. 2020, 19, 590–599. [Google Scholar] [CrossRef]
- Li, B.; Shen, Y. Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China. Land Use Policy 2021, 100, 105124. [Google Scholar] [CrossRef]
- Wei, Z.H.U.; QI, L.; Wang, R. The relationship between farm size and fertilizer use efficiency: Evidence from China. J. Integr. Agric. 2022, 21, 273–281. [Google Scholar] [CrossRef]
- Shao, S.; Li, B.; Fan, M.; Yang, L. How does labor transfer affect environmental pollution in rural China? Evidence from a survey. Energy Econ. 2021, 102, 105515. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Z.Y.; Yang, C.; Wu, H. Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China. Technol. Forecast. Soc. Change 2021, 171, 120936. [Google Scholar] [CrossRef]
- Qian, L.; Lu, H.; Gao, Q.; Lu, H. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Policy 2022, 115, 106008. [Google Scholar] [CrossRef]
- Xia, Y.; Kwon, H.; Wander, M. Developing county-level data of nitrogen fertilizer and manure inputs for corn production in the United States. J. Clean. Prod. 2021, 309, 126957. [Google Scholar] [CrossRef]
- Kärkkäinen, L.; Lehtonen, H.; Helin, J.; Lintunen, J.; Peltonen-Sainio, P.; Regina, K.; Uusivuori, J.; Packalen, T. Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 2020, 99, 104991. [Google Scholar] [CrossRef]
- Kolte, A.; Siggia, D.; Veer, N.; Daryani, A. Critical exploration of Indian economic reforms of 1991: A lesson for developing economies. Int. J. Eng. Adv. Technol. 2019, 8, 490–500. [Google Scholar] [CrossRef]
Carbon Source | Emission Coefficient | Unit | Data Reference Source (Basis) |
---|---|---|---|
Agricultural fertilizer | 0.8956 | Kg CE/kg | ORNL (Oak Ridge National Laboratory) |
Diesel oil | 0.5927 | Kg CE/kg | IPCC (Intergovernmental Panel on Climate Change) |
Pesticide | 4.9341 | Kg CE/kg | ORNL (Oak Ridge National Laboratory) |
Plastic film | 5.1800 | Kg CE/kg | IREEA (Institute of Resource, Ecosystem and Environment of Agriculture) |
Irrigation | 266.48 | Kg CE/hm2 | Duan et al. [40] |
Carbon Source | Exhaust Gas | Emission Coefficient | Unit |
---|---|---|---|
Spring wheat, | N2O | 0.4 | Kg N2O/hm2 |
Winter wheat | N2O | 1.75 | Kg N2O/hm2 |
Corn | N2O | 2.532 | Kg N2O/hm2 |
Upland rice | N2O | 0.24 | Kg N2O/hm2 |
N2O | 241.0 | Kg N2O/hm2 | |
Medium rice and double-cropping late rice | N2O | 0.24 | Kg N2O/hm2 |
Variable | Test Method | At Level | At 1st Difference | ||
---|---|---|---|---|---|
t-Statistic | Prob. | t-Statistic | Prob. | ||
LN ACE | LLC | −5.4921 | 0.0000 | −5.4921 | 0.0000 |
IPS | −9.1236 | 0.0000 | −9.1236 | 0.0000 | |
LN CS | LLC | −1.9174 | 0.0276 | −8.8813 | 0.0000 |
IPS | −3.1727 | 0.0008 | −4.8100 | 0.0000 | |
LN ND | LLC | −5.9798 | 0.0000 | −5.9798 | 0.0000 |
IPS | −9.4229 | 0.0000 | −9.4229 | 0.0000 | |
LN FP | LLC | −4.4048 | 0.0000 | −4.4048 | 0.0000 |
IPS | −2.3645 | 0.0000 | −2.3645 | 0.0000 | |
LN IN | LLC | −7.2105 | 0.0000 | −7.2105 | 0.0000 |
IPS | −2.4853 | 0.0000 | −2.4853 | 0.0000 |
Object | Number of Thresholds | F-Statistic | p-Value | 1% Critical Value | 5% Critical Value | 10% Critical Value |
---|---|---|---|---|---|---|
All regions | Single | 32.79 *** | 0.000 | 11.209 | 9.700 | 7.613 |
Double | 5.39 | 0.340 | 105.944 | 61.935 | 28.600 | |
Major rice production areas | Single | 53.82 ** | 0.030 | 69.355 | 43.201 | 34.440 |
Double | 44.93 * | 0.070 | 87.376 | 57.503 | 38.768 | |
Major wheatproduction areas | Single | 387.88 *** | 0.000 | 56.009 | 37.179 | 30.080 |
Double | 18.12 | 0.833 | 184.714 | 106.258 | 57.158 | |
Major corn production areas | Single | 17.33 | 0.547 | 64.389 | 44.146 | 35.612 |
Double | 9.79 | 0.800 | 44.040 | 31.323 | 27.255 |
Object | Number of Thresholds | Threshold Value | 95% Confidence Interval |
---|---|---|---|
All regions | Single | 2.444 | [2.384, 2.493] |
Major rice production areas | Single | 0.896 | [0.893, 0.914] |
Double | 0.903 | [0.797, 0.914] | |
Major wheat production areas | Single | 0.594 | [0.551, 2.473] |
Variables | All Regions | Major Rice Production Areas | Major Wheat Production Areas |
---|---|---|---|
LNAR | 0.122 (0.58) | 1.459 *** (3.91) | 1.205 *** (23.57) |
LNAR | −0.490 *** (−2.26) | −0.100 ** (−2.28) | |
LNAR | 2.345 *** (6.36) | ||
LNAR | 0.915 ** (2.37) | ||
LNCS | 0.605 *** (4.14) | 0.418 *** (3.72) | −0.007 * (−2.09) |
LNND | −0.427 *** (−2.94) | −0.472 *** (−4.04) | 0.291 *** (4.13) |
LNFP | 0.170 ** (2.26) | −0.587 (−0.95) | 0.064 *** (−2.71) |
LNIN | −0.654 (−0.66) | −2.537 *** (−3.43) | 4.461 *** (13.69) |
Constant | 0.868 | 0.995 | 0.992 |
R2 | 0.874 | 0.995 | 0.993 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, W.; Li, M.; Li, Q.; Liu, Z.; Chen, W.; Wang, Y. Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China. Land 2022, 11, 816. https://doi.org/10.3390/land11060816
Li J, Wang W, Li M, Li Q, Liu Z, Chen W, Wang Y. Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China. Land. 2022; 11(6):816. https://doi.org/10.3390/land11060816
Chicago/Turabian StyleLi, Jiake, Wei Wang, Meng Li, Qiao Li, Zeming Liu, Wei Chen, and Yanan Wang. 2022. "Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China" Land 11, no. 6: 816. https://doi.org/10.3390/land11060816
APA StyleLi, J., Wang, W., Li, M., Li, Q., Liu, Z., Chen, W., & Wang, Y. (2022). Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China. Land, 11(6), 816. https://doi.org/10.3390/land11060816