Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Theoretical Framework
2.1. The Concept of New-Type Urbanization
2.2. The Concept of CLLCU
2.3. The Mechanism of Coupling Coordination Development between New-Type Urbanization and CLLCU
3. Methodology and Data
3.1. Study Area
3.2. Methodologies
3.2.1. Evaluation of New-Type Urbanization
- (1)
- Normalize the data with the maximum-minimum method
- (2)
- Calculate the proportion of the indicator for city .
- (3)
- Calculate the entropy value of the indicator .
- (4)
- Calculate the weight of the indicator .
- (5)
- Calculate the new-type urbanization level.
3.2.2. Measurement of Cultivated Land Low-Carbon Utilization Efficiency (CLLCUE)
3.2.3. Super-SBM Model with Undesirable Outputs
3.2.4. Super-SBM Model with Undesirable Outputs
3.2.5. Coupling Coordination Degree Model (CCDM)
3.2.6. Relative Development Degree Model (RDDM)
3.3. Data Acquisition
4. Results and Analysis
4.1. Temporal and Spatial Evolution of New-Type Urbanization
4.1.1. Temporal Evolution of New-Type Urbanization
4.1.2. Spatial Pattern of New-Type Urbanization
4.2. Temporal and Spatial Evolution of CLLCUE
4.2.1. Temporal Evolution of CLLCUE
4.2.2. Spatial Evolution of CLLCUE
4.3. Dynamic Evolution of Coupling Coordination Degree between New-Type Urbanization Level and CLLCUE
4.4. Dynamic Evolution of Relative Development Degree between New-Type Urbanization Level and CLLCUE
5. Discussion
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Long, H. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Wang, Y.; Xia, B. Dynamics of ecosystem services in response to urbanization across temporal and spatial scales in a mega metropolitan area. Sustain. Cities Soc. 2022, 77, 103561. [Google Scholar] [CrossRef]
- Kundu, D.; Pandey, A.K. World Urbanisation: Trends and Patterns; Springer: Singapore, 2020; pp. 13–49. [Google Scholar]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef] [PubMed]
- Truffer, B.; Coenen, L. Environmental innovation and sustainability transitions in regional studies. Reg. Stud. 2012, 46, 1–21. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, Z. How to achieve rural revitalization? An examination of the experience of rural development policy change in the United States. Chin. Rural. Econ. 2019, 3, 128–144. [Google Scholar]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA Model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X.; Castillo, C.S.Z. How does urbanization affect farmland protection? Evidence from China. Resour. Conserv. Recycl. 2019, 145, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hu, S.; Du, G.; Zhang, C.; Liu, Y. Cultivated land use benefits under state and collective agrarian property regimes in China. Sustainability 2017, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Huang, Y.; Choi, Y.; Shi, J. Evaluating the sustainable intensification of cultivated land use based on emergy analysis. Technol. Forecast. Soc. Change 2021, 165, 120449. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, X.; Liu, J.; Zhou, X.; Zhang, D. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the drivers of Green Agricultural Development (GAD) in China: A spatial association network structure approaches. Land Use Policy 2022, 112, 105827. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the Urban Century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Li, J.; Lei, J.; Li, S.; Yang, Z.; Tong, Y.; Zhang, S.; Duan, Z. Spatiotemporal analysis of the relationship between urbanization and the eco-environment in the Kashgar Metropolitan Area, China. Ecol. Indic. 2022, 135, 108524. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Tang, Z.; Chen, C.; Berry, J. How cropland losses shaped by unbalanced urbanization process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data. Socio-Econ. Plan. Sci. 2019, 67, 69–77. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, G.; Zhou, D.; Li, G. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai-Tibetan Plateau from 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, R.; Wang, M.; Xue, W.; He, L. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- Pribadi, D.O.; Pauleit, S. The Dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy 2015, 48, 13–24. [Google Scholar] [CrossRef]
- Hou, M.; Deng, Y.; Yao, S. Coordinated relationship between urbanization and grain production in China: Degree measurement, spatial differentiation and its factors detection. J. Clean. Prod. 2022, 331, 129957. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, N.; Liao, W. How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. J. Clean. Prod. 2018, 202, 510–523. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chuai, X.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei Region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, D.; Xu, Y.; Huang, Q.; Feng, Z. Spatial-temporal change of ecosystem health across China: Urbanization impact perspective. J. Clean. Prod. 2021, 326, 129393. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the Middle Reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar] [CrossRef]
- Qiu, M.; Yang, Z.; Zuo, Q.; Wu, Q.; Jiang, L.; Zhang, Z.; Zhang, J. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China. Ecol. Indic. 2021, 132, 108346. [Google Scholar] [CrossRef]
- Tian, Y.; Tsendbazar, N.-E.; van Leeuwen, E.; Fensholt, R.; Herold, M. A global analysis of multifaceted urbanization patterns using earth observation data from 1975 to 2015. Landsc. Urban Plan. 2022, 219, 104316. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zhang, X.; Wu, Y. Utilization benefit of cultivated land and land institution reforms: Economy, society and ecology. Habitat. Int. 2018, 77, 64–70. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Exploring environmental efficiency and total factor productivity of cultivated land use in China. Sci. Total Environ. 2020, 726, 138434. [Google Scholar] [CrossRef]
- Qu, Y.; Lyu, X.; Peng, W.; Xin, Z. How to evaluate the green utilization efficiency of cultivated land in a farming household? A case study of Shandong Province, China. Land 2021, 10, 789. [Google Scholar] [CrossRef]
- Kendall, M.G. The geographical distribution of crop productivity in England. J. Roy. Stat. Soc. 1939, 102, 21–62. [Google Scholar] [CrossRef]
- Reddy, N.; Ramanaiah, Y.V. Changes in agricultural land use efficiency in Andhra Pradesh. Land Use Policy 1985, 2, 210–216. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian Highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Polthanee, A.; Trelo-ges, V. Growth, Yield and land use efficiency of corn and legumes grown under intercropping systems. Plant Prod. Sci. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Ansari, M.A.; Choudhury, B.U.; Mandal, S.; Jat, S.L.; Meitei, C.B. Converting primary forests to cultivated lands: Long-term effects on the vertical distribution of soil carbon and biological activity in the foothills of Eastern Himalaya. J. Environ. Manag. 2022, 301, 113886. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, S.; Guo, P.; Shan, B.; Zhang, Y. Agricultural water and land resources allocation considering carbon sink/source and water scarcity/degradation footprint. Sci. Total Environ. 2022, 819, 152058. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, M.; Adhikari, K.; Zhuang, Q.; Bian, Z.; Wang, Y.; Jin, X. Anthropogenic controls over soil organic carbon distribution from the cultivated lands in Northeast China. Catena 2022, 210, 105897. [Google Scholar] [CrossRef]
- Chen, M.; Ye, C.; Lu, D.; Sui, Y.; Guo, S. Cognition and construction of the theoretical connotation fornew-type urbanization with Chinese characteristics. Acta Geogr. Sin. 2019, 74, 633–647. (In Chinese) [Google Scholar]
- Yao, S.; Zhang, P.; Yu, C.; Li, G.; Wang, C. The theory and practice of new urbanization in China. Sci. Geogr. Sin. 2014, 34, 641–647. (In Chinese) [Google Scholar]
- Yang, S.; Shi, L. Prediction of long-term energy consumption trends under the New National Urbanization Plan in China. J. Clean. Prod. 2017, 166, 1144–1153. [Google Scholar] [CrossRef]
- Yu, B. Ecological Effects of new-type urbanization in China. Renew. Sust. Energ. Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z. Quantitative measurement on urbanization development level in urban agglomerations: A case of JJJ Urban Agglomeration. Ecol. Indic. 2021, 133, 108375. [Google Scholar] [CrossRef]
- Liang, L.; Yong, Y.; Yuan, C. Measurement of urban land green use efficiency and its spatial differentiation characteristics: An empirical study based on 284 cities. China Land Sci. 2019, 33, 80–87. (In Chinese) [Google Scholar]
- Ding, B.; Yang, S.; Zhao, Y.; Yi, S. Study on spatio-temporal characteristics and decoupling effect of carbon emission from cultivated land resource utilization in China. China Land Sci. 2019, 33, 45–54. (In Chinese) [Google Scholar]
- Ke, N.; Lu, X.; Kuang, B.; Han, J. Regional differences and influencing factors of green and low-carbon utilization of cultivated land under the carbon neutrality target in China. China Land Sci. 2021, 35, 67–76. (In Chinese) [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, J.; Zhao, Y. Coupling coordination analysis of ecosystem services and urban development of resource-based cities: A case study of Tangshan City. Ecol. Indic. 2022, 136, 108706. [Google Scholar] [CrossRef]
- Busso, M.; Chauvin, J.P.; Herrera, N.L. Rural-urban migration at high urbanization levels. Reg. Sci. Urban Econ. 2021, 91, 103658. [Google Scholar] [CrossRef]
- McGowan, D.; Vasilakis, C. Reap what you sow: Agricultural technology, urbanization and structural change. Res. Policy 2019, 48, 103794. [Google Scholar] [CrossRef]
- Zheng, W.; Barker, A. Green infrastructure and urbanisation in Suburban Beijing: An improved neighbourhood assessment framework. Habitat. Int. 2021, 117, 102423. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat. Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Wang, L.; Liu, C.; Fan, S.; Chen, C.; Tong, Y.; Lin, X.; Gao, Z. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of Eastern China. Sci. Total Environ. 2021, 757, 143750. [Google Scholar] [CrossRef]
- Xiong, X.; Xu, Z. Research on financial support system under the guidance of new urbanization. J. Quant. Tech. Econ. 2015, 32, 73–89. (In Chinese) [Google Scholar]
- Zhu, Y.; Wang, Z.; Luo, J.; Cui, J. Coupling and coordinated development of new urbanization and food security in main agricultural production regions in central China: A case study of Henan Province. Sci. Geogr. Sin. 2021, 41, 1947–1958. (In Chinese) [Google Scholar]
- Peng, C.; Chen, L.; Han, F. The analysis of new-type urbanization and the intensive urban land use: Spatial-temporal evolution and their relationship. Geogr. Res. 2014, 33, 2005–2020. (In Chinese) [Google Scholar]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A Case Study of Yangtze River Delta Urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; He, C.; Huang, Q. The spatiotemporal dynamics of new-type urbanization comprehensive level in Shandong Peninsula Urban Agglomeration. Econ. Geogr. 2017, 37, 77–85. (In Chinese) [Google Scholar]
- Zhao, J.; Liu, Y.; Zhu, Y.; Qin, S.; Wang, Y.; Miao, C. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. (In Chinese) [Google Scholar] [CrossRef]
- Fan, P.; Liang, L.; Li, Y.; Duan, L.; Wang, N.; Chen, C. Evaluation of coordinated development of urbanization from the perspective of system coupling in the Beijing-Tianjin-Hebei Region. Resour. Sci. 2016, 38, 2361–2374. (In Chinese) [Google Scholar]
- Yan, X.; Liu, B.; Wang, S.; An, D.; Zhu, F.; Yang, Y. Efilter: An effective fault localization based on information entropy with unlabelled test cases. Inform. Softw. Technol. 2021, 134, 106543. [Google Scholar]
- Wang, X.; Li, C.; Liu, Y.; Ji, Z.; Li, L.; Wei, L. Zoning and improving path of cultivated land use efficiency based on evaluation of cultivated land suitability. Trans. Chin. Soc. Agric. Mach. 2021, 52, 212–218. (In Chinese) [Google Scholar]
- Lu, X.; Kuang, B.; Lu, J. Regional differences and its influencing factors of cultivated land use efficiency under carbon emission constraint. J. Nat. Resour. 2018, 33, 657–668. (In Chinese) [Google Scholar]
- Zang, J.; Tang, C.; Wang, Q.; Li, K.; Li, L. Research on spatial imbalance and influencing factors of cultivated land use efficiency in Guangdong Province based on Super-SBM Model. China Land Sci. 2021, 35, 64–74. (In Chinese) [Google Scholar]
- Ji, Z.; Wang, X.; Li, L.; Guan, X.; Wei, L.; Xu, Y. The evolution of cultivated land utilization efficiency and its influencing factors in Nanyang Basin. J. Nat. Resour. 2021, 36, 688–701. (In Chinese) [Google Scholar] [CrossRef]
- Liu, M.; Zhang, A.; Wen, G. Temporal and spatial pattern and evolution trend of cultivated land use ecological efficiency in the main grain producing areas in the Lower Yangtze Region. China Land Sci. 2021, 35, 50–60. (In Chinese) [Google Scholar]
- Zhang, L.; Zhu, D.; Xie, B.; Du, T.; Wang, X. Spatiotemporal pattern evolvement and driving factors of cultivated land utilization efficiency of the major grain producing area in China. Resour. Sci. 2017, 39, 608–619. (In Chinese) [Google Scholar]
- Chen, L.; Hao, J.; Wang, F.; Yin, Y.; Yang, G.; Duan, W.; Yang, J. Carbon sequestration function of cultivated land use system based on the carbon cycle for the Huang-Huai-Hai plain. Resour. Sci. 2016, 38, 1039–1053. (In Chinese) [Google Scholar]
- Farrell, M.J. The Measurement of productive efficiency. J. R. Stat. Soc. A 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Du, Y.W.; Jiang, J.; Li, C.H. Ecological efficiency evaluation of marine ranching based on the Super-SBM Model: A case study of Shandong. Ecol. Indic. 2021, 131, 108174. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat. Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhao, Y.; Zhang, Q.; Dong, W.; Huang, J. Boosting rural labor off-farm employment through urban expansion in China. World Dev. 2022, 151, 105727. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Liu, Y.; Yang, R.; Hong, Y.; Lu, Y.; Pan, J.; Chen, Y. Cropland use sustainability in Cheng–Yu Urban Agglomeration, China: Evaluation framework, driving factors and development paths. J. Clean. Prod. 2020, 256, 120692. [Google Scholar] [CrossRef]
System | Primary Indicator | Secondary Indicator | Indicator Type | References |
---|---|---|---|---|
New-type urbanization | Demographic urbanization | Proportion of urban population (%) | + | Li et al. [19] |
Urban registered unemployment rate(%) | − | Xiong and Xu [62] | ||
Proportion of labor force in secondary and tertiary industries(%) | + | Zhu et al. [63] | ||
Spatial urbanization | Built-up area (km2) | − | Cai et al. [5] | |
Urban road area (km2) | + | Cai et al. [5] | ||
Urban population density (people/km2) | − | Peng et al. [64] | ||
Economic urbanization | Per capita GDP (yuan) | + | Cai et al. [5] | |
Per capita disposable income of urban residents (yuan) | + | Xiong and Xu [62] | ||
Total investment in fixed assets (yuan) | + | Ding et al. [65] | ||
Social urbanization | Number of hospital beds per 10,000 people | + | Li et al. [19] | |
Number of people with unemployment insurance | + | Yang et al. [66] | ||
Number of people with endowment insurance | + | Xiong and Xu [62] | ||
Ecological urbanization | Per capita cultivated land (km2/people) | + | Zhao et al. [67] | |
Energy consumption per GDP (ton/10,000 yuan) | − | Zhao et al. [67] | ||
Total investment in environmental pollution treatment (yuan) | + | Fan et al. [68] |
Element | Variable | Unit | References |
---|---|---|---|
Input | Sown area of crops | 1000 hectares | Kuang et al. [8] |
Population employed in primary industry | 10,000 persons | Yang et al. [12] | |
Consumption of fertilizers | 10,000 tons | Wang et al. [70] | |
Consumption of pesticides | tons | Lu et al. [71] | |
Consumption of agricultural film | tons | Zang et al. [72] | |
Effective irrigation area | 1000 hectares | Ji et al. [73] | |
Total power of agricultural machinery | 10,000 kW | Liu et al. [74] | |
Desirable output | Gross agricultural production | 10,000 yuan | Zhang et al. [75] |
Output of grain | tons | Zhang et al. [75] | |
Carbon sequestration | 10,000 tons | Ke et al. [54] | |
Undesirable output | Carbon emissions | 10,000 tons | Ke et al. [54] |
Crop | Carbon Content | Moisture Coefficient | Economic Coefficient | Root Shoot Ratio |
---|---|---|---|---|
Wheat | 0.4707 | 0.1167 | 0.3632 | 0.3930 |
Corn | 0.4637 | 0.1223 | 0.4628 | 0.1560 |
Paddy | 0.4171 | 0.1186 | 0.4854 | 0.6000 |
Cotton | 0.4500 | 0.1150 | 0.2767 | 0.1220 |
Oil-bearing crop | 0.4500 | 0.1500 | 0.4300 | 0.7200 |
Vegetable | 0.4500 | 0.9000 | 0.6000 | 0.0000 |
Carbon Source | Fertilizer | Pesticide | Agricultural Film | Agricultural Machinery | Irrigation | Tillage |
---|---|---|---|---|---|---|
Coefficient | 0.8965 | 4.9341 | 5.1800 | 0.1800 | 20.4760 | 3.1260 |
Unit | kg/kg | kg/kg | kg/kg | kg/kW | kg/hm2 | kg/hm2 |
Degree of Disparity | Number of Peaks | Height of the Peak | Location of the Peak | The Left Tail | The Right Tail |
---|---|---|---|---|---|
Increase | Increase | Flat | Move left | Longer | Shorter |
Decrease | Decrease | Steep | Move right | Shorter | Longer |
Stage | Level | Type |
---|---|---|
Coordinated development | 0.8 < D ≤ 1 | High balanced |
Transformation development | 0.6 < D ≤ 0.8 | Moderate balanced |
0.4 < D ≤ 0.6 | On the verge of imbalance | |
Uncoordinated development | 0.2 < D ≤ 0.4 | Moderate imbalanced |
0 ≤ D ≤ 0.2 | High imbalanced |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dai, Y.; Chen, Y.; Ke, X. Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China. Land 2022, 11, 919. https://doi.org/10.3390/land11060919
Zhang Y, Dai Y, Chen Y, Ke X. Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China. Land. 2022; 11(6):919. https://doi.org/10.3390/land11060919
Chicago/Turabian StyleZhang, Yue, Yaqiang Dai, Yuanyuan Chen, and Xinli Ke. 2022. "Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China" Land 11, no. 6: 919. https://doi.org/10.3390/land11060919
APA StyleZhang, Y., Dai, Y., Chen, Y., & Ke, X. (2022). Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China. Land, 11(6), 919. https://doi.org/10.3390/land11060919