Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Vector and Elevation Data
2.2.2. Remote Sensing Data
2.2.3. Socio-Economic Data
2.3. Methods
2.3.1. Land Use Change Analysis
2.3.2. Ecosystem Services Valuation
2.3.3. Ecosystem Health Assessment
3. Results
3.1. Analysis of Land Use Changes in the SHB from 2000 to 2015
3.2. Changes in Ecosystem Services Values from 2000 to 2015
3.3. Ecosystem Health Variation and Assessment Results in the SHB
3.3.1. Spatial-Temporal Variation of Ecosystem Health Value
- At the city scale.
- 2.
- At the district/county scale
3.3.2. Driving Factors of Ecosystem Health Changes
3.3.3. Influence of Ecosystem Health Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Holland, R.A.; Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Thomas, C.D.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Gaston, K.J. Spatial covariation between freshwater and terrestrial ecosystem services. Ecol. Appl. 2011, 21, 2034–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, F.; Bicking, S.; Ahrendt, K.; Kinh Bac, D.; Blindow, I.; Fürst, C.; Haase, P.; Kruse, M.; Kruse, T.; Ma, L.; et al. Assessing ecosystem service potentials to evaluate terrestrial, coastal and marine ecosystem types in Northern Germany—An expertbased matrix approach. Ecol. Indicat. 2020, 112, 106116. [Google Scholar] [CrossRef]
- Peng, K.F.; Jiang, W.G.; Ling, Z.Y.; Hou, P.; Deng, Y.W. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Zhong, S.; Shi, P.; Yang, W.; Li, Z.; Li, P.; Yang, S. Health evaluation and obstacle factor diagnosis of land use system based on PSR model: A case study of Yanchang County. Res. Soil Water Conserv. 2019, 26, 283–289. [Google Scholar]
- Jin, H.; Wang, J.; Jia, M.; Zhang, B.; Xu, S. Evaluation of China’s land use system health based on system dynamics. Resour. Environ. Yangtze Basin 2020, 29, 1064–1074. [Google Scholar]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Cheema, S.A.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil Tillage Res. 2020, 196, 104464. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Zhai, T.; He, T.; Qi, Y.; Jin, Z.; Cai, Y. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2017, 29, 446–460. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Li, Z.; Zhang, X.; Du, R.; Li, M. Exploring development trends of terrestrial ecosystem health—A case study from China. Land 2022, 11, 32. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; He, S. Is China’s urbanization quality and ecosystem health developing harmoniously? An empirical analysis from Jiangsu, China. Land 2022, 11, 530. [Google Scholar] [CrossRef]
- Rapport, D.J.; Regier, H.A.; Hutchinson, T.C. Ecosystem behavior under stress. Am. Nat. 1985, 5, 617–640. [Google Scholar] [CrossRef]
- Wang, T.; Cao, J.; Zhao, Y.; Han, L.; Liu, Z. Health evaluation of land ecosystem in Shaanxi Province, Northwest China based on PSR Model. Chin. J. Appl. Ecol. 2021, 11, 1563–1572. [Google Scholar]
- Pan, Y.; Xu, Z.; Yu, C.; Tu, Y.; Li, Y.; Wu, J. Spatiotemporal variation of interacting relationships among multiple provisioning and regulating services of Tibet grassland ecosystem. Acta Ecolpgica Sin. 2013, 33, 5794–5801. [Google Scholar]
- Costanza, R.; Norton, B.G.; Haskell, B.D. Ecosystem Health: New Goals for Environmental Management; Island Press: Washington, DC, USA, 2013; pp. 23981–256304. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lavigne, F.; Gunnell, Y. Land cover change and abrupt environmental impacts on Javan volcanoes, Indonesia: A long-term perspective on recent events. Reg. Environ. Change 2006, 6, 86–100. [Google Scholar] [CrossRef]
- Torres, R.; Gasparri, N.; Blendinger, P.G.; Grau, H.R. Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Reg. Environ. Change 2014, 14, 1549–1561. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, Y.; Zhang, X.; Qi, S.; Na, X. Comparison of land use/land cover change and landscape patterns in Honghe National Nature Reserve and the surrounding Jiansanjiang Region, China. Ecol. Indic. 2015, 51, 205–214. [Google Scholar] [CrossRef]
- Napton, D.E.; Auch, R.F.; Headley, R.; Taylor, J. Land changes and their driving forces in the Southeastern United States. Reg. Environ. Change 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Roshan, S.; Udo, N.; Syed, R. Modeling land use and land cover changes and their effects on biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar]
- Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing changes in ecosystem service values over 1985–2050 in response to land use and land cover dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Chen, X.; Wei, C.; Peng, X. Application of entropy weight and fuzzy synthetic evaluation in urban ecological security assessment. J. Appl. Ecol. 2006, 17, 1923–1927. [Google Scholar]
- Su, M.R.; Yang, Z.F.; Chen, B. Set pair analysis for urban ecosystem health assessment. Commun. Nonlinear Sci. 2009, 14, 1773–1780. [Google Scholar] [CrossRef]
- Sun, B.; Tang, J.; Yu, D.; Song, Z.; Wang, P. Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China. Ocean Coast Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between urban land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Li, X.B.; He, S.J.; Zhang, M. Spatio-temporal Change of Land Use in Bohai Rim. Acta Geogr. Sin. 2001, 68, 253–260. [Google Scholar]
- Shen, H.F.; Tian, Q.J.; Wu, G.X. Study on land use/cover change in the water supply area of the Middle-Route of the South-to-North Water Diversion (MR-SNWD) Project. Res. Soil Water Conserv. 2015, 22, 204–208. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Speldewinde, P.C.; Slaney, D.; Weinstein, P. Is restoring an ecosystem good for your health? Sci. Total Environ. 2015, 502, 276–279. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.X.; Wu, J.S.; Lv, H.L.; Hu, X.X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- HJ/T192-2006; Technical Criterion for Eco-Environmental Status Evaluation. China Environmental Science Press: Beijing, China, 2006.
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. S. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Ou, W.X.; Tao, L.J.; Tao, Y.; Guo, J. A land-cover-based approach to assessing the spatio-temporal dynamics of ecosystem health in the Yangtze River Delta region. Chin. Popul. Resour. Environ. 2018, 28, 84–92. [Google Scholar]
- Gong, C.; Yu, S.; Joesting, H.; Chen, J. Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images. Landsc. Urban Plan. 2013, 117, 57–65. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Holl, K.D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 2020, 57, 2349–2361. [Google Scholar] [CrossRef]
- Wade, F.; Bush, R.; Webb, J. Emerging linked ecologies for a national scale retrofitting programme: The role of local authorities and delivery partners. Energy Policy 2020, 137, 111179. [Google Scholar] [CrossRef]
- Xu, H.; Cao, Y.; Yu, D.; Cao, M.; He, Y.; Gill, M.; Pereira, H.M. Ensuring effective implementation of the post-2020 global bio-diversity targets. Nat. Ecol. Evol. 2021, 5, 411–418. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Zhou, L.; Che, L.; Zhou, C. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. Acta Geogr. Sin. 2019, 74, 2027–2044. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Li, G. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geogr. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef]
- Goldstein, G. Urbanization, health and well-being: A global perspective. J. R. Stat. Soc. Ser. D (Stat.) 1990, 39, 121–133. [Google Scholar] [CrossRef]
- Joumard, R.; Gudmundsson, H. Indicators of Environmental Sustainability in Transport: An Interdisciplinary Approach to Methods; European Commission: Lyon, France, 2010. [Google Scholar]
- Hassan Rashid, M.A.U.; Manzoor, M.M.; Mukhtar, S. Urbanization and its effects on water resources: An exploratory analysis. Asian J. Water Environ. Pollut. 2018, 15, 67–74. [Google Scholar] [CrossRef]
- Bebianno, M.J.; Pereira, C.G.; Rey, F.; Cravo, A.; Duarte, D.; Errico, G.D.; Regoli, F. Integrated approach to assess ecosystem health in harbor areas. Sci. Total Environ. 2015, 514, 92–107. [Google Scholar] [CrossRef] [PubMed]
Land Use Type | Detail |
---|---|
Cropland | paddy field, irrigated land, dry land, etc. |
Forest | evergreen broad-leaf forest, deciduous and evergreen broadleaved forest, deciduous broad-leaved forest, etc. |
Grassland | mainly herbaceous plants |
Water | rivers, lakes, ponds, reservoirs, etc. |
Built-up land | commercial service land, residential land, transportation land, etc. |
Unused land | coastal beaches, marshes, sand islands, bare land, etc. |
China a | Land Use Type | ||||
---|---|---|---|---|---|
Ecosystem Services | Cropland | Forest | Unused Land | Water | Grassland |
Gas exchange | 442.4 | 3097 | 0 | 0 | 707.9 |
Climate regulation | 787.5 | 2389.1 | 0 | 407 | 796.4 |
Water conservation | 530.9 | 2831.5 | 26.5 | 18,033.2 | 707.9 |
Soil formation and conservation | 1291.9 | 3450.9 | 17.7 | 8.8 | 1725.5 |
Waste treatment | 1451.2 | 1159.2 | 8.8 | 16,086.6 | 1159.2 |
Biodiversity | 628.2 | 2884.6 | 300.8 | 2203.3 | 964.5 |
Food production | 884.9 | 88.5 | 8.8 | 88.5 | 265.5 |
Raw material | 88.5 | 2300.6 | 0 | 8.8 | 44.2 |
Entertainment culture | 8.8 | 1132.6 | 8.8 | 3840.2 | 35.2 |
Total | 6114.3 | 19334 | 371.4 | 40,676.4 | 6406.5 |
SHB b | Land Use Type | ||||
Ecosystem Services | Cropland | Forest | Unused Land | Water | Grassland |
Gas exchange | 490.6 | 3434.6 | 0.0 | 0.0 | 785.1 |
Climate regulation | 873.3 | 2649.5 | 0.0 | 451.4 | 883.2 |
Water conservation | 588.8 | 3140.1 | 29.4 | 19,998.8 | 785.1 |
Soil formation and conservation | 1432.7 | 3827.0 | 19.6 | 9.8 | 1913.6 |
Waste treatment | 1609.4 | 1285.6 | 9.8 | 17,840.0 | 1285.6 |
Biodiversity | 696.7 | 3199.0 | 333.6 | 2443.5 | 1069.6 |
Food production | 981.4 | 98.1 | 9.8 | 98.1 | 294.4 |
Raw material | 98.1 | 2551.4 | 0.0 | 9.8 | 49.0 |
Entertainment culture | 9.8 | 1256.1 | 9.8 | 4258.8 | 39.0 |
Total | 6780.8 | 21,441.4 | 411.9 | 45,110.1 | 7104.8 |
Coefficient Type | Cropland | Forest | Grassland | Built-Up Land | Water | Unused Land |
---|---|---|---|---|---|---|
LC | 0.190 | 0.380 | 0.340 | 0.070 | 0 | 0.020 |
RC | 0.300 | 0.800 | 0.700 | 0.200 | 0.800 | 1 |
ESC | 0.325 | 1 | 0.426 | 0.015 | 0.932 | 0.035 |
Land Use Type | 2000 | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | |
Cropland | 23,371.02 | 44.11 | 19,035.66 | 35.93 | 21,807.92 | 41.15 | 15,979.74 | 30.16 |
Forest | 20,890.73 | 39.43 | 23,680.78 | 44.70 | 20,815.80 | 39.28 | 19,189.37 | 36.22 |
Grassland | 1302.44 | 2.46 | 1258.35 | 2.38 | 1548.01 | 2.92 | 1280.01 | 2.42 |
Water | 2327.04 | 4.39 | 2420.94 | 4.57 | 2109.35 | 4.02 | 1582.82 | 2.99 |
Built-up land | 4458.76 | 8.42 | 6076.20 | 11.47 | 6390.91 | 12.06 | 14,592.57 | 27.54 |
Unused land | 627.55 | 1.18 | 505.60 | 0.95 | 305.53 | 0.58 | 355.01 | 0.67 |
2000/2005 | Cropland | Forest | Grassland | Water | Built-Up Land | Unused Land | Area Change | The Dynamic Degree (%) |
---|---|---|---|---|---|---|---|---|
Cropland | 13,931.43 | 5828.90 | 249.27 | 475.98 | 2719.71 | 165.73 | −867.07 | −0.037 |
Forest | 2088.06 | 16,908.29 | 991.88 | 189.52 | 693.66 | 19.32 | 558.01 | 0.027 |
Grassland | 953.80 | 316.72 | 7.72 | 0.99 | 4.24 | 18.97 | −8.82 | −0.007 |
Water | 378.23 | 269.69 | 1.06 | 1509.78 | 83.80 | 84.48 | 18.79 | 0.008 |
Built-up land | 1608.21 | 248.20 | 7.75 | 54.33 | 2529.46 | 10.80 | 323.34 | 0.073 |
Unused land | 75.93 | 108.97 | 0.67 | 190.33 | 45.33 | 206.31 | −24.39 | −0.039 |
2005/2010 | Cropland | Forest | Grassland | Water | Built-Up Land | Unused Land | Area Change | The Dynamic Degree (%) |
Cropland | 14,415.12 | 1273.63 | 517.68 | 347.64 | 2448.57 | 33.03 | 554.45 | 0.029 |
Forest | 4787.41 | 18,013.81 | 460.40 | 143.83 | 269.12 | 6.21 | −573.00 | −0.024 |
Grassland | 122.25 | 1012.64 | 110.41 | 3.54 | 9.29 | 0.22 | 57.93 | 0.046 |
Water | 360.81 | 210.84 | 448.32 | 1228.86 | 54.91 | 117.20 | −58.00 | −0.024 |
Built-up land | 1911.25 | 262.36 | 11.02 | 210.92 | 3568.19 | 112.46 | 63.09 | 0.010 |
Unused land | 211.08 | 42.53 | 0.18 | 174.57 | 40.83 | 36.41 | −40.01 | −0.079 |
2010/2015 | Cropland | Forest | Grassland | Water | Built-Up Land | Unused Land | Area Change | The Dynamic Degree (%) |
Cropland | 10,934.20 | 2454.39 | 276.69 | 121.65 | 7975.90 | 45.08 | −1165.67 | −0.053 |
Forest | 3306.48 | 15,540.63 | 871.35 | 149.71 | 934.55 | 13.09 | −325.29 | −0.016 |
Grassland | 641.40 | 716.31 | 94.14 | 45.01 | 50.97 | 0.18 | −53.60 | −0.035 |
Water | 334.95 | 104.20 | 3.22 | 1226.39 | 310.91 | 129.69 | −109.62 | −0.051 |
Built-up land | 710.51 | 343.04 | 13.98 | 25.53 | 5290.23 | 7.63 | 1640.33 | 0.257 |
Unused land | 50.20 | 30.81 | 20.63 | 14.53 | 30.01 | 159.35 | 9.90 | 0.032 |
Land Use Type | 2000 | % | 2005 | % | 2010 | % | 2015 | % |
---|---|---|---|---|---|---|---|---|
Cropland | 15.847 | 22.07 | 12.908 | 17.09 | 14.787 | 21.11 | 10.835 | 18.05 |
Forest | 44.364 | 61.79 | 50.775 | 67.24 | 44.632 | 63.72 | 41.145 | 68.52 |
Grassland | 1.067 | 1.49 | 0.894 | 1.18 | 1.100 | 1.57 | 0.909 | 1.51 |
Water | 10.497 | 14.62 | 10.921 | 14.46 | 9.515 | 13.58 | 7.140 | 11.89 |
Unused land | 0.026 | 0.04 | 0.021 | 0.03 | 0.013 | 0.02 | 0.015 | 0.02 |
Total | 71.802 | 100 | 75.518 | 100 | 70.047 | 100 | 60.044 | 100 |
City | 2000 | % | 2005 | % | 2010 | % | 2015 | % |
Hangzhou | 29.765 | 41.45 | 32.595 | 43.16 | 29.669 | 42.38 | 28.517 | 47.49 |
Huzhou | 7.481 | 10.42 | 7.159 | 9.48 | 6.887 | 9.84 | 6.072 | 10.11 |
Jiaxing | 3.826 | 5.33 | 3.734 | 4.94 | 3.679 | 5.26 | 2.557 | 4.26 |
Ningbo | 11.116 | 15.48 | 11.553 | 15.30 | 10.785 | 15.41 | 9.074 | 15.11 |
Shanghai | 4.750 | 6.62 | 4.669 | 6.18 | 4.290 | 6.13 | 2.602 | 4.33 |
Shaoxing | 12.897 | 17.96 | 13.721 | 18.17 | 12.754 | 18.22 | 9.453 | 15.74 |
Zhoushan | 1.968 | 2.74 | 2.086 | 2.76 | 1.942 | 2.77 | 1.773 | 2.95 |
Total | 71.803 | 100 | 75.517 | 100 | 70.006 | 100 | 60.048 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Cai, Z.; Xu, D.; Lin, W.; Gao, J.; Li, L. Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China. Land 2022, 11, 867. https://doi.org/10.3390/land11060867
Xu D, Cai Z, Xu D, Lin W, Gao J, Li L. Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China. Land. 2022; 11(6):867. https://doi.org/10.3390/land11060867
Chicago/Turabian StyleXu, Dan, Zhuang Cai, Di Xu, Wenpeng Lin, Jun Gao, and Lubing Li. 2022. "Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China" Land 11, no. 6: 867. https://doi.org/10.3390/land11060867
APA StyleXu, D., Cai, Z., Xu, D., Lin, W., Gao, J., & Li, L. (2022). Land Use Change and Ecosystem Health Assessment on Shanghai–Hangzhou Bay, Eastern China. Land, 11(6), 867. https://doi.org/10.3390/land11060867