Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain)
Abstract
:1. Introduction
- The paradigm of growth. Increases in the built-up area, including spaces for commerce, infrastructure, etc. seem to be the main focus for development, even under conditions of population decline [34]. The focus remains on economic growth-oriented issues (creating jobs, attracting investments). City budgets for green development and the maintenance of green spaces often face severe financial constraints, while staff and related expertise are decreasing [14,35,36,37].
- Path dependence is an extremely important factor in our case and describes the situation in which active memory determined by past decisions has a controlling influence on decision-making [14,25,38,39]. This leads to lock-ins and errors being made and repeated again and again, despite voluntary decision-making and enlightened self-interest. Path dependence proposes to formally connect the past and the present, at the (macro) level of institutions, at the (meso) level of technology and governance modes, and at the (micro) level of organizational resources and capabilities [39,40]. Unless path dependence is broken through a combination of reforms, the shift toward the full adoption of nature-based solutions will not occur [25]. The path dependence factor can be related to other frequently identified factors, such as lack of information, knowledge, and understanding in applying integrated, adaptive forms of management; insufficient resources (capital and human) [40], and fear of the unknown (operational performance) [12,41,42,43].
- Sectoral silos is a concept that refers to traditional structures of city departments that commonly have their own sectoral language. Knowledge is, thus, trapped in sectoral silos [12,14,44,45,46]. Similarly, local public administrations tend to have separate departments, each following distinct administrative specializations associated with different objectives, legal frameworks, and responsibilities [13]. All this is interrelated with the lack of a coordinated institutional framework, unclear and fragmented roles and responsibilities, and poor inter-organizational collaboration and communication [40]. In contrast to these problems, the transition path for the wider uptake of NbS requires active cooperation and minimal compartmentalization as a precondition [25]. The sectoral silos problem can be understood as one of the outcomes of another factor that generally emerges, the limits of the regulatory framework [40,47].
- Lastly, in our case, we detect a factor that we call the lack of political and public will, combined with limited community engagement, empowerment, and participation. Some authors suggest that community members are often not considered valid decision-makers and, therefore, not informed (made aware) or empowered (engaged to act) to participate meaningfully in decision-making processes [40]. This factor is very prominent in the discourses of both institutional and social agents in our case.
- Establishment and utilization of collaborative governance approaches. Policy officers collaborate with civil society, including, but not limited to NGOs, to connect demands for action with responsible actors or partnerships for action and jointly ensure good governance practices that adhere to transparency, legitimacy, and openness.
2. Study Area
2.1. Seville’s Historical Trajectory to Address HCR
2.2. The Green Infrastructure System as an Expression of Community Resilience
3. Materials and Methods
4. Results
4.1. CC Action Plans: Diagnostics and Proposals
4.1.1. Risk Diagnostics in the Plans
4.1.2. Selection of HCR Adaptation Measures
4.2. Stakeholder Perceptions of the City’s HCR Situation
4.2.1. Appreciation of Risks and Coping Capacity to Address Them
4.2.2. Valuation of Action Plans
5. Discussion
“To minimize the level of uncertainty around qualitative assessment, it is necessary to resort to the highest number of experts with different profiles and knowledge of the subject and the application of analytical techniques such as expert panels, focus groups, Delphi questionnaires, etc. This is especially important if it is borne in mind that uncertainty can originate from a variety of sources in a climate change context” [74] (p. 56).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín, Y.; Paneque, P. Moving from adaptation capacities to implementing adaptation to extreme heat events in urban areas of the European Union: Introducing the U-ADAPT! research approach. J. Environ. Manag. 2022, 310, 114773. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 16 May 2022).
- IUCN. The IUCN Programme 2013-16. Available online: https://portals.iucn.org/library/node/10320 (accessed on 27 April 2022).
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. Communication from the Commission to the European Parliament. The Council, the European Economic and Social Committee and the Committee of the Regions. COM/2013/0249 Final; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- European Commission. Next Steps for a Sustainable European Future—European Action for Sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of The Regions. COM/2016/0739; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Informe Mundial de las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos 2018: Soluciones Basadas en la Naturaleza para la Gestión del agua—UNESCO Biblioteca Digital. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000261494 (accessed on 27 April 2022).
- Gutiérrez, L.; García, G.; García, I. ‘Soluciones Naturales’ para la Adaptación al Cambio Climático en el Ámbito Local de la Comunidad Autónoma del País Vasco; Ihobe, Sociedad Pública de Gestión Ambiental. Gobierno Vasco: Bilbao, Spain, 2017. [Google Scholar]
- Hanson, H.I.; Wickenberg, B.; Alkan Olsson, J. Working on the boundaries—How do science use and interpret the nature-based solution concept? Land Use Policy 2020, 90, 104302. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities; Directorate-General for Research and Innovation, European Commission: Brussels, Belgium, 2015; Available online: https://data.europa.eu/doi/10.2777/479582 (accessed on 27 April 2022).
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haaseck, D.; Jones-Waltersl, L.; Keunem, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Frantzeskaki, N.; Borgström, S.; Gorissen, L.; Egermann, M.; Ehnert, F. Nature-Based Solutions Accelerating Urban Sustainability Transitions in Cities: Lessons from Dresden, Genk and Stockholm Cities. In Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 65–88. [Google Scholar] [CrossRef] [Green Version]
- Sarabi, S.E.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: A review. Resources 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Elderbrock, E.; Enright, C.; Lynch, K.A.; Rempel, A.R. A guide to public green space planning for urban ecosystem services. Land 2020, 9, 391. [Google Scholar] [CrossRef]
- Gill, S.; Handley, J.F.; Ennos, R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Guerrero, J.J.; Caceres, F.; Giménez de Azcarate, F.; Moreira, J.M. Servicios de Regulación Climática Aportados por la Vegetación Urbana a la Ciudad de Córdoba. 1a Parte: Fundamentos y Metodología; REDIAM, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía: Córdoba, Spain, 2016; Available online: https://www.juntadeandalucia.es/medioambiente/portal/documents/20151/401014/servicios_regulacion_clima_vege.pdf/d1a1d99e-c772-1b8b-1ee4-6b82df97a1a8?t=1459248396000 (accessed on 27 April 2022).
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Theory and Practice of Urban Sustainability Transitions Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer Nature: Cham, Switzerland, 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Juvillà, E. (Coord.); Renaturalización de la Ciudad; Diputación de Barcelona: Barcelona, Spain, 2019.
- Yang, B.; Lee, D. Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction. Land 2021, 10, 897. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T. Mainstream Nature-Based Solutions for Urban Climate Resilience. BioScience 2022, 72, 113–115. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 2019, 80, 406–409. [Google Scholar] [CrossRef]
- Kemp, R.; Schot, J.; Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 1998, 10, 175–198. [Google Scholar] [CrossRef]
- Smith, A.; Voß, J.P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Lafuente, R.; Ganuza, E.; Paneque, P. Las resistencias sociales a la transición hidrológica en el sur de España: El apoyo de los ciudadanos a la construcción de nuevos embalses. In Actas del XI Congreso Ibérico de Gestión y Planificación del Agua; Fundación Nueva Cultura del Agua: Madrid, Spain, 2020. [Google Scholar]
- Brown, R.; Clarke, J. Transition to Water Sensitive Urban Design: The Story of Melbourne, Australia; School of Geography and Environmental Science, Monash University: Clayton, Australia, 2007. [Google Scholar]
- Hughes, S.; Pincetl, S.; Boone, C. Triple exposure: Regulatory, climatic, and political drivers of water management changes in the city of Los Angeles. Cities 2013, 32, 51–59. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Seyfang, G.; Longhurst, N. Desperately seeking niches: Grassroots innovations and niche development in the community currency field. Glob. Environ. Chang. 2013, 23, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Haase, D.; Kabisch, N.; Haase, A. Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, J.W.R.; Tynon, J.F.; Gómez, E. Attitudes about urban nature parks: A case study of users and nonusers in Portland, Oregon. Landsc. Urban Plan. 2013, 117, 100–111. [Google Scholar] [CrossRef]
- Davies, C.; Hansen, R.; Rall, E.; Pauleit, S.; Lafortezza, R.; De Bellis, Y.; Santos, A.; Tosics, I. Green Infrastructure Planning and Implementation—The Status of European Green Space Planning and Implementation Based on An Analysis of Selected European City-Regions. GREEN SURGE Project Report. Seventh Framework Programme. Deliverable 5.1. 2015. Available online: https://ign.ku.dk/english/green-surge/rapporter/D5_1_Green_Infrastructure_Planning_and_Implementation1.pdf. (accessed on 6 June 2022).
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Liebowitz, S.J.; Margolis, S.E. Path dependence, lock-in, and history. J. Law Econ. Organ. 1995, 11, 205–226. [Google Scholar] [CrossRef]
- Vergne, J.P.; Durand, R. The Missing Link Between the Theory and Empirics of Path Dependence: Conceptual Clarification, Testability Issue, and Methodological Implications. J. Manag. Stud. 2010, 47, 736–759. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef]
- Lohr, V.I.; Pearson-Mims, C.H.; Tarnai, J.; Dillman, D.A. How urban residents rate and rank the benefits and problems associated with trees in cities. J. Arboric. 2004, 30, 28–35. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Davison, A.; Harwood, A. How tree professionals perceive trees and conflicts about trees in Australia’s urban forest. Landsc. Urban Plan. 2013, 119, 124–130. [Google Scholar] [CrossRef]
- Kronenberg, J. Why not to green a city? Institutional barriers to preserving urban ecosystem services. Ecosyst. Serv. 2015, 12, 218–227. [Google Scholar] [CrossRef]
- Naumann, S.; Anzaldua, G.; Gerdes, H.; Frelih-Larsen, A.; McKenna, D.; Berry, P.; Burch, S.; Sanders, M. Assessment of the Potential of Ecosystem-Based Approaches to Climate Change Adaptation and Mitigation in Europe—Climate-ADAPT; Ecologic Institut: Berlin, Germany; Environmental Change Institute, Oxford University Centre for the Environment: Oxford, UK, 2016; Available online: https://climate-adapt.eea.europa.eu/metadata/publications/assessment-of-the-potential-of-ecosystem-based-approaches-to-climate-change-adaptation-and-mitigation-in-europe (accessed on 27 April 2022).
- Frantzeskaki, N.; Tilie, N. The dynamics of Urban ecosystem governance in Rotterdam, the Netherlands. Ambio 2014, 43, 542–555. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kaine, J.H.; Artmannf, M.; Pauleita, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Doménech, I.A.; Anta, J.; Perales-Momparler, S.; Rodriguez-Hernandez, J. Sustainable Urban Drainage Systems in Spain: A Diagnosis. Sustainability 2021, 13, 2791. [Google Scholar] [CrossRef]
- Moseley, D.; Marzano, M.; Chetcuti, J.; Watts, K. Green networks for people: Application of a functional approach to support the planning and management of greenspace. Landsc. Urban Plan. 2013, 116, 1–12. [Google Scholar] [CrossRef]
- Krasny, M.E.; Russ, A.; Tidball, K.G.; Elmqvist, T. Civic ecology practices: Participatory approaches to generating and measuring ecosystem services in cities. Ecosyst. Serv. 2014, 7, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Seyfang, G.; Smith, A. Grassroots innovations for sustainable development: Towards a new research and policy agenda. Environ. Politics 2007, 16, 584–603. [Google Scholar] [CrossRef]
- Forrest, N.; Wiek, A. Success factors and strategies for sustainability transitions of small-scale communities—Evidence from a cross-case analysis. Environ. Innov. Soc. Transit. 2015, 17, 22–40. [Google Scholar] [CrossRef]
- Lara, A.; Berraquero, L.; del Moral, L. Contested spaces for negotiated urban resilience in Seville. In Urban Resilience to Climate Emergency: Unravelling the Transformative Potential of Institutional and Grassroots Initiatives; Ruiz-Mallén, I., Satorras, M., March, H., Eds.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Gallardo, G.; Saunders, F.; Sokolova, T. Co-Creating Actionable Science: Reflections from the Global North and South; Cambridge Scholars Publishing: Newcastle, UK, 2020. [Google Scholar]
- del Moral, L.; Lara, Á. ¿Cambio de paradigmas frente a los riesgos hidroclimáticos? La experiencia de Sevilla. Cuad. De Geogr. 2022, 108. unpublished work submitted. [Google Scholar]
- Lara, A. Agua y Espacio Habitado: Propuestas para la Construcción de Ciudades Sensibles al Agua; Universidad de Sevilla: Sevilla, Spain, 2018. [Google Scholar]
- del Moral, L.; Riesco, P.; Sancho, F.; Marqués, R. El embalse de los Melonares, ejemplo de obra superflua: Datos para un debate pendiente. In Los Megaproyectos en Andalucía; del Moral Ituarte, L., Delgado Cabezas, M., Eds.; Aconcagua: Sevilla, Spain, 2016; pp. 49–82. ISBN 978-84-946439-0-3. [Google Scholar]
- Servicio Andaluz de Salud. Plan Andaluz para la Prevención de los Efectos de las Temperaturas Excesivas Sobre la Salud; Junta de Andalucía: Sevilla, Spain, 2019. [Google Scholar]
- Confederación Hidrográfica del Guadalquivir (CHG). Plan Hidrológico de la Demarcación del Guadalquivir, Tercer ciclo 2021–2027; Confederación Hidrográfica del Guadalquivir: Sevilla, Spain, 2022. [Google Scholar]
- Díaz, I. Sevilla, Cuestión de Clase. Una Geografía Social del siglo XXI; Atrapasueños: Sevilla, Spain, 2010; ISBN 978-84-613-0949-8. [Google Scholar]
- Dimuro, G.; Soler, M.M.; de Manuel, E. La agricultura urbana en Sevilla: Entre el derecho a la ciudad y la agroecología. Hábitat Soc. 2013, 6, 41–60. [Google Scholar] [CrossRef]
- Satorras, M.; Lara, Á.; Ruiz-Mallén, I. Booklet of Urban Resilience Community Initiatives in Seville and Barcelona: Civil Society against the Effects of Climate Change. Available online: https://turbain3.files.wordpress.com/2020/04/rescities-booklet-english-9.9.20.pdf (accessed on 27 April 2022).
- Ortega, I. La naturaleza comparativa de los estudios de caso. Una revisión politológica sobre el stado de la cuestión. Encrucijadas. Rev. Crítica Cienc. Soc. 2012, 4, 81–94. [Google Scholar]
- Lijphart, A. Política comparada y método comparado. Rev. Latinoam. Política Comp. 2008, 1, 211–238. [Google Scholar]
- Palomo, F.d.B. Historia Crítica de las Riadas o Grandes Avenidas del Guadalquivir en Sevilla; Ayuntamiento de Sevilla: Sevilla, Spain, 1878. [Google Scholar]
- Vanney, J.-R. L’hydrologie du bas Guadalquivir; Instituto de Geografía Aplicada del Patronato Alonso de Herrera: Madrid, Spain, 1970. [Google Scholar]
- González, A. Sevilla: Centralidad Regional y Organización Interna de su Espacio Urbano; Servicio de Estudios del Banco Urquijo: Sevilla, Spain, 1975. [Google Scholar]
- del Moral, L. El agua en la organización del espacio urbano: El caso de Sevilla y el Guadalquivir. Doc. D’anàlisi Geogràfica 1997, 31, 117127. [Google Scholar]
- Solís, J. Las Inundaciones en la Sevilla Contemporánea: La Acción de los Poderes Públicos (1801–2015); Diputación de Sevilla: Sevilla, Spain, 2022. [Google Scholar]
- RESCITIES. Entidades Implicadas en la Resiliencia Frente a los Riesgos Hidro-Climáticos en Barcelona y Sevilla. Available online: https://turbain3.files.wordpress.com/2020/09/infografia-actores-rescities-14.07_final.pdf (accessed on 27 April 2022).
- Ayuntamiento de Sevilla. Plan de Adaptación al Cambio Climático; Ayuntamiento de Sevilla: Sevilla, Spain, 2017. [Google Scholar]
- EMASESA. Plan de Emergencia Climática; EMASESA: Sevilla, Spain, 2019. [Google Scholar]
- IPCC. Cambio Climático 2014: Informe de Síntesis. Contribución de los Grupos de Trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático; Grupo Intergubernamental de Expertos sobre el Cambio Climático: Geneve, Switzerland, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ar5_wgII_spm_es-1.pdf (accessed on 6 June 2022).
- Covenant of Mayors for Climate & Energy Europe. Urban Adaptation Support Tool. Available online: https://climate-adapt.eea.europa.eu/knowledge/tools/urban-ast/step-0-0 (accessed on 21 May 2022).
- Torres, E.F.; García Blanco, G.; Gutiérrez García, L.; Abajo Alda, B.; Mendizabal Zubeldia, M.; Tapia García, C. Guía para la Elaboración de Planes Locales de Adaptación al Cambio Climático; Oficina Española de Cambio Climático. Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2016; Volume II. [Google Scholar]
- Füssel, H.M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Chang. 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Ionescu, C.; Klein, R.J.; Hinkel, J.; Kavi Kumar, K.S.; Klein, R. Towards a Formal Framework of Vulnerability to Climate Change. Environ. Modeling Assess. 2008, 14, 1–16. [Google Scholar] [CrossRef]
- Wolf, S. Vulnerability and risk: Comparing assessment approaches. Nat. Hazards 2012, 61, 1099–1113. [Google Scholar] [CrossRef]
- Parejo, J. Educación Exime a los Alumnos de ir a Clase por las Altas Temperaturas. Diario de Sevilla, 20 June 2017. [Google Scholar]
- Márquez, J.D. El Calor Tardío Evidencia el Fiasco del plan de Climatización en las Aulas. La Razón, 24 September 2018. [Google Scholar]
- Schipper, E.L.F. Maladaptation: When Adaptation to Climate Change Goes Very Wrong. One Earth 2020, 3, 409–414. [Google Scholar] [CrossRef]
- Barnett, J.; O’Neill, S. Maladaptation. Glob. Environ. Chang. 2010, 20, 211–213. [Google Scholar] [CrossRef]
- Zoido Naranjo, F.; Fernández Salinas, V. Las relaciones ciudad-río en Andalucía. Estudio de su evolución reciente a partir del planeamiento urbanístico y territorial. In II Jornadas de Geografía Urbana; Biblioteca Virtual Miguel de Cervantes: Alicante, Spain, 1995; pp. 337–367. Available online: https://www.cervantesvirtual.com/obra/las-relaciones-ciudadro-en-andaluca-estudio-de-su-evolucin-reciente-a-partir-del-planeamiento-urbanstico-y-territorial-0/ (accessed on 27 April 2022).
- García, A. Potencialidades de la rehabilitación de cursos fluviales en el marco de los nuevos modelos urbanos. El ejemplo del arroyo Tagarete en Sevilla. Andal. Geográfica 2004, 10, 18–25. [Google Scholar]
- Ameneiro, A.S. Anillo Verde para Sevilla: 20 Entidades Piden Someter el Proyecto a Participación Pública. Diario de Sevilla, 4 March 2021. [Google Scholar]
Social Entities | Interview Ref. Code |
---|---|
Seville Movement of Entities for the Climate (Movimiento de Entidades por el Clima de Sevilla–MECS) | #1 |
2020 Climate Rebellion (2020 Rebelión por el Clima) | #2 |
Platform for a Public and Green Tablada District (Plataforma por una Tablada Pública y Verde) | #3 |
Rey Moro Community Garden (Huerto del Rey Moro) | #4 |
Living Guadaira Park Association (Asociación Parque Vivo Guadaira) | #5 |
Ecotono (Environmental Education Cooperative) | #6 |
Nomad Garden (SL) | #7 |
Parents’ Association Pro Bioclimatic Adaptation in Schools (Plataforma Escuelas de Calor) | #8 |
Wastewater Treatment Research Group, Grupo TAR (University of Seville) | #9 |
University and Social Commitment (University of Seville) | #10 |
Network Action, Andalusia (Acción en Red Andalucía) | #11 |
International Solidarity, Andalusia (Solidaridad Internacional Andalucía) | #12 |
Andalusian Social Water Table-Seville Consumers and Users Association (Mesa Social del Agua de Andalucía-FACUA Sevilla) | #13 |
CCOO Trade Union-Environment Secretary (Medio Ambiente, Comisiones Obreras de Sevilla-CCOO) | #14 |
Ecologists in Action (Ecologistas en Acción) | #15 |
Institutions | |
EMASESA (Seville Metropolitan Water Supply and Sanitation Company) | #16 |
Seville City Planning Office (Gerencia Municipal de Urbanismo) | #17 |
Guadalquivir River Basin Authority | #18 |
AEOPAS (Spanish Water Supply and Sanitation Operators Association) | #19 |
Seville City Council, Dep. of the Environment, Parks, and Gardens (DG Medio Ambiente, Parques y Jardines del Ayto. de Sevilla) | #20 |
Seville City Council, Sustainable Development Department (Desarrollo Sostenible del Ayto. de Sevilla) | #21 |
Andalusian Regional Government, Department of Housing (Secretaria Gral. de Vivienda de la Junta de Andalucía) | #22 |
Andalusian Regional Government, Environment and Water Andalusian Agency (Agencia de Medio Ambiente y Agua) | #23 |
Former head of the Seville City Council, Dep. of the Environment, Parks, and Gardens | #24 |
Measures | Budget (€) | CCAP | CEP | Heatwaves | Drought | Flood |
---|---|---|---|---|---|---|
Gray actions | ||||||
Shade plan | 500,000 | X | o | o | ||
More urban drinking fountains | - | X | o | |||
Improvement and replacement of water supply and sewer networks | - | X | X | o | o | |
Control of unauthorized water consumption | - | X | o | |||
Individual water meters | - | X | o | |||
Groundwater uses | 171,000 | X | o | |||
Regenerated water uses | 15,000 | X | X | o | ||
Better management of drinking water | - | X | o | o | o | |
Better knowledge of reservoirs | 134,000 | X | o | o | o | |
Advanced water quality control techniques | 715,000 | X | o | o | o | |
Advanced water treatment systems | 118,000,000 | X | o | o | ||
Retention tanks and rainwater sewer systems | 50,000,000 | X | X | o | ||
Gray actions: total budget | 169,535,000 | |||||
Green actions | ||||||
Green roofs and facades in municipal buildings and primary schools | 125,000 | X | o | o | ||
Public space renaturing: balconies, terraces, courtyards, and streets | 64,000 | X | o | o | ||
Consolidation of green avenues | 7,200,000 | X | o | o | ||
Environmental improvement to river spaces | 1,500,000 | X | o | o | ||
Expansion of social and urban garden network | 2,600,000 | X | o | o | ||
Unique green spaces | - | X | o | o | ||
Connectivity of green spaces (green belt) | 85,000 | X | o | o | ||
Green roofs and facades on businesses | 500,000 | X | o | o | ||
Urban renaturing | 7,900,000 | X | o | o | ||
Green actions: total budget | 19,974,000 | |||||
Soft actions | ||||||
Improving inter-institutional coordination for climate action | - | X | o | o | o | |
Making Seville a European benchmark for CC | 40,000 | X | o | o | o | |
Management of municipal buildings’ water footprint | 50,000 | X | o | |||
Public awareness campaigns | 800,000 | X | o | o | o | |
Education about resource use | 173,000 | X | o | |||
Creation of a CC web | 25,000 | X | o | o | o | |
Seville business cluster to address the climate | 120,000 | X | o | o | o | |
Tax incentives, rebates, and grants | - | X | o | o | o | |
Encouragement of changes to working hours | - | X | o | o | ||
Soft actions: total budget | 1,208,000 | |||||
Sum total of budget | 190,617,000 |
Social Actors | No. | Institutional Actors | No. | Total | |
---|---|---|---|---|---|
Most serious risk | |||||
Heatwaves | #1; #3; #4; #5; #6; #9; #10; #11; #13; #14 | 10 | #17; #21; #23; #24 | 4 | 14 |
Droughts | #2; #7; #8; #12; #15 | 5 | #16; #18; #20 | 3 | 8 |
Floods | 0 | #19; #22 | 2 | 2 | |
Strengths | |||||
Habit, tradition, and risk culture; traditional architecture | #1; #2; #6; #7; #8; #12; #14; #15 | 6 | #16; #19; #21; #22; #23 | 5 | 11 |
Research | #1; #13 | 2 | #17 | 1 | 3 |
Social awareness | #4; #13; | 2 | #17 | 1 | 3 |
CC public policies | #17 | 1 | 1 | ||
Urban parks | #3; #10; #11 | 3 | #17; #24 | 2 | 5 |
Hydrology: River (not used) and groundwater | #4; #5; #7; #9; #10; #11 | 6 | 6 | ||
EMASESA | #9 | 1 | #24 | 1 | 2 |
Infrastructure | #16; #18; #19; #20 | 4 | 4 | ||
Weaknesses | |||||
Poverty | #3; #6 | 2 | 2 | ||
Poor quality of building construction (poor neighborhoods) | #3; #11; #14 | 3 | 3 | ||
Lack of green areas and trees in the urban space | #6; #10; #11; #14 | 4 | 4 | ||
Lack of institutional commitment | #2; #4; #5; #8; #10; | 5 | #24 | 1 | 6 |
Lack of social pressure | #10 | 1 | #24 | 1 | 2 |
Lack of technical culture (except for EMASESA) | #24 | 1 | 1 | ||
Infrastructure solutions: environmental and economic costs; false sense of security | #6; #8; #12 | 3 | #19; #20 | 2 | 5 |
Consequences of CC | #15 | #16; #22 | 2 | 2 | |
Economic dependency on tourism and agriculture | #1 | 1 | 1 | ||
Most exposed areas | |||||
Low-income neighborhoods and social exclusion | #2; #3; #5; #6; #8; #10; #11; #13; #14; | 9 | #20; #21 | 2 | 11 |
Areas with no trees | #1; #3; #4; #5; #8; #9; #14; | 7 | #17; #21; #23; #24 | 4 | 11 |
Areas far from the river | #10; #11 | 2 | 2 | ||
Nervion, North Macarena, Historical Center | #17; #20 | 2 | 2 | ||
Most exposed equipment and infrastructure | |||||
Primary schools | #3; #4; #8 | 3 | #17 | 1 | 4 |
Bus stops | #4; #6 | 2 | #24 | 1 | 3 |
Tourism, hospitality sector | #1 | 1 | 1 | ||
Agricultural sector | #1; #12 | 2 | #20 | 1 | 3 |
Reservoirs | #16 | 1 | 1 | ||
Areas outside the flood protection zone | #19; #22 | 2 | 2 | ||
Vulnerable collectives | |||||
Low income groups (overcrowding, quality of housing and urban space, homeless) | #2; #3; #4; #6; #7; #9; #12; #15 | 7 | #16; #19; #20; #21; #22; #23; #24 | 7 | 14 |
The children | #3; #4; #8; #10; #6 | 5 | #17; #21; #24 | 3 | 8 |
The elderly | #4; #5; #6; #10; #13 | 5 | #17; #21; #23; #24 | 4 | 9 |
The sick | #13 | 1 | #17; #21; #24 | 3 | 4 |
The disabled (mobility) | #4 | 1 | 1 | ||
Migrants, women | #1 | 1 | 1 | ||
Homeless people | #15 | 1 | 1 | ||
Outdoor workers | #3; #14; #15 | 2 | 2 |
Interviews (A) | CC Adaptation Plan | Climate Emergency Plan | ||||
---|---|---|---|---|---|---|
Risk assessment | Social actors | Institutional actors | Participation process (B) | Plan diagnostics (C) | Participation Process (B) | Plan diagnostics (C) |
Indicator | Most severe risk | Most severe risk | (No. prioritized recipients) | (No. high-risk recipients) | (No. risks identified as high or very high) | (No. risks identified as high or very high) |
Heatwaves | 10 | 4 | 17 | 7 | 6 | 3 |
Drought | 4 | 3 | 9 | 3 | 4 | 6 |
Flooding | 0 | 2 | 0 | 11 | 2 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara, Á.; Moral, L.d. Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain). Land 2022, 11, 868. https://doi.org/10.3390/land11060868
Lara Á, Moral Ld. Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain). Land. 2022; 11(6):868. https://doi.org/10.3390/land11060868
Chicago/Turabian StyleLara, Ángela, and Leandro del Moral. 2022. "Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain)" Land 11, no. 6: 868. https://doi.org/10.3390/land11060868
APA StyleLara, Á., & Moral, L. d. (2022). Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain). Land, 11(6), 868. https://doi.org/10.3390/land11060868