Boon or Bane? Urban Food Security and Online Food Purchasing during the COVID-19 Epidemic in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19, Household Food Insecurity, and Online Food Purchasing
2.2. Case Study Site
2.3. Household Survey and Food Security Measurement
2.4. Simultaneous Equations Regression
2.5. Dependent Variables
2.6. Independent Variables
3. Results
3.1. Food Insecurity and Food Purchasing Behavior
3.2. Model Estimation Results
3.3. Robustness Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, A.K.; Tran, B.X.; Nguyen, C.T.; Le, H.T.; Do, H.T.; Nguyen, H.D.; Nguyen, L.H.; Nguyen, T.H.; Mai, H.T.; Tran, T.D.; et al. Consumer preference and attitude regarding online food products in Hanoi, Vietnam. Int. J. Environ. Res. Public Health 2018, 15, 981. [Google Scholar]
- Mortimer, G.; E Hasan, S.F.; Andrews, L.; Martin, J. Online grocery shopping: The impact of shopping frequency on perceived risk. Int. Rev. Retail. Distrib. Consum. Res. 2016, 26, 202–223. [Google Scholar]
- Pigatto, G.; Machado, J.G.D.C.F.; Negreti, A.D.S.; Machado, L.M. Have you chosen your request? Analysis of online food delivery companies in Brazil. Br. Food J. 2017, 119, 639–657. [Google Scholar] [CrossRef]
- Pitts, S.B.J.; Ng, S.W.; Blitstein, J.L.; Gustafson, A.; Niculescu, M. Online grocery shopping: Promise and pitfalls for healthier food and beverage purchases. Public Health Nutr. 2018, 21, 3360–3376. [Google Scholar] [CrossRef]
- Dominici, A.; Boncinelli, F.; Gerini, F.; Marone, E. Determinants of online food purchasing: The impact of socio-demographic and situational factors. J. Retail. Consum. Serv. 2021, 60, 102473. [Google Scholar] [CrossRef]
- Dana, L.M.; Hart, E.; McAleese, A.; Bastable, A.; Pettigrew, S. Factors associated with ordering food via online meal ordering services. Public Health Nutr. 2021, 24, 5704–5709. [Google Scholar] [CrossRef]
- Keeble, M.; Adams, J.; Vanderlee, L.; Hammond, D.; Burgoine, T. Associations between online food outlet access and online food delivery service use amongst adults in the UK: A cross-sectional analysis of linked data. Bmc Public Health 2021, 21, 1968. [Google Scholar] [CrossRef]
- Dai, N.; Si, Z.Z. Food Retailing Transitions and New Retail Businesses in Nanjing, China; HCP Discussion Paper No. 40. 2020. Available online: https://hungrycities.net/publication/hcp-discussion-paper-no-40-food-retailing-transitions-new-retail-businesses-nanjing-china/ (accessed on 10 May 2022).
- Wang, O.; Somogyi, S. Consumer adoption of online food shopping in China. Br. Food J. 2018, 120, 2868–2884. [Google Scholar] [CrossRef]
- Zheng, Q.; Chen, J.; Zhang, R.; Wang, H.H. What factors affect Chinese consumers’ online grocery shopping? Product attributes, e-vendor characteristics and consumer perceptions. China Agric. Econ. Rev. 2020, 12, 193–213. [Google Scholar] [CrossRef]
- Maimaiti, M.; Zhao, X.; Jia, M.; Ru, Y.; Zhu, S. How we eat determines what we become: Opportunities and challenges brought by food delivery industry in a changing world in China. Eur. J. Clin. Nutr. 2018, 72, 1282–1286. [Google Scholar] [CrossRef]
- Crush, J.; Si, Z.Z. COVID-19 containment and food security in the Global South. J. Agric. Food Syst. Community Dev. 2020, 9, 149–151. [Google Scholar] [CrossRef]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- AlTarrah, D.; AlShami, E.; AlHamad, N.; AlBesher, F.; Devarajan, S. The impact of coronavirus COVID-19 pandemic on food purchasing, eating behavior, and perception of food safety in Kuwait. Sustainability 2021, 13, 8987. [Google Scholar] [CrossRef]
- Bender, K.E.; Badiger, A.; Roe, B.E.; Shu, Y.; Qi, D. Consumer behavior during the COVID-19 pandemic: An analysis of food purchasing and management behaviors in U.S. households through the lens of food system resilience. Socio-Econ. Plan. Sci. 2021, 82, 101107. [Google Scholar] [CrossRef]
- Bolek, S. Food purchasing, preservation, and eating behavior during COVID-19 pandemic: A consumer analysis. Ital. J. Food Sci. 2021, 33, 14–24. [Google Scholar] [CrossRef]
- Ellison, B.; McFadden, B.; Rickard, B.J.; Wilson, N.L.W. Examining food purchase behavior and food values during the COVID-19 pandemic. Appl. Econ. Perspect. Policy 2021, 43, 58–72. [Google Scholar] [CrossRef]
- Gutierrez-Villar, B.; Melero-Bolanos, R.; Carbonero-Ruz, M. COVID-19’s first wave: Examination of impact on food purchasing behaviour in the Eurozone. Foods 2021, 10, 1179. [Google Scholar] [CrossRef]
- Alaimo, L.S.; Fiore, M.; Galati, A. How the COVID-19 pandemic is changing online food shopping human behaviour in Italy. Sustainability 2020, 12, 9594. [Google Scholar] [CrossRef]
- Chang, H.H.; Meyerhoefer, C.D. COVID-19 and the demand for online food shopping services: Empirical evidence from TaiwanJEL Codes. Am. J. Agric. Econ. 2021, 103, 448–465. [Google Scholar] [CrossRef]
- Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ. Rev. Can. D Agroecon. 2020, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Petrescu-Mag, R.; Vermeir, I.; Petrescu, D.; Crista, F.; Banatean-Dunea, I. Traditional foods at the click of a button: The preference for the online purchase of Romanian traditional foods during the COVID-19 pandemic. Sustainability 2020, 12, 9956. [Google Scholar] [CrossRef]
- Cardoso, B.; Cunha, L.; Leiras, A.; Gonçalves, P.; Yoshizaki, H.; Junior, I.D.B.; Pedroso, F. Causal impacts of epidemics and pandemics on food supply chains: A systematic review. Sustainability 2021, 13, 9799. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant. Stud. 2020, 47, 1393–1417. [Google Scholar] [CrossRef]
- Chua, G.; Yuen, K.; Wang, X.; Wong, Y. The determinants of panic buying during COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 3247. [Google Scholar] [CrossRef]
- Wang, O.; Somogyi, S.; Charlebois, S. Food choice in the e-commerce era A comparison between business-to-consumer (B2C), online-to-offline (O2O) and new retail. Br. Food J. 2020, 122, 1215–1237. [Google Scholar] [CrossRef]
- Chen, M. COVID-19, cities and urban informal workers: India in comparative perspective. Indian J. Labour Econ. 2020, 63, 41–46. [Google Scholar]
- Chen, M.A.; Grapsa, E.; Ismail, G.; Rogan, M.; Valdivia, M.; Alfers, L.; Harvey, J.; Ogando, A.C.; Reed, S.O.; Roever, S.; et al. COVID-19 and informal work: Evidence from 11 cities. Int. Labour Rev. 2021, 161, 29–58. [Google Scholar] [CrossRef]
- Skinner, C.; Watson, V. Planning and informal food traders under COVID-19: The South African case. Town Plan. Rev. 2021, 92, 301–307. [Google Scholar] [CrossRef]
- Zhong, T.; Crush, J.; Si, Z.; Scott, S. Emergency food supplies and food security in Wuhan and Nanjing, China, during the COVID-19 pandemic: Evidence from a field survey. Dev. Policy Rev. 2021. [Google Scholar] [CrossRef]
- Moseley, W.G.; Battersby, J. The vulnerability and resilience of African food systems, food security, and nutrition in the context of the COVID-19 pandemic. Afr. Stud. Rev. 2020, 63, 449–461. [Google Scholar] [CrossRef]
- Resnick, D. COVID-19 lockdowns threaten Africa’s vital informal urban food trade. IFPRI Book Chapters 2020, 16, 73–74. [Google Scholar]
- Reardon, T.; Heiman, A.; Lu, L.; Nuthalapati, C.S.; Vos, R.; Zilberman, D. “Pivoting” by food industry firms to cope with COVID-19 in developing regions: E-commerce and “copivoting” delivery intermediaries. Agric. Econ. 2021, 52, 459–475. [Google Scholar] [CrossRef]
- Li, J.X.; Hallsworth, A.G.; Coca-Stefaniak, J.A. Changing grocery shopping behaviours among Chinese consumers at the outset of the COVID-19 outbreak. Tijdschr. Voor Econ. En Soc. Geogr. 2020, 111, 574–583. [Google Scholar] [CrossRef]
- Dai, N.; Qi, D.S. From Wet Markets to Online Purchase: Food Shopping Patterns during COVID-19 in Wuhan and Nanjing China; COVID-19 and Food Security Research Brief No. 4. 2020. Available online: https://hungrycities.net/wp-content/uploads/2022/01/RB4.pdf (accessed on 10 May 2022).
- Gao, X.; Shi, X.; Guo, H.; Liu, Y. To buy or not buy food online: The impact of the COVID-19 epidemic on the adoption of e-commerce in China. PLoS ONE 2020, 15, e0237900. [Google Scholar] [CrossRef]
- Huang, H. Riders on the storm: Amplified platform precarity and the impact of COVID-19 on online food-delivery drivers in China. J. Contemp. China 2021, 31, 351–365. [Google Scholar]
- Lu, M.J.; Wang, R.; Li, P.Y. Comparative analysis of online fresh food shopping behavior during normal and COVID-19 crisis periods. Br. Food J. 2020, 124, 968–986. [Google Scholar] [CrossRef]
- Yue, W.; Liu, N.; Zheng, Q.; Wang, H.H. Does the COVID-19 pandemic change consumers’ food sonsumption and willingness-to-pay? The case of China. Foods 2021, 10, 2156. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Y.; Shi, X.; Chen, K.Z. The role of e-commerce in the urban food system under COVID-19: Lessons from China. China Agric. Econ. Rev. 2021, 13, 436–455. [Google Scholar] [CrossRef]
- Zhong, T.; Dai, N.; Si, Z.; Crush, J. Food Security Challenges in Chinese Cities during the COVID-19 Pandemic; COVID-19 and Food Security Research Brief No. 3. 2020. Available online: https://hungrycities.net/wp-content/uploads/2022/01/Research-Brief-3.pdf (accessed on 10 May 2022).
- Sohu News. Meituan Takeout “Contactless delivery” Report: Fruit, Vegetable, Grain and Oil Sales Increase 400%. 2020. Available online: https://www.sohu.com/a/374792319_183167 (accessed on 10 May 2022).
- Yang, F.X.; Li, X.; Lau, V.M.-C.; Zhu, V.Z. To survive or to thrive? China’s luxury hotel restaurants entering O2O food delivery platforms amid the COVID-19 crisis. Int. J. Hosp. Manag. 2021, 94, 102855. [Google Scholar] [CrossRef]
- Nanjing Municipal Bureau Statistics. Nanjing Statistical Yearbook 2021. Available online: http://tjj.nanjing.gov.cn/material/njnj_2021/renkou/index.htm (accessed on 10 May 2022).
- Meituan Research Institute. 2019 Nanjing Catering Development Report. 2019. Available online: https://about.meituan.com/research/report (accessed on 10 May 2022).
- McCordic, C.; Si, Z.; Zhong, T. Cross-Platform Shopping and Household Food Access in Nanjing, China; HCP Discussion Paper No. 20. 2018. Available online: https://hungrycities.net/publication/hcp-discussion-paper-no-20-cross-platform-food-shopping-household-food-access-nanjing-china/ (accessed on 10 May 2022).
- Si, Z.Z.; Scott, S.; McCordic, C. Wet markets, supermarkets and alternative food sources: Consumers’ food access in Nanjing, China. Can. J. Dev. Stud. Rev. Can. D Etudes Du Dev. 2019, 40, 78–96. [Google Scholar] [CrossRef]
- Si, Z.Z.; Zhong, T.Y. The State of Household Food Security in Nanjing, China; HCP Report No. 9. 2018. Available online: https://hungrycities.net/publication/hcp-report-no-9-state-household-food-security-nanjing-china/ (accessed on 10 May 2022).
- Jiangsu Commission of Health. Three new confirmed cases of the COVID-19 have been reported in Jiangsu Province. 2020. Available online: http://wjw.jiangsu.gov.cn/art/2020/2/18/art_72908975671.html (accessed on 10 May 2022).
- FAO. World Food Summit: Rome Declaration on World Food Security and World Food Summit Plan of Action; FAO: Rome, Italy, 1996. [Google Scholar]
- FAO. Declaration of the World Summit on Food Security; FAO: Quebec City, QC, Canada, 2019; pp. 16–18. [Google Scholar]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide: Version 3; FHI 360/FANTA: Washington, DC, USA, 2007. [Google Scholar]
- De Cock, N.; D’Haese, M.; Vink, N.; Van Rooyen, C.J.; Staelens, L.; Schönfeldt, H. Food security in rural areas of Limpopo province, South Africa. Food Secur. 2013, 5, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D.; Ngure, F.M.; Pelto, G.; Young, S.L. What are we assessing when we measure food security? A compendium and review of current metrics. Adv. Nutr. 2013, 4, 481–505. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. Fitting fully observed recursive mixed-process models with cmp. Stata J. 2011, 11, 159–206. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ye, J.; Abid, M.; Ullah, R. Determinants of flood risk mitigation strategies at household level: A case of Khyber Pakhtunkhwa (KP) province, Pakistan. Nat. Hazards 2017, 88, 415–430. [Google Scholar] [CrossRef]
- Shah, A.M.; Yan, X.B.; Qayyum, A. Adoption of mobile food ordering apps for O2O food delivery services during the COVID-19 outbreak. Br. Food J. 2021. [Google Scholar] [CrossRef]
- Chen, J. Coordinating community organizations in urban China. Int. J. Soc. Welf. 2009, 18, 385–394. [Google Scholar] [CrossRef]
- Pinstrup-Andersen, P. Food security: Definition and measurement. Food Secur. 2009, 1, 5–7. [Google Scholar]
- Tarasuk, V.; St-Germain, A.A.F.; Mitchell, A. Geographic and socio-demographic predictors of household food insecurity in Canada, 2011–2012. BMC Public Health 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.B.; Johnson, K.R.; Vaughn, M.G.; Hinton, M.E. The role of neighborhoods in household food insufficiency: Considering interactions between physical disorder, low social capital, violence, and perceptions of danger. Soc. Sci. Med. 2019, 221, 58–67. [Google Scholar] [CrossRef]
- Ibukun, C.O.; Adebayo, A.A. Household food security and the COVID-19 pandemic in Nigeria. Afr. Dev. Rev. 2021, 33, S75–S87. [Google Scholar] [CrossRef]
- Kimbro, R.T.; Denney, J.T.; Panchang, S. Individual, family, and neighborhood characteristics and children’s food insecurity. J. Appl. Res. Child. 2012, 3, 8. [Google Scholar]
- d’Errico, M.; Romano, D.; Pietrelli, R. Household resilience to food insecurity: Evidence from Tanzania and Uganda. Food Secur. 2018, 10, 1033–1054. [Google Scholar]
- Orr, S.K.; Dachner, N.; Frank, L.; Tarasuk, V. Relation between household food insecurity and breastfeeding in Canada. Can. Med. Assoc. J. 2018, 190, E312–E319. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Li, Z.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Zhang, J.; Ren, Z. Dietary Diversity among Chinese residents during the COVID-19 outbreak and its associated factors. Nutrients 2020, 12, 1699. [Google Scholar] [CrossRef]
- Xiao, L.; Fu, B.; Liu, W. Understanding consumer repurchase intention on O2O platforms: An integrated model of network externalities and trust transfer theory. Serv. Bus. 2018, 12, 731–756. [Google Scholar]
- iResearch Inc. China’s Fresh E-Commerce Industry Research Report. 2020. Available online: https://report.iresearch.cn/report/202007/3620.shtml (accessed on 10 May 2022).
- People’s Daily. Nanjing 159 Wet Markets Resumed Operations, the Daily Shipment of Vegetables Exceeds 3000 Tons. 2020. Available online: http://js.people.com.cn/GB/n2/2020/0131/c360302-33752935.html (accessed on 10 May 2022).
- Wang, T.; Wang, S.; Cao, L.; Chen, Y.; Huang, L. 90% of Wet Markets Reopen. 2020. Available online: http://nyncj.nanjing.gov.cn/nygzdt/202002/t20200212_1790260.html (accessed on 10 May 2022).
- Hillen, J. Online food prices during the COVID-19 pandemic. Agribusiness 2021, 37, 91–107. [Google Scholar] [CrossRef]
- Jaworski, K. Measuring food inflation during the COVID-19 pandemic in real time using online data: A case study of Poland. Br. Food J. 2021, 123, 260–280. [Google Scholar] [CrossRef]
- Seivwright, A.N.; Callis, Z.; Flatau, P. Food insecurity and socioeconomic disadvantage in Australia. Int. J. Environ. Res. Public Health 2020, 17, 559. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.F.; Oláh, J.; Popp, J.; Máté, D.; Kovács, S. Food security and the COVID-19 crisis from a consumer buying behaviour perspective: The case of Bangladesh. Foods 2021, 10, 3073. [Google Scholar] [CrossRef]
Variable | Definition | Mean | Standard Deviation |
---|---|---|---|
HFIAP | Household Food Insecurity Access Prevalence, food secure = 1, mildly food insecure = 2, moderately food insecure = 3, severely food insecure = 4 | 2.2 | 1.2 |
OFP | Online food purchase, OFP = 1 for households bought/purchased food online, otherwise, OFP = 0 | 0.8 | 0.4 |
PFGO | Purchase food through grassroots organizations, PFGO = 1 for households purchased food through grassroots organizations, otherwise, PFGO = 0 | 0.4 | 0.5 |
DPA | Difficulties of physical access, DPA = 1 for households had difficulties in physical access, otherwise, DPA = 0 | 0.7 | 0.5 |
DEA | Difficulties of economic access, DEA = 1 for households had difficulties in food affordability, otherwise, DEA = 0 | 0.4 | 0.5 |
HPR | Housing property rights, HPR = 1 for self-owned property, otherwise, HPR = 0 | 0.8 | 0.4 |
HT | Housing types, HT = 1 for households lived at urban run-down buildings, otherwise, HT = 0 | 0.0 | 0.2 |
HS | Household sizes, discrete values ranging from 1 to 10 | 3.5 | 1.5 |
NCC | Neighborhood with confirmed cases, NCC = 1 for a neighborhood with confirmed cases, otherwise, NCC = 0 | 0.0 | 0.2 |
HPI | Household with pregnant(s) or infant(s), HPI= 1 for household with pregnant(s) or infant(s), otherwise, HPI = 0 | 0.3 | 0.4 |
FSPS | Food shortage in physical stores, FSPS = 1 for shortage of food in physical stores, otherwise, FSPS = 0 | 0.3 | 0.4 |
% of Households | Food Secure (n = 362) | Mildly Food Insecure (n = 232) | Moderately Food Insecure (n = 181) | Severely Food Insecure (n = 193) | % of Total Households |
---|---|---|---|---|---|
HFIAP distribution | 37.4 | 24.0 | 18.7 | 19.9 | 100.0 |
Physical food purchase | 93.4 | 97.0 | 95.6 | 95.9 | 95.1 |
Online food purchase | 64.4 | 76.1 | 81.5 | 78.0 | 80.4 |
Food from grassroots organizations | 60.7 | 58.6 | 66.9 | 61.7 | 61.6 |
Difficulty with physical access to food | 51.4 | 68.5 | 85.6 | 84.5 | 68.5 |
Difficulties with economic access to food | 28. 5 | 50.0 | 56.9 | 38.9 | 41.0 |
Equation (1): HFIAP as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.284 *** | 0.092 | 3.09 | (0.104, 0.465) | HFIAP | 0.138 *** | 0.043 | 3.42 | (0.064, 0.236) |
PFGO | −0.038 | 0.074 | −0.51 | (−0.182, 0.107) | DEA | −0.152 | 0.098 | −1.34 | (−0.324, 0.061) |
DPA | 0.770 *** | 0.081 | 9.56 | (0.612, 0.928) | HS | −0.061 * | 0.033 | 1.22 | (−0.090, 0.387) |
DEA | 0.254 *** | 0.073 | 3.50 | (0.112, 0.397) | NCC | 0.011 | 0.244 | 0.00 | (−0.473, 0.475) |
HPR | −0.499 *** | 0.097 | −5.15 | (−0.689, −0.309) | HPI | 0.366 *** | 0.118 | 2.46 | (0.056, 0.494) |
HT | 0.309 * | 0.187 | 1.66 | (−0.057, 0.676) | FSPS | 0.034 | 0.113 | 0.26 | (−0.191, 0.251) |
HS | −0.020 | 0.027 | −0.74 | (−0.072, 0.032) | |||||
NCC | 0.256 | 0.181 | 1.41 | (−0.100, 0.611) | |||||
HPI | 0.044 | 0.086 | 0.51 | (−0.125, 0.213) | |||||
Pseudo R2 | 0.059 | Pseudo R2 | 0.024 | ||||||
Log likelihood | −1225.039 | Log likelihood | −468.003 | ||||||
LR chi-square | 154.280 (p-value = 0.000) | LR chi-square | 20.770 (p-value = 0.002) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FA as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.332 *** | 0.105 | 3.15 | (0.125, 0.538) | FA | 0.314 *** | 0.096 | 3.28 | (0.126, 0.501) |
PFGO | 0.049 | 0.086 | 0.57 | (−0.110, 0.216) | DEA | −0.146 | 0.098 | −1.49 | (−0.330, 0.045) |
DPA | 0.577 *** | 0.089 | 6.45 | (0.401, 0.751) | HS | −0.059 * | 0.033 | −1.78 | (−0.120, 0.005) |
DEA | 0.275 *** | 0.085 | 3.23 | (0.108, 0.442) | NCC | 0.071 | 0.244 | 0.29 | (−0.400, 0.548) |
HPR | −0.359 *** | 0.116 | −3.09 | (−0.580, −0.130) | HPI | 0.354 *** | 0.118 | 2.99 | (0.122, 0.585) |
HT | 0.260 | 0.225 | 1.15 | (−0.180, 0.701) | FSPS | 0.037 | 0.113 | 0.32 | (−0.180, 0.257) |
HS | −0.038 | 0.031 | −1.23 | (−0.090, 0.022) | |||||
NCC | −0.197 | 0.211 | −0.93 | (−0.610, 0.216) | |||||
HPI | 0.162 | 0.101 | 1.60 | (−0.030, 0.360) | |||||
Pseudo R2 | 0.063 | Pseudo R2 | 0.024 | ||||||
Log likelihood | −619.274 | Log likelihood | −467.798 | ||||||
LR chi-square | 83.6400 (p-value = 0.000) | LR chi-square | 23.120 (p-value = 0.001) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FQ as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.297 *** | 0.109 | 2.72 | (0.083, 0.510) | FQ | 0.295 *** | 0.101 | 2.93 | (0.097, 0.492) |
PFGO | −0.019 | 0.090 | −0.21 | (−0.190, 0.157) | DEA | −0.171 * | 0.100 | −1.72 | (−0.360, 0.024) |
DPA | 0.692 *** | 0.092 | 7.53 | (0.512, 0.872) | HS | −0.060 * | 0.033 | −1.81 | (−0.120, 0.005) |
DEA | 0.600 *** | 0.092 | 6.54 | (0.419, 0.779) | NCC | 0.030 | 0.244 | 0.12 | (−0.440, 0.508) |
HPR | −0.385 *** | 0.125 | −3.07 | (−0.630, −0.130) | HPI | 0.355 *** | 0.118 | 3.01 | (0.123, 0.586) |
HT | 0.336 | 0.247 | 1.36 | (−0.140, 0.820) | FSPS | 0.039 | 0.113 | 0.35 | (−0.180, 0.261) |
HS | −0.044 | 0.033 | −1.36 | (−0.100, 0.019) | |||||
NCC | 0.243 | 0.234 | 1.04 | (−0.210, 0.701) | |||||
HPI | 0.178 * | 0.108 | 1.65 | (−0.030, 0.389) | |||||
Pseudo R2 | 0.107 | Pseudo R2 | 0.022 | ||||||
Log likelihood | −552.043 | Log likelihood | −468.903 | ||||||
LR chi-square | 132.770 (p-value = 0.000) | LR chi-square | 20.910 (p-value = 0.002) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FI as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.323 *** | 0.118 | 2.74 | (0.091, 0.553) | FI | 0.304 *** | 0.109 | 2.79 | (0.090, 0.517) |
PFGO | −0.066 | 0.091 | −0.73 | (−0.240, 0.112) | DEA | −0.124 * | 0.097 | −1.27 | (−0.310, 0.067) |
DPA | 0.626 *** | 0.102 | 6.15 | (0.426, 0.826) | HS | −0.060 ** | 0.033 | −1.81 | (−0.120, 0.005) |
DEA | 0.060 | 0.089 | 0.68 | (−0.110, 0.235) | NCC | −0.001 | 0.242 | −0.01 | (−0.470, 0.473) |
HPR | −0.493 *** | 0.114 | −4.31 | (−0.710, −0.260) | HPI | 0.373 | 0.118 | 3.17 | (0.142, 0.604) |
HT | 0.318 | 0.219 | 1.46 | (−0.110, 0.747) | FSPS | 0.070 | 0.112 | 0.62 | (−0.140, 0.288) |
HS | −0.040 | 0.033 | −1.22 | (−0.100, 0.024) | |||||
NCC | 0.389 * | 0.212 | 1.83 | (−0.020, 0.803) | |||||
HPI | −0.035 | 0.107 | −0.33 | (−0.240, 0.174) | |||||
Pseudo R2 | 0.070 | Pseudo R2 | 0.021 | ||||||
Log likelihood | −543.353 | Log likelihood | −469.187 | ||||||
LR chi-square | 81.340 (p-value = 0.000) | LR chi-square | 20.340 (p-value = 0.002) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FA2 as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.283 ** | 0.120 | 2.36 | (0.047, 0.517) | HFIAP | 0.281 ** | 0.114 | 2.48 | (0.058, 0.503) |
PFGO | −0.142 | 0.093 | −1.52 | (−0.320, 0.040) | DEA | −0.140 | 0.098 | −1.43 | (−0.330, 0.051) |
DPA | 0.671 *** | 0.106 | 6.32 | (0.463, 0.879) | HS | −0.065 | 0.033 | −1.96 | (−0.120, −0.000) |
DEA | 0.345 *** | 0.090 | 3.81 | (0.167, 0.522) | NCC | 0.046 | 0.244 | 0.19 | (−0.43, 0.524) |
HPR | −0.238 ** | 0.118 | −2.02 | (−0.460, −0.000) | HPI | 0.355 ** | 0.118 | 3.01 | (0.123, 0.585) |
HT | 0.438 ** | 0.218 | 2.00 | (0.009, 0.866) | FSPS | 0.050 *** | 0.113 | 0.45 | (−0.170, 0.271) |
HS | −0.009 | 0.033 | −0.27 | (−0.070, 0.056) | |||||
NCC | 0.074 | 0.224 | 0.33 | (−0.360, 0.511) | |||||
HPI | 0.168 | 0.107 | 1.57 | (−0.04, 0.377) | |||||
Pseudo R2 | 0.070 | Pseudo R2 | 0.020 | ||||||
Log likelihood | −522.128 | Log likelihood | −470.029 | ||||||
LR chi-square | 78.190 (p-value = 0.000) | LR chi-square | 18.660 (p-value = 0.005) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FQ2 as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.068 | 0.112 | 0.61 | (−0.15, 0.287) | HFIAP | 0.084 | 0.103 | 0.82 | (−0.11, 0.285) |
PFGO | −0.036 | 0.089 | −0.41 | (−0.21, 0.138) | DEA | −0.127 | 0.099 | −1.28 | (−0.31, 0.066) |
DPA | 0.888 *** | 0.102 | 8.7 | (0.688, 1.088) | HS | −0.065 ** | 0.033 | −1.99 | (−0.13, −0.00) |
DEA | 0.487 *** | 0.088 | 5.55 | (0.315, 0.658) | NCC | 0.040 | 0.243 | 0.16 | (−0.43, 0.515) |
HPR | −0.150 | 0.116 | −1.29 | (−0.37, 0.077) | HPI | 0.364 *** | 0.117 | 3.1 | (0.133, 0.593) |
HT | 0.330 | 0.222 | 1.49 | (−0.10, 0.764) | FSPS | 0.072 | 0.113 | 0.64 | (−0.14, 0.294) |
HS | 0.003 | 0.032 | 0.08 | (−0.06, 0.065) | |||||
NCC | 0.282 | 0.212 | 1.33 | (−0.13, 0.696) | |||||
HPI | 0.012 | 0.105 | 0.11 | (−0.19, 0.217) | |||||
Pseudo R2 | 0.098 | Pseudo R2 | 0.014 | ||||||
Log likelihood | −564.785 | Log likelihood | −472.846 | ||||||
LR chi-square | 122.890 (p-value = 0.000) | LR chi-square | 13.020 (p-value = 0.043) | ||||||
Observations | 968 | Observations | 968 |
Equation (1): FI2 as Dependent Variable | Equation (2): OFP as Dependent Variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval | Independent Variables | Coefficient | Standard Errors | Z-Value | 95% Confidence Interval |
OFP | 0.448 *** | 0.173 | 2.58 | (0.107, 0.787) | HFIAP | 0.482 *** | 0.181 | 2.66 | (0.127, 0.836) |
PFGO | −0.107 | 0.120 | −0.89 | (−0.34, 0.128) | DEA | −0.110 | 0.098 | −1.13 | (−0.30, 0.081) |
DPA | 0.938 *** | 0.172 | 5.44 | (0.600, 1.276) | HS | −0.063 * | 0.033 | −1.9 | (−0.12, 0.001) |
DEA | −0.029 | 0.117 | −0.25 | (−0.25, 0.200) | NCC | 0.019 | 0.244 | 0.08 | (−0.45, 0.497) |
HPR | −0.225 | 0.145 | −1.55 | (−0.50, 0.059) | HPI | 0.375 *** | 0.118 | 3.18 | (0.143, 0.606) |
HT | 0.428 | 0.258 | 1.66 | (−0.07, 0.933) | FSPS | 0.065 | 0.112 | 0.57 | (−0.15, 0.284) |
HS | −0.023 | 0.041 | −0.58 | (−0.10, 0.056) | |||||
NCC | 0.315 | 0.253 | 1.25 | (−0.17, 0.810) | |||||
HPI | −0.124 | 0.142 | −0.87 | (0.107, 0.787) | |||||
Pseudo R2 | 0.090 | Pseudo R2 | 0.021 | ||||||
Log likelihood | −294.675 | Log likelihood | −469.284 | ||||||
LR chi-square | 58.270 (p-value = 0.000) | LR chi-square | 20.150 (p-value = 0.021) | ||||||
Observations | 968 | Observations | 968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zhong, T.; Crush, J. Boon or Bane? Urban Food Security and Online Food Purchasing during the COVID-19 Epidemic in Nanjing, China. Land 2022, 11, 945. https://doi.org/10.3390/land11060945
Liang Y, Zhong T, Crush J. Boon or Bane? Urban Food Security and Online Food Purchasing during the COVID-19 Epidemic in Nanjing, China. Land. 2022; 11(6):945. https://doi.org/10.3390/land11060945
Chicago/Turabian StyleLiang, Yajia, Taiyang Zhong, and Jonathan Crush. 2022. "Boon or Bane? Urban Food Security and Online Food Purchasing during the COVID-19 Epidemic in Nanjing, China" Land 11, no. 6: 945. https://doi.org/10.3390/land11060945
APA StyleLiang, Y., Zhong, T., & Crush, J. (2022). Boon or Bane? Urban Food Security and Online Food Purchasing during the COVID-19 Epidemic in Nanjing, China. Land, 11(6), 945. https://doi.org/10.3390/land11060945