Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China
Abstract
:1. Introduction
2. Literature Review
2.1. The Concept of Ecological Vulnerability
2.2. The Assessment of Ecological Vulnerability
3. Methods and Data Sources
3.1. Study Area
3.2. Data Sources
3.3. Technology Route
3.4. Establishment of Ecological Vulnerability Index System
3.5. Mapping Ecosystem Vulnerability
3.5.1. Data Standardization
3.5.2. Spatial Principal Component Analysis
3.5.3. EVI Classification
3.6. Spatial Autocorrelation Analysis
3.7. Driving Force Analysis
3.8. Prediction Analysis
4. Results
4.1. Temporal and Spatial Distribution Characteristics of Ecological Vulnerability
4.2. Spatial Heterogeneity of Ecosystem Vulnerability
4.3. Influencing Factors and Interaction of Ecological Vulnerability
4.4. Prediction and Analysis of Ecological Vulnerability
5. Discussion
5.1. Temporal and Spatial Distribution of Ecological Vulnerability
5.2. Future Prediction of Ecological Vulnerability
5.3. Policy Suggestions
5.4. Limitations and Future Research Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Khourdajie, A.A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Zhen, L.; Ishwaran, N.; Luo, Q.; Wei, Y.; Zhang, Q. Role and Significance of Restoration Technologies for Vulnerable Ecosystems in Building an Ecological Civilization in China. Environ. Dev. 2020, 34, 100494. [Google Scholar] [CrossRef]
- Liu, D.; Ma, Z. The Relationship between Three Districts and Three Lines and Its Spatial Control. China Land 2019, 7, 22–24. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, J.; Wen, Q.; Liu, S.; Li, B. Theory and Technology of Ecological Redline Demarcation. Acta Ecol. Sin. 2016, 36, 1244–1252. [Google Scholar]
- Li, H.; Song, W. Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau. Int. J. Environ. Res. Public Health 2021, 18, 6508. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Ying, L.; Kong, L.; Xiao, Y.; Ouyang, Z. Research Progress on Ecological Security and Its Evaluation Methods. Acta Ecol. Sin. 2022, 42, 1679–1692. [Google Scholar]
- Zhang, F.; Liu, X.; Zhang, J.; Wu, R.; Ma, Q.; Chen, Y. Ecological Vulnerability Assessment Based on Multi-Sources Data and SD Model in Yinma River Basin, China. Ecol. Model. 2017, 349, 41–50. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, R.; Yang, C.; Zhang, F.; Su, M.; Liao, Q. Establishing an Ecological Vulnerability Assessment Indicator System for Spatial Recognition and Management of Ecologically Vulnerable Areas in Highly Urbanized Regions: A Case Study of Shenzhen, China. Ecol. Indic. 2016, 69, 540–547. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; He, Q.; Ma, G. Spatio-Temporal Analysis of Ecological Vulnerability and Driving Factor Analysis in the Dongjiang River Basin, China, in the Recent 20 Years. Remote Sens. 2021, 13, 4636. [Google Scholar] [CrossRef]
- Xu, J.; Li, G.; Wang, Y. A review and prospect of research on ecological vulnerability at home and abroad. East China Econ. Manag. 2016, 30, 149–162. [Google Scholar]
- Fang, C.; Wang, Y.; Fang, J. Comprehensive measurement and spatial differentiation characteristics of urban vulnerability in China. J. Geogr. Sci. 2016, 26, 153–170. [Google Scholar] [CrossRef]
- Ribot, J.C. The Causal Structure of Vulnerability: Its Application to Climate Impact Analysis. GeoJournal 1995, 35, 119–122. [Google Scholar] [CrossRef]
- Niu, W. Basic judgment of ECONETONE in ecological and environmental fragility zone. Acta Ecol. Sin. 1989, 2, 97–105. [Google Scholar]
- Su, W.; Mou, J. A Preliminary Study on the Regionalization of Ecological Environment Vulnerability in Karst Area: A Case Study of Wujiang River Basin in Guizhou Province. Guizhou Sci. 1993, 3, 24–30. [Google Scholar]
- Song, G.; Chen, Y.; Tian, M.; Lv, S.; Zhang, S.; Liu, S. The Ecological Vulnerability Evaluation in Southwestern Mountain Region of China Based on GIS and AHP Method. Procedia Environ. Sci. 2010, 2, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, L.; Fu, X.; Li, H.; Xu, C. Ecological Vulnerability Assessment Based on PSSR in Yellow River Delta. J. Clean. Prod. 2017, 167, 1106–1111. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, F.; Wang, W.; Xiao, R. Effects of Rapid Urbanization on Ecological Functional Vulnerability of the Land System in Wuhan, China: A Flow and Stock Perspective. J. Clean. Prod. 2020, 248, 119284. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Zhou, W.; Zhou, L.; Yu, C.; Qi, L. Temporal and spatial changes of ecological vulnerability in the Northeast Forest Belt and its driving factors. Chin. J. Ecol. 2021, 40, 474–3482. [Google Scholar] [CrossRef]
- Wang, S. Evaluation of ecological sensitivity in Liaoning Province. Res. Land Nat. Resour. 2021, 1, 35–38. [Google Scholar] [CrossRef]
- Yang, F.; Ma, C.; Fang, H. Research progress on vulnerability: From theoretical research to comprehensive practice. Acta Ecol. Sin. 2019, 39, 441–453. [Google Scholar]
- Timmerman, P. Vulnerability, Resilience and the Collapse of Society; Environmental Monograph—Institute for Environmental Studies, University of Toronto: Toronto, ON, Canada, 1981. [Google Scholar]
- Watts, M.J.; Bohle, H.G. The Space of Vulnerability: The Causal Structure of Hunger and Famine. Prog. Hum. Geogr. 1993, 17, 43–67. [Google Scholar] [CrossRef]
- Chambers, R. Vulnerability, Coping and Policy (Editorial Introduction). IDS Bull. 2006, 37, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Dow, K. Exploring Differences in Our Common Future(s): The Meaning of Vulnerability to Global Environmental Change. Geoforum 1992, 23, 417–436. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 7–22. [Google Scholar]
- Li, Q.; Shi, X.; Wu, Q. Effects of Protection and Restoration on Reducing Ecological Vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A Framework for Vulnerability Analysis in Sustainability Science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.R.R.; Kapustka, L.A. Ecosystem Vulnerability: A Complex Interface with Technical Components. Environ. Toxicol. Chem. 2000, 19, 1055–1058. [Google Scholar] [CrossRef]
- Song, Z.; Sun, Y.; Chen, P.; Jia, M. Assessing the Ecosystem Health of Coastal Wetland Vegetation (Suaeda Salsa) Using the Pressure State Response Model, a Case of the Liao River Estuary in China. Int. J. Environ. Res. Public Health 2022, 19, 546. [Google Scholar] [CrossRef]
- Reinhart, V.; Fonte, C.C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA Climate Change Initiative Land Cover to CORINE Land Cover over Eastern Europe and the Baltic States from a Regional Climate Modeling Perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102221. [Google Scholar] [CrossRef]
- Hua, Y.; Yan, M.; Limin, D. Land Ecological Security Assessment for Bai Autonomous Prefecture of Dali Based Using PSR Model–with Data in 2009 as Case. Energy Procedia 2011, 5, 2172–2177. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xu, J.; Zhang, K.; Guo, S.; Lv, X.; Mu, X.; Yang, L.; Song, Y.; Hu, X.; Ma, Y.; et al. New Insights into the DPSIR Model: Revealing the Dynamic Feedback Mechanism and Efficiency of Ecological Civilization Construction in China. J. Clean. Prod. 2022, 348, 131377. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of Spatio-Temporal Ecological Vulnerability in an Arid, Coal Mining Region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Li, R.; Han, R.; Yu, Q.; Qi, S.; Guo, L. Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China. Sustainability 2020, 12, 4401. [Google Scholar] [CrossRef]
- Zou, T.; Yoshino, K. Environmental Vulnerability Evaluation Using a Spatial Principal Components Approach in the Daxing’anling Region, China. Ecol. Indic. 2017, 78, 405–415. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-Temporal Changes of Ecological Vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Luo, W. Spatial-Temporal Shifts of Ecological Vulnerability of Karst Mountain Ecosystem-Impacts of Global Change and Anthropogenic Interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Eguiguren-Velepucha, P.A.; Chamba, J.A.M.; Aguirre Mendoza, N.A.; Ojeda-Luna, T.L.; Samaniego-Rojas, N.S.; Furniss, M.J.; Howe, C.; Aguirre Mendoza, Z.H. Tropical Ecosystems Vulnerability to Climate Change in Southern Ecuador. Trop. Conserv. Sci. 2016, 9, 194008291666800. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-H.; Xie, Y.; Sun, B.-Y.; Li, M.-S.; Ye, Y.; Li, Y.-Q. Vulnerability Assessment of Water Environmental System in Beijing-Tianjin-Hebei(BTH) Region. In Proceedings of the 2nd 2016 International Conference on Sustainable Development (ICSD 2016), Xi’an, China, 2–4 December 2006; Atlantis Press: Xi’an, China, 2017. [Google Scholar]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological Vulnerability Assessment Based on AHP-PSR Method and Analysis of Its Single Parameter Sensitivity and Spatial Autocorrelation for Ecological Protection—A Case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Zhao, Y.; He, L.; Liu, S.; Liu, W.; He, Y.; Zhang, J. Vulnerability assessment methods of agro-ecosystems. Chin. J. Ecol. 2007, 5, 754–758. [Google Scholar]
- Yang, W.; Xu, K.; Lian, J.; Ma, C.; Bin, L. Integrated Flood Vulnerability Assessment Approach Based on TOPSIS and Shannon Entropy Methods. Ecol. Indic. 2018, 89, 269–280. [Google Scholar] [CrossRef]
- Zhang, X.; Du, C.; Cai, H. Ecological vulnerability assessment of Jialu River Basin in the middle reaches of the Yellow River. Chin. Resour. Environ. 2010, 20, 155–158. [Google Scholar]
- Thakur, J.K.; Singh, S.K.; Ekanthalu, V.S. Integrating Remote Sensing, Geographic Information Systems and Global Positioning System Techniques with Hydrological Modeling. Appl. Water Sci. 2017, 7, 1595–1608. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.; Chang, Y.; Chen, P.; Liu, J. Spatial-Temporal Variations of Ecological Vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 108429. [Google Scholar] [CrossRef]
- Xu, C.-X.; Lu, C.-X.; Huang, S.-L. Study on ecological vulnerability and its influencing factors in Zhangjiakou area. J. Nat. Resour. 2020, 35, 1288. [Google Scholar] [CrossRef]
- Yoo, G.; Kim, A.R.; Hadi, S. A Methodology to Assess Environmental Vulnerability in a Coastal City: Application to Jakarta, Indonesia. Ocean Coast. Manag. 2014, 102, 169–177. [Google Scholar] [CrossRef]
- Geospatial Data Cloud. Available online: https://www.gscloud.cn/ (accessed on 1 December 2021).
- International Research Center of Big Data for Sustainable Development Goals CASearth. Available online: https://data.casearth.cn/ (accessed on 1 December 2021).
- Resource Environmental Science and Data Center, Chinese Academy of Sciences. Available online: http://www.resdc.cn/Default.aspx (accessed on 11 December 2021).
- WorldPop. Available online: https://www.worldpop.org/ (accessed on 15 December 2021).
- Li, L.; Shi, Z.-H.; Yin, W.; Zhu, D.; Ng, S.L.; Cai, C.-F.; Lei, A.-L. A Fuzzy Analytic Hierarchy Process (FAHP) Approach to Eco-Environmental Vulnerability Assessment for the Danjiangkou Reservoir Area, China. Ecol. Model. 2009, 220, 3439–3447. [Google Scholar] [CrossRef]
- Luo, H.; Wang, L.; Fang, J.; Li, Y.; Li, H.; Dai, S. NDVI, Temperature and Precipitation Variables and Their Relationships in Hainan Island from 2001 to 2014 Based on MODIS NDVI. In Proceedings of the Geo-Informatics in Resource Management and Sustainable Ecosystem, Wuhan, China, 16–18 October 2015; Bian, F., Xie, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 336–344. [Google Scholar]
- Ding, Q.; Shi, X.; Zhuang, D.; Wang, Y. Temporal and Spatial Distributions of Ecological Vulnerability under the Influence of Natural and Anthropogenic Factors in an Eco-Province under Construction in China. Sustainability 2018, 10, 3087. [Google Scholar] [CrossRef] [Green Version]
- Joliffe, I.; Morgan, B. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1992, 1, 69–95. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, D.; Cao, X. Impacting Factors and Temporal and Spatial Differentiation of Land Subsidence in Shanghai. Sustainability 2018, 10, 3146. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geographical Detectors: Principles and Prospects. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Yulianto, F.; Maulana, T.; Khomarudin, M.R. Analysis of the Dynamics of Land Use Change and Its Prediction Based on the Integration of Remotely Sensed Data and CA-Markov Model, in the Upstream Citarum Watershed, West Java, Indonesia. Int. J. Digit. Earth 2019, 12, 1151–1176. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of Land Use Spatial Pattern of Towns and Villages Based on CA–Markov Model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Behera, M.D.; Borate, S.N.; Panda, S.N.; Behera, P.R.; Roy, P.S. Modelling and Analyzing the Watershed Dynamics Using Cellular Automata (CA)–Markov Model—A Geo-Information Based Approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the Spatiotemporal Evolution of Land Use Landscape Pattern in a County Area Based on CA-Markov Model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Rahman, M.T.U. Spatio-Temporal Variation and Prediction of Land Use Based on CA-Markov of Southwestern Coastal District of Bangladesh. Remote Sens. Appl. 2021, 19, 100609. [Google Scholar]
- Chen, J.; John, R.; Shao, C.; Fan, Y.; Zhang, Y.; Amarjargal, A.; Brown, D.G.; Qi, J.; Han, J.; Lafortezza, R.; et al. Policy Shifts Influence the Functional Changes of the CNH Systems on the Mongolian Plateau. Environ. Res. Lett. 2015, 10, 085003. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, T.; Song, T.; Cui, L.; Zhou, X. Assessing the Spatio-Temporal Pattern and Development Characteristics of Regional Ecological Resources for Sustainable Development: A Case Study on Guizhou Province, China. Land 2022, 11, 899. [Google Scholar] [CrossRef]
- Shao, H.; Liu, M.; Shao, Q.; Sun, X.; Wu, J.; Xiang, Z.; Yang, W. Research on Eco-Environmental Vulnerability Evaluation of the Anning River Basin in the Upper Reaches of the Yangtze River. Environ. Earth Sci. 2014, 72, 1555–1568. [Google Scholar] [CrossRef]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, Z.-Q.; Shen, L.-D.; Wang, H.-B.; Li, L.-G. An Approach to Examining Performances of Cool/Hot Sources in Mitigating/Enhancing Land Surface Temperature under Different Temperature Backgrounds Based on Landsat 8 Image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
Type | Source | Spatial Resolution |
---|---|---|
Altitude | GSClould [49] | 90 M |
Slope | GSClould | 90 M |
Annual average temperature | Liaoning statistical yearbook | 200 M |
Annual average precipitation | Liaoning statistical yearbook | 200 M |
Annual average sunshine hours | Liaoning statistical yearbook | 200 M |
Land use | CASEarth [50] | 30 M |
NDVI | RESDC [51] | 1 KM |
Soil erosion degree | RESDC | 1 KM |
Habitat quality | InVEST | 200 M |
GDP | Liaoning statistical yearbook | 200 M |
Night light index | RESDC | 1 KM |
Population density | WorldPoP [52] | 1 KM |
Factor Category | Indicator | Type |
---|---|---|
Sensitivity | Altitude(X1) | + |
Slope(X2) | + | |
Annual average temperature(X3) | − | |
Annual average precipitation(X4) | − | |
Annual average sunshine hours(X5) | − | |
Resilience | Land use type(X6) | + |
NDVI(X7) | − | |
Soil erosion degree(X8) | + | |
Habitat quality(X9) | − | |
Pressure | GDP(X10) | + |
Night light index(X11) | + | |
Population density(X12) | + |
PC | Eigenvalues | Contribution Ratio of Eigenvalues/% | Cumulative Contribution of Eigenvalues/% | ||||||
---|---|---|---|---|---|---|---|---|---|
2010 | 2015 | 2020 | 2010 | 2015 | 2020 | 2010 | 2015 | 2020 | |
1 | 3.644 | 3.977 | 3.309 | 30.370 | 33.138 | 27.572 | 30.370 | 33.138 | 27.572 |
2 | 2.172 | 1.733 | 2.085 | 18.098 | 14.443 | 17.376 | 48.468 | 47.581 | 44.948 |
3 | 1.465 | 1.377 | 1.520 | 12.212 | 11.471 | 12.664 | 60.680 | 59.052 | 57.612 |
4 | 1.357 | 1.263 | 1.041 | 11.309 | 10.527 | 8.676 | 71.989 | 69.579 | 66.288 |
EVI | Slight | Light | Medium | Heavy | Extreme |
---|---|---|---|---|---|
Grading standard | <0.25 | 0.25–0.29 | 0.29–0.32 | 0.32–0.37 | >0.37 |
Factors | 2010 | 2015 | 2020 |
---|---|---|---|
Altitude | 0.111 | 0.072 | 0.051 |
Slope | 0.152 | 0.201 | 0.055 |
Annual average temperature | 0.177 | 0.079 | 0.140 |
Annual average precipitation | 0.069 | 0.222 | 0.132 |
Annual average sunshine hours | 0.284 | 0.032 | 0.076 |
Land use type | 0.336 | 0.449 | 0.230 |
NDVI | 0.108 | 0.117 | 0.120 |
Soil erosion degree | 0.076 | 0.065 | 0.088 |
Habitat quality | 0.289 | 0.359 | 0.175 |
GDP | 0.149 | 0.029 | 0.195 |
Night light index | 0.110 | 0.102 | 0.102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Huan, C.; Yang, J.; Gu, H. Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China. Land 2022, 11, 1025. https://doi.org/10.3390/land11071025
Li D, Huan C, Yang J, Gu H. Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China. Land. 2022; 11(7):1025. https://doi.org/10.3390/land11071025
Chicago/Turabian StyleLi, Dong, Chongyang Huan, Jun Yang, and Hanlong Gu. 2022. "Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China" Land 11, no. 7: 1025. https://doi.org/10.3390/land11071025
APA StyleLi, D., Huan, C., Yang, J., & Gu, H. (2022). Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China. Land, 11(7), 1025. https://doi.org/10.3390/land11071025