Sustainability by Function (SbF): A Case Study in a Rainfed Vineyard to Reduce the Loss of Soil Nutrients
Abstract
:1. Introduction
1.1. Soil and Nutrient Loss in Cropland
1.2. Sustainability by Function
1.3. Hypothesis, Objective and Expected Contribution
2. Materials and Methods
2.1. Study Area and Tillage Practices
2.2. Sediment Traps and Study Period
2.3. Soil and Sediment Nutrient Content
2.4. Nutrient Enrichment Ratio and Statistical Analysis
3. Results and Discussion
3.1. Soil Nutrient Content
3.2. Sediment Nutrient Content over the Study Period
3.3. Nutrient Enrichment Ratio
3.4. Further Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Alewell, C.; Alvarez, P.; Panagos, P. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.-J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akça, E.; et al. Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion on Alfisols in Western Nigeria. IV. Nutrient element losses in runoff and eroded sediments. Geoderma 1976, 16, 403–417. [Google Scholar] [CrossRef]
- Avnimelech, Y.; McHenry, J.R. Enrichment of Transported Sediments with Organic Carbon, Nutrients, and Clay. Soil Sci. Soc. Am. J. 1984, 48, 259–266. [Google Scholar] [CrossRef]
- Bin, Z.; Taolin, Z.; Qiguo, Z. Soil erosion of various farming systems in subtropical China. Pedosphere 1996, 6, 225–233. [Google Scholar]
- Palis, R.G.; Okwach, G.; Rose, C.W.; Saffigna, P.G. Soil erosion processes and nutrient loss. I. The interpretation of enrichment ratio and nitrogen loss in runoff sediment. Aust. J. Soil Res. 1990, 28, 623–639. [Google Scholar] [CrossRef]
- Sombatpanit, S.; Rose, C.W.; Ciesiolka, C.A.; Coughlan, K.J. Soil and nutrient loss under rozelle (Hibiscus subdariffa L. var. altissima) at Khon Kaen, Thailand. Soil Technol. 1995, 8, 235–241. [Google Scholar]
- Suyana, J.; Komariah, N.; Lestariningsih, N.P. The effectiveness of maize stalks mulch on runoff, erosion, sediment enrichment ratio (SER), and the growth of cabbage and red beans in andisols, central Java, Indonesia. Trop. Subtrop. Agroecosystems 2019, 22, 675–692. [Google Scholar]
- Adhikary, P.P.; Hombegowda, H.C.; Barman, D.; Madhu, M. Soil and onsite nutrient conservation potential of aromatic grasses at field scale under a shifting cultivated, degraded catchment in Eastern Ghats, India. Int. J. Sediment Res. 2018, 33, 340–350. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of cover crops to reduce loss of soil organic matter in a rainfed vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- López-Vicente, M.; Gómez, J.A.; Guzmán, G.; Calero, J.; García-Ruiz, R. The role of cover crops in the loss of protected and non-protected soil organic carbon fractions due to water erosion in a Mediterranean olive grove. Soil Tillage Res. 2021, 213, 105119. [Google Scholar] [CrossRef]
- Bispo, D.F.A.; Silva, M.L.N.; Pontes, L.M.; Guimarães, D.V.; De Sá E Melo Marques, J.J.G.; Curi, N. Soil, water, nutrients and soil organic matter losses by water erosion as a function of soil management in the Posses sub-watershed, Extrema, Minas Gerais, Brazil. Semin. Cienc. Agrar. 2017, 38, 1813–1824. [Google Scholar] [CrossRef] [Green Version]
- Farsang, A.; Kitka, G.; Barta, K.; Puskás, I. Estimating element transport rates on sloping agricultural land at catchment scale (Velence Mts., NW Hungary). Carpathian J. Earth Environ. Sci. 2012, 7, 15–26. [Google Scholar]
- Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Dazzi, C.; Lo Papa, G. A new definition of soil to promote soil awareness, sustainability, security and governance. Int. Soil Water Conserv. Res. 2022, 10, 99–108. [Google Scholar] [CrossRef]
- Smith, P.; Keesstra, S.D.; Silver, W.L.; Adhya, T.K.; De Deyn, G.B.; Carvalheiro, L.G.; Giltrap, D.L.; Renforth, P.; Cheng, K.; Sarkar, B.; et al. Soil-derived Nature’s Contributions to People and their contribution to the UN Sustainable Development Goals. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200185. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.D.; Baartman, J.E.M.; Stroosnijder, L.; Maroulis, J. Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degrad. Dev. 2017, 28, 708–717. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Yang, W.; Ding, S.; Ren, G.; Li, M.; Zhu, A. Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system. Soil Tillage Res. 2021, 214, 105182. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Water infiltration and surface runoff in steep clayey soils of olive groves under different management practices. Water 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Biddoccu, M.; Guzmán, G.; Capello, G.; Thielke, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Nicolai, A.; Cluzeau, D.; Popescu, D.; et al. Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. Int. Soil Water Conserv. Res. 2020, 8, 337–353. [Google Scholar] [CrossRef]
- Gómez, J.A.; Francia, J.R.; Guzmán, G.; Vanwalleghem, T.; Durán-Zuazo, V.H.; Castillo, C.; Aranda, M.; Cárceles, B.; Moreno, A.; Torrent, J.; et al. Lateral transfer of organic carbon and phosphorus by water erosion at hillslope scale in southern Spain olive orchards. Vadose Zone J. 2017, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Middleton, C. Sustainability by design: Education for the designed environment. In Proceedings of the 1995 Interdisciplinary Conference: Knowledge Tools for a Sustainable Civilization. Fourth Canadian Conference on Foundations and Applications of General Science Theory, Toronto, ON, Canada, 8–10 June 1995; pp. 100–108. [Google Scholar] [CrossRef]
- Ceschin, F.; Gaziulusoy, I. Evolution of design for sustainability: From product design to design for system innovations and transitions. Des. Stud. 2016, 47, 118–163. [Google Scholar] [CrossRef]
- Laurenti, R.; Sinha, R.; Singh, J.; Frostell, B. Some pervasive challenges to sustainability by design of electronic products—A conceptual discussion. J. Clean. Prod. 2015, 108, 281–288. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Stability and patterns of topsoil water content in rainfed vineyards, olive groves, and cereal fields under different soil and tillage conditions. Agric. Water Manag. 2018, 201, 167–176. [Google Scholar] [CrossRef]
- Ben-Salem, N.; Álvarez, S.; López-Vicente, M. Soil and Water Conservation in Rainfed Vineyards with Common Sainfoin and Spontaneous Vegetation under Different Ground Conditions. Water 2018, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Álvarez, S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surf. Processes Landf. 2018, 43, 1403–1415. [Google Scholar] [CrossRef]
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Montanarella, L. Estimating organic carbon in the soils of Europa for policy support. Eur. J. Soil Sci. 2005, 56, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Calvo de Anta, R.; Luís, E.; Febrero-Bande, M.; Galiñanes, J.; Macías, F.; Ortíz, R.; Casás, F. Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution. Geoderna 2020, 370, 114365. [Google Scholar] [CrossRef]
- Romanyà, J.; Rovira, P. An appraisal of soil organic C content in Mediterranean agricultural soils. Soil Use Manag. 2011, 27, 321–332. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Casanova-Gascón, J.; Martín-Ramos, P.; Martí-Dalmau, C.; Badía-Villas, D. Nutrients Assimilation and Chlorophyll Contents for Different Grapevine Varieties in Calcareous Soils in the Somontano DO (Spain). Beverages 2018, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.; Ying-Hua, D.; Ming-Gang, X.; Li-Mei, Z.; Xu-Bo, Z.; Bo-Ren, W.; Yang-Zhu, Z.; Su-Duan, G.; Nan, S. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil. J. Integr. Agric. 2017, 16, 2082–2092. [Google Scholar]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrol. Processes 2009, 23, 224–235. [Google Scholar] [CrossRef]
- Ramos, M.C.; Durán, B. Assessment of rainfall erosivity and its spatial and temporal variabilities: Case study of the Penedès area (NE Spain). Catena 2014, 123, 135–147. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Telak, L.J.; Pereira, P.; Bogunovic, I. Management and seasonal impacts on vineyard soil properties and the hydrological response in continental Croatia. Catena 2021, 202, 105267. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil Tillage Res. 2016, 155, 176–189. [Google Scholar] [CrossRef]
- Jin, K.; Cornelis, W.M.; Gabriels, D.; Baert, M.; Wu, H.J.; Schiettecatte, W.; Cai, D.X.; De Neve, S.; Jin, J.Y.; Hartmann, R.; et al. Residue cover and rainfall intensity effects on runoff soil organic carbon losses. Catena 2009, 78, 81–86. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Castillo, V.; Albaladejo, J. Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain. Geomorphology 2002, 45, 261–275. [Google Scholar] [CrossRef]
- Arnáez, J.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res. 2007, 93, 324–334. [Google Scholar] [CrossRef]
- Gristina, L.; Novara, A.; Minacapilli, M. Rethinking vineyard ground management to counter soil tillage erosion. Soil Tillage Res. 2022, 217, 105275. [Google Scholar] [CrossRef]
- Fressard, M.; Cossart, E.; Chaize, B. Pluri-decennial erosion rates using SUM/ISUM and sediment traps survey in the Mercurey vineyards (Burgundy, France). Geomorphology 2022, 403, 108181. [Google Scholar] [CrossRef]
- Panagos, P.; Katsoyiannis, A. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res. 2019, 172, 470–474. [Google Scholar] [CrossRef]
- Pijl, A.; Wang, W.; Straffelini, E.; Tarolli, P. Soil and water conservation in terraced and non-terraced cultivations: An extensive comparison of 50 vineyards. Land Degrad. Dev. 2022, 33, 596–610. [Google Scholar] [CrossRef]
- Manaljav, S.; Farsang, A.; Barta, K.; Tobak, Z.; Juhász, S.; Babcsányi, I. The impact of soil erosion on the spatial distribution of soil characteristics and potentially toxic element contents in a sloping vineyard in Tállya, NE Hungary. J. Environ. Geogr. 2021, 14, 47–57. [Google Scholar] [CrossRef]
- Pham, N.T.H.; Babcsányi, I.; Farsang, A. Ecological risk and enrichment of potentially toxic elements in the soil and eroded sediment in an organic vineyard (Tokaj Nagy Hill, Hungary). Environ. Geochem. Health 2022, 44, 1893–1909. [Google Scholar] [CrossRef]
- Barberis, E.; Celi, L.; Martin, M. Speciation and bioavailability of soil nutrients: Effect on crop production and environment. Italian. J. Agron. 2009, 4, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Baulch, H.M.; Elliott, J.A.; Cordeiro, M.R.C.; Flaten, D.N.; Lobb, D.A.; Wilson, H.F. Soil and water management: Opportunities to mitigate nutrient losses to surface waters in the Northern Great Plains. Environ. Rev. 2019, 27, 447–477. [Google Scholar] [CrossRef]
- Suswadi, S.; Prasetyo, A. Factors affecting the income of organic shallot farmers in Boyolali Regency. IOP Conf. Ser. Earth Environ. Sci. 2022, 1001, 12032. [Google Scholar] [CrossRef]
- Wanic, M.; Zuk-Golaszewska, K.; Orzech, K. Catch crops and the soil environment—A review of the literature. J. Elem. 2019, 24, 31–45. [Google Scholar] [CrossRef]
- Böldt, M.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Evaluating different catch crop strategies for closing the nitrogen cycle in cropping systems—Field experiments and modelling. Sustainability 2021, 13, 394. [Google Scholar] [CrossRef]
- Logan, T.J.; Davidson, J.M.; Baker, J.L.; Overcash, M.R. Effects of Conservation Tillage on Groundwater Quality: Nitrates and Pesticides; Cambridge University Press: Cambridge, UK, 2018; pp. 1–292. [Google Scholar]
- Li, R.; Zhang, S.; Zhang, M.; Fei, C.; Ding, X. Phosphorus fractions and adsorption–desorption in aggregates in coastal saline-alkaline paddy soil with organic fertilizer application. J. Soils Sediments 2021, 21, 3084–3097. [Google Scholar] [CrossRef]
- He, J.; Wei, Q.; Zhong, Y.; Luo, L. Eco-stoichiometry characteristics of grape fields with different planting years in the east foothills of Helan Mountain. Agric. Res. Arid. Areas 2020, 38, 23–30. [Google Scholar]
ST | Area | Slope | Land Use | Bare Soil | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
m2 | Mean (%) | Near the ST (%) | IR (%) | R (%) | VY (m2; %) | GT (m2; %) | F (m2; %) | BST (m2; %) | CF (m2; %) | Mean (%) | |
ST2-DA | 3286 | 17.0 | 9.8 | 14.2 | 15.7 | 1889; 57% | 200; 6% | 738; 22% | 404; 12% | 54; 2% | 18.4 |
ST3-DA | 6214 | 9.2 | 9.2 | 8.4 | 11.7 | 5461; 87% | 581; 9% | 106; 2% | 120; 2% | 0 | 10.6 |
ST-DA and Land Use | BD 1 | Rocks 1 | Clay 1 | Texture 1 | SOM 1 | TNsoil | Pava-soil | Kava-soil |
---|---|---|---|---|---|---|---|---|
g/cm3 | %weight | % * | Class | % | mg/gsoil | mg/gsoil | mg/gsoil | |
ST2-DA | 1.46 | 19.5% | 7.4% | Sandy loam | 2.46 | 0.967 | 0.411 | 1.762 |
ST3-DA | 1.55 | 15.6% | 8.4% | Loam | 1.86 | 0.711 | 0.437 | 1.856 |
Vineyard: rows | 1.34 | 16.7% | 9.3% | Loam | 1.93 | 0.551 | 0.441 | 2.188 |
Vineyard: interrow areas | 1.58 | 14.7% | 8.4% | Loam | 1.79 | 0.726 | 0.436 | 1.841 |
Vineyard: corridor | 1.58 | 18.0% | 8.3% | Loam | 1.85 | 0.527 | 0.471 | 1.737 |
Forest | 1.11 | 32.9% | 4.7% | Sandy loam | 4.64 | 1.980 | 0.354 | 1.497 |
Bare soil trail | 1.63 | 16.3% | 6.5% | Sandy loam | 1.90 | 0.645 | 0.363 | 1.677 |
Cereal field | 1.45 | 21.2% | 6.6% | Sandy loam | 1.96 | 0.401 | 0.458 | 1.720 |
TIP | ΣR † | ΣEI † | GC | ST | SY † | TNsed | Pava-sed | Kava-sed | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | # | mm | MJ mm/ha h TIP | Level | # | g/TIP | mg/gsed | g/ha TIP | mg/gsed | g/ha TIP | mg/gsed | g/ha TIP |
07/02/2017 | 1 | 24.3 | 10.3 | Medium | ST2 | ND | ND | ND | ND | ND | ND | ND |
ST3 | 16.1 | 4.05 | 0.10 | 0.905 | 0.023 | 7.422 | 0.192 | |||||
16/02/2017 | 2 | 30.1 | 30.4 | High | ST2 | ND | ND | ND | ND | ND | ND | ND |
ST3 | 39.8 | 2.11 | 0.14 | 0.921 | 0.059 | 3.343 | 0.214 | |||||
08/03/2017 | 3 | 34.1 | 43.1 | High | ST2 | ND | ND | ND | ND | ND | ND | ND |
ST3 | 22.6 | 2.60 | 0.09 | 0.655 | 0.024 | 2.622 | 0.095 | |||||
28/03/2017 | 4 | 70.3 | 68.1 | Very high | ST2 * | 30.9 | 3.14 | 0.29 | 1.249 | 0.117 | 3.944 | 0.370 |
ST3 * | 124.6 | 1.50 | 0.30 | 0.502 | 0.101 | 2.315 | 0.464 | |||||
17/04/2017 | 5 | 11.7 | 5.1 | Very high | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
04/05/2017 | 6 | 23.3 | 29.4 | Very high | ST2 | 3.4 | IS | IS | IS | IS | IS | IS |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
17/05/2017 | 7 | 31.9 | 68.8 | Very high | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 2.9 | IS | IS | IS | IS | IS | IS | |||||
06/06/2017 | 8 | 39.9 | 27.9 | Low | ST2 | 2.3 | IS | IS | IS | IS | IS | IS |
ST3 | 7.1 | IS | IS | IS | IS | IS | IS | |||||
16/06/2017 | 9 | 2.8 | 0.8 | Low | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
27/06/2017 | 10 | 19.4 | 47.6 | Low | ST2 | ND | ND | ND | ND | ND | ND | ND |
ST3 | 38.9 | IS | IS | IS | IS | IS | IS | |||||
10/07/2017 | 11 | 10.8 | 8.0 | Low | ST2 | 1.7 | IS | IS | IS | IS | IS | IS |
ST3 | 1.4 | IS | IS | IS | IS | IS | IS | |||||
29/08/2017 | 12 | 7.6 | 2.4 | Very low | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
19/09/2017 | 13 | 16.7 | 9.0 | Very low | ST2 | 27.8 | 4.38 | 0.37 | 0.916 | 0.077 | 2.804 | 0.237 |
ST3 | 15.2 | 5.06 | 0.12 | 0.755 | 0.018 | 2.847 | 0.070 | |||||
26/09/2017 | 14 | 18.1 | 50.7 | Very low | ST2 ** | 32,825.8 | 0.45 | 44.95 | 0.409 | 40.847 | 1.161 | 115.929 |
ST3 | 1,821.6 | 2.29 | 6.71 | 0.717 | 2.101 | 2.188 | 6.414 | |||||
17/10/2017 | 15 | 1.3 | 0.1 | Low | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
25/10/2017 | 16 | 42.9 | 107.9 | Low | ST2 ** | 41,260.2 | 0.63 | 79.11 | 0.362 | 45.479 | 1.057 | 132.746 |
ST3 ** | 2778.4 | 1.89 | 8.45 | 0.694 | 3.101 | 1.672 | 7.478 | |||||
17/11/2017 | 17 | 8.0 | 15.3 | Medium | ST2 | 281.4 | 3.07 | 2.63 | 0.829 | 0.710 | 2.765 | 2.368 |
ST3 | 911.6 | 2.70 | 3.96 | 0.997 | 1.462 | 2.949 | 4.327 | |||||
20/12/2017 | 18 | 13.8 | 2.9 | Medium | ST2 | 2.2 | IS | IS | IS | IS | IS | IS |
ST3 | 0.4 | IS | IS | IS | IS | IS | IS | |||||
18/01/2018 | 19 | 28.6 | 12.1 | Medium | ST2 | 60.5 | 4.27 | 0.79 | 1.433 | 0.264 | 3.772 | 0.695 |
ST3 | 38.1 | 3.41 | 0.21 | 1.029 | 0.063 | 3.256 | 0.199 | |||||
12/02/2018 | 20 | 42.4 | 11.5 | Medium | ST2 | 0.8 | IS | IS | IS | IS | IS | IS |
ST3 * | 44.6 | IS | IS | IS | IS | IS | IS | |||||
19/02/2018 | 21 | 9.5 | 5.0 | High | ST2 | 0 | ND | ND | ND | ND | ND | ND |
ST3 | 0 | ND | ND | ND | ND | ND | ND | |||||
07/03/2018 | 22 | 45.4 | 18.1 | High | ST2 * | 13.3 | 3.28 | 0.13 | 0.973 | 0.039 | 3.369 | 0.137 |
ST3 * | 18.8 | 3.01 | 0.09 | 0.914 | 0.028 | 2.681 | 0.081 | |||||
19/03/2018 | 23 | 23.3 | 16.8 | Very high | ST2 | 84.5 | 4.29 | 1.10 | 1.154 | 0.297 | 4.517 | 1.161 |
ST3 | 40.7 | 4.43 | 0.29 | 0.935 | 0.061 | 3.495 | 0.229 | |||||
05/04/2018 | 24 | 17.7 | 5.6 | Very high | ST2 | 4.1 | IS | IS | IS | IS | IS | IS |
ST3 * | 42.0 | 3.17 | 0.21 | 1.080 | 0.073 | 4.543 | 0.307 | |||||
18/04/2018 | 25 | 93.8 | 101.1 | Very high | ST2 * | 59.2 | 2.90 | 0.52 | 0.960 | 0.173 | 4.246 | 0.765 |
ST3 * | 30.2 | 3.42 | 0.17 | 0.905 | 0.044 | 3.501 | 0.170 | |||||
30/04/2018 | 26 | 22.4 | 37.6 | Very high | ST2 * | 94.3 | 3.81 | 1.09 | 1.045 | 0.300 | 3.239 | 0.929 |
ST3 * | 572.7 | 5.82 | 5.36 | 0.928 | 0.855 | 3.050 | 2.811 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vicente, M.; Álvarez, S.; Calvo-Seas, E.; Cerdà, A. Sustainability by Function (SbF): A Case Study in a Rainfed Vineyard to Reduce the Loss of Soil Nutrients. Land 2022, 11, 1033. https://doi.org/10.3390/land11071033
López-Vicente M, Álvarez S, Calvo-Seas E, Cerdà A. Sustainability by Function (SbF): A Case Study in a Rainfed Vineyard to Reduce the Loss of Soil Nutrients. Land. 2022; 11(7):1033. https://doi.org/10.3390/land11071033
Chicago/Turabian StyleLópez-Vicente, Manuel, Sara Álvarez, Elena Calvo-Seas, and Artemi Cerdà. 2022. "Sustainability by Function (SbF): A Case Study in a Rainfed Vineyard to Reduce the Loss of Soil Nutrients" Land 11, no. 7: 1033. https://doi.org/10.3390/land11071033
APA StyleLópez-Vicente, M., Álvarez, S., Calvo-Seas, E., & Cerdà, A. (2022). Sustainability by Function (SbF): A Case Study in a Rainfed Vineyard to Reduce the Loss of Soil Nutrients. Land, 11(7), 1033. https://doi.org/10.3390/land11071033