Evaluating the Impact of the Highway Infrastructure Construction and the Threshold Effect on Cultivated Land Use Efficiency: Evidence from Chinese Provincial Panel Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanism Framework
2.1.1. The Effects of Highway Infrastructure Construction on CLUE
- (1)
- Direct effects of highway infrastructure construction on CLUE
- (2)
- Spatial effects of highway infrastructure construction on CLUE
2.1.2. Threshold Effect of Highway Infrastructure Construction on CLUE
2.2. Indicators and Variable Selection
2.2.1. Explained Variable—CLUE
2.2.2. Key Explanatory Variable
2.2.3. Control Variables
2.3. Methods
2.3.1. Slack-Based Model (SBM)
2.3.2. Dynamic Spatial Durbin Model
2.3.3. Panel Threshold Regression Model
2.4. Data Resources
3. Results and Discussion
3.1. The Results of CLUE
3.2. Initial Estimates
3.3. Regression Analysis of the Dynamic Spatial Durbin Model
3.4. Threshold Regression Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Du, J.; Liang, L.; Zhu, J. A slacks-based measure of super-efficiency in data envelopment analysis: A comment. Eur. J. Oper. Res. 2010, 204, 694–697. [Google Scholar] [CrossRef]
- Zhang, R.; Jiao, H. Spatial-temporal pattern differentiation and its mechanism analysis of using efficiency for provincial cultivated land in China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 277–287. [Google Scholar]
- Cantos, P.; Gumbau-Albert, M.; Maudos, J. Transport infrastructures, spillover effects and regional growth: Evidence of the Spanish case. Transp. Rev. 2005, 25, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Sun, S.Z. Transportation infrastructure and rural development in China. China Agric. Econ. Rev. 2016, 8, 516–525. [Google Scholar] [CrossRef]
- Liang, L.; Qu, F.; Wang, C.J.R.E.Y.B. Analysis on cultivated land use efficiency based on DEA. Resour. Environ. Yangtze Basin 2008, 2, 242–246. [Google Scholar]
- Chen, Y.; Chen, Z.G.; Xu, G.L.; Tian, Z.Q. Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Lu, F.C.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Mohaddes, K.; Raissi, M.; Weber, A.J.E.l. Can Italy grow out of its NPL overhang? A panel threshold analysis. Econ. Lett. 2017, 159, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Han, H.B.; Zhang, X.Y. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.H.; Zhou, M.; Chen, D.L. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast Soc. 2020, 151, 119800. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.Q.; Zou, L.; Zou, L.L.; Zhang, H.W. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Yang, L.J.; Zhu, T.; Fu, J.J.S.A.R. The study on effects of concurrent business on cultivated land use efficiency-based on empirical analysis of Gansu and Qinghai Province. Sustain. Agric. Res. 2012, 1, 7. [Google Scholar] [CrossRef]
- Tu, F.; Yu, X.F.; Ruan, J.Q. Industrial land use efficiency under government intervention: Evidence from Hangzhou, China. Habitat Int. 2014, 43, 1–10. [Google Scholar] [CrossRef]
- Du, J.F.; Thill, J.C.; Peiser, R.B. Land pricing and its impact on land use efficiency in post-land-reform China: A case study of Beijing. Cities 2016, 50, 68–74. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wei, Y.H.D.; Huang, X.J.; Chen, B.W. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Lau, L.J.; Zheng, H.J.C.E.R. How much slack was there in the Chinese economy prior to its economic reform of 1978? China Econ. Rev. 2017, 45, 124–142. [Google Scholar] [CrossRef]
- Estache, A. Survey of Impact Evaluations of Infrastructure Projects, Programs and Policies; European Centre for Advanced Research in Economics (ECARES) Working Paper; ECARES: Brussels, Belgium, 2010. [Google Scholar]
- Straub, S. Infrastructure and Development: A Critical Appraisal of the Macro-level Literature. J. Dev. Stud. 2011, 47, 683–708. [Google Scholar] [CrossRef]
- Haggblade, S.; Hazell, P.B.; Reardon, T. Transforming the Rural Nonfarm Economy: Opportunities and Threats in the Developing World; International Food Policy Research Institute: Washington, DC, USA, 2007. [Google Scholar]
- Chiodi, V.; Jaimovich, E.; Montes-Rojas, G. Migration, Remittances and Capital Accumulation: Evidence from Rural Mexico. J. Dev. Stud. 2012, 48, 1139–1155. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Raabe, K.; Grote, U.J.W.D. Rural–urban migration, household vulnerability, and welfare in Vietnam. World Dev. 2015, 71, 79–93. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, X.S.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy 2014, 48, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, K.A.; Mohanty, S.; Nelson, A. Strengthening Market Linkages of Farm Households in Developing Countries. Appl. Econ. Perspect. Policy 2015, 37, 226–242. [Google Scholar] [CrossRef]
- Jiang, M.J.; Hu, X.J.; Chunga, J.; Lin, Z.Y.; Fei, R.L. Does the popularization of agricultural mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2020, 276, 124210. [Google Scholar] [CrossRef]
- Mamatzakis, E.J.A.E. Public infrastructure and productivity growth in Greek agriculture. Agric. Econ. 2003, 29, 169–180. [Google Scholar] [CrossRef]
- Zhang, J.; Mishra, A.K.; Zhu, P.X.; Li, X.S. Land rental market and agricultural labor productivity in rural China: A mediation analysis. World Dev. 2020, 135, 105089. [Google Scholar] [CrossRef]
- Branco, J.E.H.; Bartholomeu, D.B.; Alves, P.N.; Caixeta, J.V. Mutual analyses of agriculture land use and transportation networks: The future location of soybean and corn production in Brazil. Agr. Syst. 2021, 194, 103264. [Google Scholar] [CrossRef]
- Condeco-Melhorado, A.; Tillema, T.; de Jong, T.; Koopal, R. Distributive effects of new highway infrastructure in the Netherlands: The role of network effects and spatial spillovers. J. Transp. Geogr. 2014, 34, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Konno, A.; Kato, H.; Takeuchi, W.; Kiguchi, R. Global evidence on productivity effects of road infrastructure incorporating spatial spillover effects. Transp. Policy 2021, 103, 167–182. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, X.; Yi, J.; Wang, H.; Zhang, X.; Zheng, W.J.E.I. Evaluating the spatial spillover effect of farmland use transition on grain production–An empirical study in Hubei Province, China. Ecol. Indic. 2021, 125, 107478. [Google Scholar] [CrossRef]
- Tong, T.T.; Yu, T.H.E.; Cho, S.H.; Jensen, K.; Ugarte, D.D. Evaluating the spatial spillover effects of transportation infrastructure on agricultural output across the United States. J. Transp. Geogr. 2013, 30, 47–55. [Google Scholar] [CrossRef]
- Lin, B.Q.; Chen, Y. Transportation infrastructure and efficient energy services: A perspective of China’s manufacturing industry. Energ Econ 2020, 89, 104809. [Google Scholar] [CrossRef]
- Wang, J.T.; Cai, S.Y. The construction of high-speed railway and urban innovation capacity: Based on the perspective of knowledge Spillover. China Econ. Rev. 2020, 63, 101539. [Google Scholar] [CrossRef]
- Bonaglia, F.; La Ferrara, E.; Marcellino, M. Public capital and economic performance: Evidence from Italy. G. Econ. Ann. Econ. 2000, 60, 221–244. [Google Scholar]
- Shenggen, F.; Zhang, X.J. Infrastructure and regional economic development in rural China. China Econ. Rev. 2004, 15, 203–214. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Amsterdam, The Netherlands, 2014; Volume 479. [Google Scholar]
- Shih, Y.N.; Li, H.C.; Qin, B. Housing price bubbles and inter-provincial spillover: Evidence from China. Habitat Int. 2014, 43, 142–151. [Google Scholar] [CrossRef]
- Que, W.; Zhang, Y.; Liu, S. Computation. The spatial spillover effect of fiscal decentralization on local public provision: Mathematical application and empirical estimation. Appl. Math. Comput. 2018, 331, 416–429. [Google Scholar]
- Zeng, C. Spatial spillover effect on land conveyance fee—A multi-scheme investigation in Wuhan agglomeration. Land Use Policy 2019, 89, 104196. [Google Scholar] [CrossRef]
- Lay, J.; Nolte, K.; Sipangule, K. Large-scale farms in Zambia: Locational patterns and spillovers to smallholder agriculture. World Dev. 2021, 140, 105277. [Google Scholar] [CrossRef]
- Li, F.; Feng, S.; Lu, H.; Qu, F.; D’Haese, M.J.L.U.P. How do non-farm employment and agricultural mechanization impact on large-scale farming? A spatial panel data analysis from Jiangsu Province, China. Land Use Policy 2021, 107, 105517. [Google Scholar] [CrossRef]
- Lapple, D.; Renwick, A.; Cullinan, J.; Thorne, F. What drives innovation in the agricultural sector? A spatial analysis of knowledge spillovers. Land Use Policy 2016, 56, 238–250. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.C.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Deng, T.T.; Shao, S.; Yang, L.L.; Zhang, X.L. Has the transport-led economic growth effect reached a peak in China? A panel threshold regression approach. Transportation 2014, 41, 567–587. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.F.; Lu, X.H.; Wang, M.C.; Jiang, B.; Chen, D.L.; Ge, K. Assessing the threshold effects of road infrastructure construction on farmland use transition: An empirical study in China. Environ. Sci. Pollut. Res. 2022, 27, 32809–32819. [Google Scholar] [CrossRef]
- Tan, R.P.; Liu, K.; Lin, B.Q. Transportation infrastructure development and China’s energy intensive industries—A road development perspective. Energy 2018, 149, 587–596. [Google Scholar] [CrossRef]
- Luo, S.; He, K.; Zhang, J. Can road construction promote agricultural growth? An analysis based on the perspective of cross-regional operation of agricultural machinery. China Rural. Econ. 2018, 6, 67–83. [Google Scholar]
- Duranton, G.; Puga, D. Micro-foundations of urban agglomeration economies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2063–2117. [Google Scholar]
- Simar, L.; Wilson, P.W. Non-parametric tests of returns to scale. Eur. J. Oper. Res. 2002, 139, 115–132. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M.J.O. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.Y.; Wang, W.L.; Ouyang, S.S. The influencing factors and spatial spillover effects of CO2 emissions from transportation in China. Sci. Total Environ. 2019, 696, 133900. [Google Scholar] [CrossRef] [PubMed]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Zeitun, R.; Goaied, M. The nonlinear effect of foreign ownership on capital structure in Japan: A panel threshold analysis. Pac-Basin Financ. J. 2021, 68, 101594. [Google Scholar] [CrossRef]
- Hulten, C.R.; Bennathan, E.; Srinivasan, S. Infrastructure, externalities, and economic development: A study of the Indian manufacturing industry. World Bank Econ. Rev. 2006, 20, 291–308. [Google Scholar] [CrossRef]
- Liu, B.-l.; Wu, P.; Liu, Y.H. Transportation infrastructure and the increase in TFP in China: Spatial econometric analysis on provincial panel data. China Ind. Econ. 2010, 3, 54–64. [Google Scholar]
- Zeng, F.; Cai, B. Rural infrastructure is the basis of the Rural Vitalization Strategy. Issues Agric. Econ. 2018, 7, 88–95. [Google Scholar]
- Yu, Z.; Zhao, P.J. The factors in residents’ mobility in rural towns of China: Car ownership, road infrastructure and public transport services. J. Transp. Geogr. 2021, 91, 102950. [Google Scholar] [CrossRef]
- Adamopoulos, T. Transportation Costs, Agricultural Productivity, and Cross-Country Income Differences. Int. Econ. Rev. 2011, 52, 489–521. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, M.; Du, P.; Qi, W.; Yu, X. Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China. Sustainability 2022, 14, 3821. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Westlund, H.; Liu, Y. Urban–rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Ertura, C.; Koch, W. Growth, technological interdependence and spatial externalities: Theory and evidence. J. Appl. Economet. 2007, 22, 1033–1062. [Google Scholar] [CrossRef] [Green Version]
- Balawejder, M.; Leń, P. The realization of complex work of consolidation and exchange of land in the villages divided by a highway. Geomat. Environ. Eng. 2016, 10, 27–37. [Google Scholar] [CrossRef]
- Dudzińska, M.; Bacior, S.; Prus, B.J.S. Motorway Route Planning with Regarding the Adverse Effects on Agricultural Production Space. Sustainability 2019, 11, 6770. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Y.; Xu, C. Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Yurui, L.; Yi, L.; Pengcan, F.; Hualou, L. Impacts of land consolidation on rural human–environment system in typical watershed of the Loess Plateau and implications for rural development policy. Land Use Policy 2019, 86, 339–350. [Google Scholar] [CrossRef]
- Long, H. Land consolidation: An indispensable way of spatial restructuring in rural China. J. Geogr. Sci. 2014, 24, 211–225. [Google Scholar] [CrossRef]
- Qi, J.; Li, W.; Wang, Z.; Fang, H. Measurement and path selection of rural development level in enclave areas: A case study of jingyuan county, gansu province. Sustainability 2021, 13, 9904. [Google Scholar] [CrossRef]
- Bei, J. Study on the “high-quality development” economics. China Political Econ. 2018, 1, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Li, S.H.; Economics, T. Study on the measurement of economic high-quality development level in China in the new era. J. Quant. Tech. Econ. 2018, 35, 3–20. [Google Scholar]
System | Sub-System | Indicators | |
---|---|---|---|
CLUE | input | Land | Cultivated land area |
Labor | Number of the agricultural labors | ||
Machinery | Total power of agricultural machinery | ||
Chemical Fertilizer | The amount of chemical fertilizer applied | ||
Pesticide | The amount of pesticide used | ||
Agricultural plastic film | The amount of agricultural plastic film used | ||
output | Total output value of agriculture | ||
Total output of grain |
Class | Driving Requirements | Annual Average Daily Design Traffic Requirements |
---|---|---|
Expressways | For cars to drive in different directions and lanes, and control access to the whole road. | More than 15,000 passenger cars |
First highways | For cars to drive in different directions and lanes, and access can be controlled as needed | More than 15,000 passenger cars |
Second highways | two-lane road for cars | 5000–15,000 passenger cars |
Third highways | Two-lane highway for mixed vehicular and non-vehicle traffic | 2000–6000 passenger cars |
Fourth highway | Two-lane or single-lane highways for mixed vehicular and non-vehicle traffic | Two-lane–four-lane highway with less than 2000 passenger cars; single-lane four-level highway with less than 400 passenger cars |
Variables | Indicators | Marks | Maximum | Minimum | Mean | Std. Dev |
---|---|---|---|---|---|---|
Cultivated Land Use Efficiency | Seen in Section 3 | CLUE | 1 | 0.28 | 0.39 | 0.19 |
Highway infrastructure construction | highway density | HD | 2.10 | 0.04 | 0.77 | 0.48 |
Agricultural Agglomeration. | AA | 11.23 | 0.06 | 3.24 | 2.65 | |
Non- agricultural employment | NAE | 0.99 | 0.40 | 0.44 | 0.18 | |
Regional economic development level | per capita GDP | ECO | 14,0211 | 4215 | 38,920.76 | 25,715.92 |
Multiple crop index | ratio of crop sown area to cultivated land area | MCI | 2.28 | 0.57 | 1.26 | 0.36 |
Province | 2004 | 2010 | 2017 | Province | 2004 | 2010 | 2017 |
---|---|---|---|---|---|---|---|
Beijing | 0.49 | 0.70 | 1.00 | Hubei | 0.49 | 0.59 | 1.00 |
Tianjin | 0.42 | 0.51 | 1.00 | Hunan | 0.69 | 0.78 | 0.78 |
Hebei | 0.38 | 0.52 | 0.69 | Guangdong | 0.56 | 0.72 | 1.00 |
Shanxi | 0.39 | 0.40 | 0.57 | Guangxi | 0.49 | 0.59 | 0.78 |
Inner Mongolia | 1.00 | 0.61 | 0.73 | Hainan | 0.62 | 0.56 | 0.80 |
Liaoning | 0.55 | 0.65 | 0.92 | Chongqing | 0.76 | 0.64 | 0.82 |
Jilin | 1.00 | 0.80 | 1.00 | Sichuan | 0.76 | 0.74 | 1.00 |
Heilongjiang | 0.77 | 0.82 | 1.00 | Guizhou | 1.00 | 0.51 | 1.00 |
Shanghai | 0.62 | 0.89 | 1.00 | Yunnan | 0.42 | 0.41 | 0.55 |
Jiangsu | 0.59 | 0.75 | 1.00 | Tibet | 0.85 | 0.82 | 1.00 |
Zhejiang | 0.43 | 0.56 | 1.00 | Shaanxi | 0.57 | 0.69 | 1.00 |
Anhui | 0.46 | 0.53 | 0.76 | Gansu | 0.32 | 0.33 | 0.41 |
Fujian | 0.55 | 0.66 | 1.00 | Qinghai | 0.54 | 0.61 | 1.00 |
Jiangxi | 0.60 | 0.70 | 1.00 | Ningxia | 0.92 | 0.76 | 1.00 |
Shandong | 0.37 | 0.51 | 0.72 | Xinjiang | 0.43 | 0.62 | 0.72 |
Henan | 0.51 | 0.66 | 1.00 |
Fixed-Effect | Highway | Expressway | First-Second Highway | Third-Fourth Highway | |
---|---|---|---|---|---|
highway | −0.07 (0.04) | 0.02 (0.04) | 0.05 ** (0.03) | −0.02 (0.03) | −0.01 (0.06) |
w × highway | - | 0.31 ** (0.15) | 0.25 *** (0.07) | 0.30 *** (0.09) | −0.57 *** (0.15) |
w × CLUE | - | 0.18* (0.10) | 0.29 *** (0.11) | 0.16 ** (0.11) | 0.20 * (0.11) |
CLUEt−1 | 0.40 *** (0.07) | 0.64 *** (0.04) | 0.60 *** (0.04) | 0.63 *** (0.04) | 0.62 *** (0.04) |
SE_direct | - | 0.01 (0.04) | 0.04 * (0.03) | −0.03 (0.03) | 0.00 (0.05) |
SE_indirect | - | 0.27 ** (0.12) | 0.19 *** (0.06) | 0.27 *** (0.09) | −0.49 *** (0.13) |
SE_total | - | 0.28 ** (0.12) | 0.23 *** (0.06) | 0.24 *** (0.09) | −0.49 *** (0.13) |
LE_direct | - | 0.00 (0.11) | 0.09 ** (0.07) | −0.09 (0.09) | 0.05 (0.14) |
LE_indirect | - | 0.64 * (0.1) | 0.36 *** (0.14) | 0.65 *** (0.23) | −1.11 *** (0.32) |
LE_total | - | 0.64 * (0.35) | 0.45 *** (0.13) | 0.54 ** (0.24) | −1.06 *** (0.33) |
Control variables | YES | YES | YES | YES | YES |
R² | 0.56 | 0.73 | 0.74 | 0.49 | 0.47 |
log-likehood | 1000.23 | 2779.57 | 2795.97 | 2457.18 | 2399.89 |
F-Value (p-Value) | Threshold-Value | 95% Confidence Interval | |
---|---|---|---|
Single threshold | 50.73 (0.0167) | 1.0398 | [0.9947; 1.0406] |
Double threshold | 16.74 (0.3100) | 0.9835; 2.4152 | [0.9634; 0.9912]; [2.3816; 2.4252] |
Regression Coefficient | t-Value | |
---|---|---|
Sum < 2.4152 | 0.35 *** | 8.36 |
Sum ≥ 2.4152 | 0.21 *** | 10.93 |
Control variables | YES | YES |
R² | 0.6425 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Hou, J.; Tang, Y.; Wang, T.; Li, T.; Zhang, X. Evaluating the Impact of the Highway Infrastructure Construction and the Threshold Effect on Cultivated Land Use Efficiency: Evidence from Chinese Provincial Panel Data. Land 2022, 11, 1044. https://doi.org/10.3390/land11071044
Lu X, Hou J, Tang Y, Wang T, Li T, Zhang X. Evaluating the Impact of the Highway Infrastructure Construction and the Threshold Effect on Cultivated Land Use Efficiency: Evidence from Chinese Provincial Panel Data. Land. 2022; 11(7):1044. https://doi.org/10.3390/land11071044
Chicago/Turabian StyleLu, Xinhai, Jiao Hou, Yifeng Tang, Ting Wang, Tianyi Li, and Xupeng Zhang. 2022. "Evaluating the Impact of the Highway Infrastructure Construction and the Threshold Effect on Cultivated Land Use Efficiency: Evidence from Chinese Provincial Panel Data" Land 11, no. 7: 1044. https://doi.org/10.3390/land11071044
APA StyleLu, X., Hou, J., Tang, Y., Wang, T., Li, T., & Zhang, X. (2022). Evaluating the Impact of the Highway Infrastructure Construction and the Threshold Effect on Cultivated Land Use Efficiency: Evidence from Chinese Provincial Panel Data. Land, 11(7), 1044. https://doi.org/10.3390/land11071044