Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Human–Land Coupling Model Construction
- The evolution of land use begins with the forest and grass land. The area of the forest and grass land at time t is F(t). In order to maintain the survival of human beings, the forest and grass land needs to be reclaimed or developed and converted into production and living land (farmland or construction land). The area of the production and living land at time t is R(t), and it is assumed that the land reclamation or development rate is related to both the individual reclamation or development capacity d and population density P(t).
- The unused land area at time t is U(t). Assuming that the transformation rate of unused land b is only related to humans’ ability to transform the land through science and technology, then b is controllable, that is, adjustable. Let h be the land area required to sustain a single individual.
- Since there will be a time delay in the evolution of land use, the transfer mechanism of three land types is shown in Figure 2. The area of production and living land at time t is R(t). Due to the abandoned farmland or construction land, it can be converted into unused land U(t) within a period of 1/a, and become forest and grass land through natural succession or ecological restoration after a period of 1/s. The unused land can also be converted into production and living land after a time interval of 1/b.
3. Results
3.1. Identification of Human–Land Coupling System Equilibrium Point
3.2. Visual Output and Expression of Human–Land Coupling Relationship
3.3. Coupling Spatiotemporal Parameters of Mountain–Basin Human–Land Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kőszegi, M.; Bottlik, Z. Human-environment relationships in modern and postmodern geography. Hung. Geogr. Bull. 2015, 64, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Bohle, M. Handling of human-geosphere intersections. Geosciences 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Wu, L.H.; Chen, F.; Qian, Q.H.; Xiao, J.Y.; Zeng, C. Response of the weathering carbon sink in terrestrial rocks to climate variables and ecological restoration in China. Sci. Total Environ. 2021, 750, 141525. [Google Scholar] [CrossRef] [PubMed]
- Song, F.J.; Wang, S.J.; Bai, X.Y.; Wu, L.H.; Wang, J.F.; Li, C.J.; Chen, H.; Luo, X.L.; Xi, H.P.; Zhang, S.R.; et al. A new indicator for global food security assessment: Harvested area rather than cropland area. Chin. Geogr. Sci. 2022, 32, 204–217. [Google Scholar] [CrossRef]
- Zvoleff, A.; Li, A. Analyzing human-landscape interactions: Tools that integrate. Environ. Manag. 2014, 53, 94–111. [Google Scholar] [CrossRef]
- Li, A. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- French, C. People, societies, and landscapes. Science 2010, 328, 443–444. [Google Scholar] [CrossRef]
- Liu, S.C.; Ma, L.B.; Yao, Y.; Cui, X.J. Man-land relationship based on the spatial coupling of population and residential land-A case study of Yuzhong County in Longzhong Loess Hilly Region, China. Land Use Policy 2022, 116, 106059. [Google Scholar] [CrossRef]
- Magliocca, N.R. Agent-based modeling for integrating human behavior into the food-energy-water nexus. Land 2020, 9, 519. [Google Scholar] [CrossRef]
- Zhang, S.R.; Bai, X.Y.; Zhao, C.W.; Tan, Q.; Luo, G.J.; Wu, L.H.; Xi, H.P.; Li, C.J.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Ge, Q.S.; Fang, C.L.; Jiang, D. Geographical missions and coupling ways between human and nature for the Beautiful China Initiative. Acta Geogr. Sin. 2020, 75, 1109–1119. [Google Scholar] [CrossRef]
- Palmer, P.I.; Smith, M.J. Earth systems: Model human adaptation to climate change. Nature 2014, 512, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.N.; Li, X.; Lou, S.Y.; Kang, J.R. Multi-scenario simulation of land use structure of Yangzhou City based on systems dynamics mode. Bulletion Soil Water Conserv. 2017, 37, 211–218. [Google Scholar] [CrossRef]
- Motesharrei, S.; Rivas, J.; Kalnay, E.; Asrar, G.R.; Busalacchi, A.J.; Cahalan, R.F.; Cane, M.A.; Colwell, R.R.; Feng, K.; Franklin, R.S.; et al. Modeling sustainability: Population, inequality, consumption, and bidirectional coupling of the earth and human systems. Natl. Sci. Rev. 2016, 3, 470–494. [Google Scholar] [CrossRef] [Green Version]
- Voinov, A.; Shugart, H.H. ‘Integronsters’, integral and integrated modeling. Environ. Model. Softw. 2013, 39, 149–158. [Google Scholar] [CrossRef]
- Calvin, K.; Bond-Lamberty, B. Integrated human-earth system modeling-state of the science and future directions. Environ. Res. Lett. 2018, 13, 063006. [Google Scholar] [CrossRef]
- Stehfest, E.; van Vuuren, D.; Bouwman, L.; Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications; Netherlands Environmental Assessment Agency (PBL): The Hague, The Netherlands, 2014. [Google Scholar]
- Manson, S.M.; Peng, S.S.; Bonsal, D. Agent-Based Modeling and Complexity; Springer: Dordrecht, The Netherlands, 2012; pp. 125–139. [Google Scholar]
- Zhu, G.F.; Li, X.; Su, Y.H.; Zhang, K.; Bai, Y.; Ma, J.Z.; Li, C.B.; Hu, X.L.; He, J.H. Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China. Geosci. Model Dev. 2014, 7, 1467–1482. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 2011, 47, W09301. [Google Scholar] [CrossRef] [Green Version]
- Song, C.Q.; Cheng, C.X.; Shi, P.J. Geography complexity: New connotations of geography in the new era. Acta Geogr. Sin. 2018, 73, 1204–1213. [Google Scholar] [CrossRef]
- Zhang, S.R.; Bai, X.Y.; Zhao, C.W.; Tan, Q.; Luo, G.J.; Cao, Y.; Deng, Y.H.; Li, Q.; Li, C.J.; Wu, L.H.; et al. Limitations of soil moisture and formation rate on vegetation growth in karst areas. Sci. Total Environ. 2022, 810, 151209. [Google Scholar] [CrossRef]
- Dong, G.L.; Zhang, W.X.; Xu, X.L.; Jia, K. Multi-dimensional feature recognition and policy implications of rural human–land relationships in China. Land 2021, 10, 1086. [Google Scholar] [CrossRef]
- Wu, Z.P.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.Y.; Li, J.; Cui, J. Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth-Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Yang, Z.M.; Zhao, Y.L.; Xue, C.L. Land use evolution and spatial differentiation characteristics of mountain-basin system in karst area. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 153–162. [Google Scholar] [CrossRef]
- Fang, C.L.; Wang, J. A theoretical analysis of interactive coercing effects between urbanization and eco-environment. Chin. Geogr. Sci. 2013, 23, 147–162. [Google Scholar] [CrossRef]
- Wu, L. Study on Land Use Change and Human-Land Coupling Mechanism for Mountain-Basin System at Township Scale. Ph.D. Thesis, Hunan Normal University, Changsha, China, 2022. [Google Scholar]
- Lu, D.D. Theoretical studies of man-land system as the core of geographical science. Geogr. Res. 2002, 21, 135–145. [Google Scholar]
- Dobson, A.P.; Bradshaw, A.D.; Baker, A.J.M. Hopes for the future: Restoration ecology and conservation biology. Science 1997, 277, 515–522. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.H.; Zhang, Y.; Xie, B.G. Complex behavior analysis of a fractional-order land dynamical model with Holling-II type land reclamation rate on time delay. Discret. Dyn. Nat. Soc. 2020, 2020, 1053283. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A. Equilibrium points, stability and numerical solutions of fractional-order predatorCprey and rabies models. J. Math. Anal. Appl. 2017, 325, 542–553. [Google Scholar] [CrossRef] [Green Version]
- El-Saka, H.A.; Ahmed, E.; Shehata, M.I.; El-Sayed, A.M.A. On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dyn. 2009, 56, 121–126. [Google Scholar] [CrossRef]
- Luo, C.; Wang, X.Y. Chaos generated from the fractional-order complex chen system and its application to digital secure communication. Int. J. Mod. Phys. C 2013, 24, 1350025. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.P.; Tian, Y. Fractional-order adaptive controller for chaotic synchronization and application to a dual-channel secure communication system. Mod. Phys. Lett. B 2019, 33, 1097–1102. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.K.; Lu, J.W.; Li, Y.X. Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition. Appl. Math. Comput. 2019, 347, 360–369. [Google Scholar] [CrossRef]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings of the Computational Engineering in Systems and Application Multiconference, Beijing, China, 4–6 October 2016; pp. 963–968. [Google Scholar]
- Laskin, N. Fractional quantum mechanics. Phys. Rev. E 2000, 62, 3135–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: Washington, DC, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Zhao, T.; Zhang, Z.Z.; Upadhyay, R.K. Delay-induced Hopf bifurcation of an SVEIR computer virus model with nonlinear incidence rate. Adv. Differ. Equ. 2018, 2018, 256. [Google Scholar] [CrossRef]
- Vargas-De-Leon, C. Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 75–85. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Daftardar-Gejji, V.; Sukale, Y.V. On Hopf bifurcation in fractional dynamical systems. Chaos Solitons Fractals 2017, 98, 189–198. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.G.; Wen, G.G.; Zhang, S. Stability analysis of fractional-order neural networks with time delay. Neural Process. Lett. 2015, 42, 479–500. [Google Scholar] [CrossRef]
- Wu, L.; Xie, B.G.; Xiao, X.; Xue, B.; Li, J.Z. Classification method and determination of mountainous area types at township scales: A case study of Yuxi City, Yunnan Province. Complexity 2020, 2020, 3484568. [Google Scholar] [CrossRef]
- Wu, L.; Xie, B.G. The variation differences of cultivated land ecological security between flatland and mountainous areas based on LUCC. PLoS ONE 2019, 14, e0220747. [Google Scholar] [CrossRef] [Green Version]
- Bhalekar, S.; Varsha, D. A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Its Appl. 2011, 1, 1–9. [Google Scholar] [CrossRef]
- Chen, S.S.; Hua, J.; Zhang, F.X.; Li, Y.M. Dynamical analysis of land model with Holling-II land reclamation rate. J. Syst. Sci. Complex. 2017, 37, 819–827. [Google Scholar]
- Yi, D.; Guo, X.; Han, Y.; Guo, J.; Ou, M.H.; Zhao, X.M. Coupling ecological security pattern establishment and construction land expansion simulation for urban growth boundary delineation: Framework and application. Land 2022, 11, 359. [Google Scholar] [CrossRef]
- Shao, J.A.; Zhang, S.C.; Li, X.B. Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy implications. J. Geogr. Sci. 2015, 25, 701–722. [Google Scholar] [CrossRef]
- Yang, L.X.; He, W.S.; Liu, X.J. Synchronization between a fractional-order system and an integer order system. Comput. Math. Appl. 2011, 62, 4708–4716. [Google Scholar] [CrossRef] [Green Version]
- Odai, M.; Hori, Y. Controller design robust to nonlinear elements based on fractional order control system. IEEJ Trans. Ind. Appl. 2010, 120, 11–18. [Google Scholar] [CrossRef] [Green Version]
Year | Mountainous Areas | Basin Areas | ||||||
---|---|---|---|---|---|---|---|---|
Forest and Grass Land | Production and Living Land | Unused Land | Population | Forest and Grass Land | Production and Living Land | Unused Land | Population | |
1995 | 875,820.94 | 207,305.42 | 85,826.37 | 931,088 | 179,807.93 | 93,783.09 | 51,990.05 | 974,706 |
1996 | 874,606.31 | 208,733.90 | 85,612.52 | 937,439 | 179,726.11 | 93,889.87 | 51,965.09 | 988,002 |
1997 | 873,145.48 | 210,799.69 | 85,007.56 | 944,984 | 179,675.47 | 93,964.25 | 51,941.36 | 1,001,365 |
1998 | 871,670.98 | 212,451.72 | 84,830.03 | 953,568 | 179,675.23 | 93,969.09 | 51,936.76 | 1,017,639 |
1999 | 871,436.37 | 213,042.87 | 84,473.49 | 961,434 | 179,625.42 | 94,070.12 | 51,885.53 | 1,029,912 |
2000 | 871,005.39 | 213,891.79 | 84,055.56 | 972,572 | 179,933.94 | 93,832.88 | 51,814.25 | 1,044,208 |
2001 | 872,014.87 | 212,901.29 | 84,036.57 | 979,242 | 180,761.39 | 93,006.43 | 51,813.26 | 1,054,823 |
2002 | 873,424.16 | 211,633.56 | 83,895.01 | 987,818 | 180,841.31 | 93,172.41 | 51,567.35 | 1,066,139 |
2003 | 875,598.05 | 210,385.32 | 82,969.37 | 990,615 | 181,235.14 | 92,977.79 | 51,368.14 | 1,077,858 |
2004 | 876,178.05 | 210,009.47 | 82,765.21 | 994,502 | 181,505.02 | 92,855.50 | 51,220.55 | 1,091,030 |
2005 | 875,941.02 | 210,234.29 | 82,777.43 | 993,708 | 181,290.67 | 93,097.38 | 51,193.02 | 1,097,941 |
2006 | 875,921.89 | 210,243.63 | 82,787.22 | 997,151 | 181,477.04 | 93,131.64 | 50,972.39 | 1,109,013 |
2007 | 876,001.57 | 209,665.68 | 83,285.49 | 1,002,592 | 182,061.55 | 92,746.59 | 50,772.93 | 1,119,930 |
2008 | 876,136.67 | 209,528.51 | 83,287.55 | 1,001,682 | 181,973.36 | 92,988.61 | 50,619.10 | 1,128,072 |
2009 | 876,243.64 | 209,477.35 | 83,231.74 | 1,006,236 | 180,517.24 | 95,251.30 | 49,812.53 | 1,137,356 |
2010 | 876,416.81 | 209,309.41 | 83,226.51 | 1,006,097 | 179,974.29 | 95,977.57 | 49,629.21 | 1,139,411 |
2011 | 876,575.39 | 209,073.85 | 83,303.49 | 1,010,814 | 179,666.23 | 96,396.98 | 49,517.86 | 1,148,713 |
2012 | 877,034.45 | 208,619.57 | 83,298.71 | 1,010,315 | 179,505.91 | 96,597.58 | 49,477.58 | 1,155,451 |
2013 | 877,516.46 | 208,037.60 | 83,398.67 | 1,010,294 | 179,357.88 | 96,787.15 | 49,436.04 | 1,162,075 |
2014 | 877,662.39 | 207,725.11 | 83,565.23 | 1,016,317 | 179,146.49 | 97,031.90 | 49,402.68 | 1,168,698 |
2015 | 877,862.18 | 207,073.35 | 84,017.20 | 1,014,409 | 178,926.28 | 97,270.57 | 49,384.22 | 1,170,915 |
2016 | 878,148.01 | 206,650.20 | 84,154.52 | 1,018,955 | 178,707.29 | 97,537.97 | 49,335.81 | 1,181,352 |
2017 | 878,526.13 | 206,159.85 | 84,266.75 | 1,022,613 | 178,519.97 | 97,851.60 | 49,209.50 | 1,192,978 |
2018 | 879,014.29 | 205,543.20 | 84,395.24 | 1,025,623 | 178,183.32 | 98,277.02 | 49,120.73 | 1,202,647 |
Description | Parameters in Mountainous Areas | Parameters in Basin Areas |
---|---|---|
Conversion of production and living land into unused land | ||
Conversion of unused land into production and living land | ||
Conversion of unused land into forest and grass land | ||
Land area required to maintain the unit individual | ||
Average reclamation capacity | ||
Natural growth rate of population |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Yang, Y.; Xie, B. Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example. Land 2022, 11, 1068. https://doi.org/10.3390/land11071068
Wu L, Yang Y, Xie B. Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example. Land. 2022; 11(7):1068. https://doi.org/10.3390/land11071068
Chicago/Turabian StyleWu, Li, Yanjun Yang, and Binggeng Xie. 2022. "Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example" Land 11, no. 7: 1068. https://doi.org/10.3390/land11071068
APA StyleWu, L., Yang, Y., & Xie, B. (2022). Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example. Land, 11(7), 1068. https://doi.org/10.3390/land11071068