The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methodology
3.1. Study Area
3.2. Data Source
3.3. Research Methods
3.3.1. Corridor Effect
3.3.2. Correlation Analysis
3.3.3. Geographic Detector
3.4. Research Process
4. Results
4.1. The External Characteristics of Expressway
4.1.1. Expressway Outside the Inner-Fringe
4.1.2. Expressways in the Inner Fringe
4.2. The External Characteristics of Trunk Road
4.2.1. Trunk Roads in the Inner-Fringe
4.2.2. Trunk Roads with Different Directions
4.3. The Mechanism of Urban Road Corridors
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dramstad, W.E.; Olson, J.D.; Forman, R.T. Landscape Ecology Principles in Landscape Architecture and Land-Use Planning; Harvard University Graduate School of Design Island Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Saunders, S.C.; Mislivets, M.R.; Chen, J.; Cleland, D.T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 2002, 103, 209–225. [Google Scholar] [CrossRef]
- Yao, Z.; Ye, K.; Xiao, L.; Wang, X. Radiation Effect of Urban Agglomeration’s Transportation Network: Evidence from Chengdu–Chongqing Urban Agglomeration, China. Land 2021, 10, 520. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, C.; Zhang, G.; Xing, L.; Zhong, Q.; Liu, J.; Lin, Y.; Zheng, X.; Yang, N.; Sun, H.; et al. Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region. Land 2021, 10, 1025. [Google Scholar] [CrossRef]
- Pang, Q.; Zhou, W.; Zhao, T.; Zhang, L. Impact of Urbanization and Industrial Structure on Carbon Emissions: Evidence from Huaihe River Eco-Economic Zone. Land 2021, 10, 1130. [Google Scholar] [CrossRef]
- Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Zhao, G.; Zheng, X.; Yuan, Z.; Zhang, L. Spatial and temporal characteristics of road networks and urban expansion. Land 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.R.; Li, M.; Zheng, L.; Huang, H. Backwash-Spread Effects of Transportation Corridors on the Development of City Groups. J. Urban Plan. Dev. 2018, 144, 04018028. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L. The Impact of High-speed Railways on Urban Development in the Great Pearl River Delta of China. In Proceedings of the 2018 Asia-Pacific Conference on Intelligent Medical (Apcim)/2018 7th International Conference on Transportation and Traffic Engineering (Ictte 2018), Beijing, China, 21–23 December 2018; pp. 20–26. [Google Scholar]
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land use change, urban agglomeration, and urban sprawl: A sustainable development perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Kruszyna, M.; Śleszyński, P.; Rychlewski, J. Dependencies between demographic urbanization and the agglomeration road traffic volumes: Evidence from Poland. Land 2021, 10, 47. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liang, L. Identifying the scope of the Lhasa Metropolitan Area based on a spatial field energy model. J. Geogr. Sci. 2021, 31, 245–264. [Google Scholar] [CrossRef]
- Guirao, B.; Campa, J.L. The effects of tourism on HSR: Spanish empirical evidence derived from a multi-criteria corridor selection methodology. J. Transp. Geogr. 2015, 47, 37–46. [Google Scholar]
- Gingerich, K.; Maoh, H.; Anderson, W. Choice of Land Use Development Type within Commercial and Industrial Zoning. J. Urban Plan. Dev. 2015, 141, 2. [Google Scholar] [CrossRef]
- Duan, D.; Du, D.; Liu, C.; Grimes, S. Spatio-temporal evolution of urban innovation structure based on zip code geodatabase: An empirical study from Shanghai and Beijing. J. Geogr. Sci. 2016, 26, 1707–1724. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tian, L.; Cao, Y.; Yang, L. Industrial land supply at different technological intensities and its contribution to economic growth in China: A case study of the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 101, 105087. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.; Ye, X. Research on the Influential Range of the Benefits of Urban Rail Transit Development. J. Tongji Univ. (Nat. Sci.) 2005, 8, 1118–1121. [Google Scholar]
- Dur, F.; Yigitcanlar, T. Assessing land-use and transport integration via a spatial composite indexing model. Int. J. Environ. Sci. Technol. 2015, 12, 803–816. [Google Scholar]
- Peng, Y.T.; Li, Z.C.; Choi, K. Transit-oriented development in an urban rail transportation corridor. Transp. Res. Part B-Methodol. 2017, 103, 269–290. [Google Scholar] [CrossRef]
- Song, J.; Chen, F.; Wu, Q.; Liu, W.; Xue, F.; Du, K. Optimization of passenger transportation corridor mode supply structure in regional comprehensive transport considering economic equilibrium. Sustainability 2019, 11, 1172. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Gao, P.; Zhong, C. Monitoring the Detailed Dynamics of Regional Thermal Environment in a Developing Urban Agglomeration. Sensors 2020, 20, 1197. [Google Scholar] [CrossRef] [Green Version]
- John, B. Mass transportation, apartment rent and property values. J. Real Estate Res. 1996, 12, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, M. Determining transit’s impact on Seoul commercial land values: An application of spatial econometrics. Int. Real Estate Rev. 2005, 8, 1–26. [Google Scholar] [CrossRef]
- Debrezion, G.; Pels, E.; Rietveld, P. The impact of railway stations on residential and commercial property value: A meta-analysis. J. Real Estate Financ. Econ. 2007, 35, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.; Cao, X. Impacts of the Hiawatha Light Rail Line on Commercial and Industrial Property Values in Minneapolis; Center for Transportation Studies: Minneapolis, MN, USA, 2010. [Google Scholar]
- Gu, Y.; Zhen, S. Impact of Rail Transit on the Intensity of Residential Prices and Land Development—Take Beijing Line 13 as an Example. Acta Geogr. Sin. 2010, 65, 213–223. [Google Scholar]
- Li, Z.; Jin, X. The Difference of Commercial Land Use on Strips along Commuting Direction of some Main Arterial Roads in Seoul. J. Korea Plan. Assoc. 2011, 46, 91–104. [Google Scholar]
- Li, B.; Cao, X.; Xu, J.; Wang, W.; Ouyang, S.; Liu, D. Spatial–Temporal Pattern and Influence Factors of Land Used for Transportation at the County Level since the Implementation of the Reform and Opening-Up Policy in China. Land 2021, 10, 833. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use: Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1954. [Google Scholar]
- Smersh, G.T.; Smith, M.T. Accessibility changes and urban house price appreciation: Constrained optimization approach to determining distance effects. J. Hous. Econ. 2000, 9, 187–196. [Google Scholar] [CrossRef]
- Knaap, G.J.; Ding, C.; Hopkins, L.D. Do plans matter? The effects of light rail plans on land values in station areas. J. Plan. Educ. Res. 2001, 21, 32–39. [Google Scholar] [CrossRef]
- Perk, V.A.; Catala, M.; Reader, S. Land Use Impacts of BUS rapid Transit: Phase II—Effects of BRT Station Proximity on Property Values along the Boston Silver Line Washington Street Corridor (No. FTA Report No. 0022); United States Federal Transit Administration: Washington, DC, USA, 2012.
- Song, M.J. Research on the Impact on Surrounding Residential Price of Qingdao Subway Line M3 Based on Hedonic. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2015. (In Chinese). [Google Scholar]
- Im, J.; Hong, S.H. Impact of a new subway line on housing values in Daegu, Korea: Distance from existing lines. Urban Stud. 2018, 55, 3318–3335. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Q.; Yang, R. Research on the Influence Range of Rail Transit on Residential Prices Based on GIS and Accessibility Theory. Sci. Technol. Manag. Land Resour. 2018, 35, 74–85. [Google Scholar]
- Colaço, R.; de Abreu e Silva, J. Commercial Classification and Location Modelling: Integrating Different Perspectives on Commercial Location and Structure. Land 2021, 10, 567. [Google Scholar] [CrossRef]
- Garang, Z.; Wu, C.; Li, G.; Zhuo, Y.; Xu, Z. Spatio-Temporal Non-Stationarity and Its Influencing Factors of Commercial Land Price: A Case Study of Hangzhou, China. Land 2021, 10, 317. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Li, Y. Study on the development of Rail Tranit and Land compound use Based on GIS, a case study of Nanjing city. Urban Dev. Stud. 2005, 7, 53–56+62. (In Chinese) [Google Scholar]
- Dou, Z. A study on the pan corridor effect of Shenzhen Bay Port. Spec. Econ. Zone 2007, 07, 13–14. (In Chinese) [Google Scholar]
- Ma, Z.; Li, C.; Zhang, J. Transportation and Land Use Change: Comparison of Intracity Transport Routes in Changchun, China. J. Urban Plan. Dev. 2018, 144, 05018015. [Google Scholar] [CrossRef]
- Pang, M.; Chen, C.; Ma, L. Bilevel Mixed Land Use–Transportation Model Based on Urban Road Network Balance. J. Urban Plan. Dev. 2021, 147, 04021048. [Google Scholar]
- Li, J.L.; Wachs, M. The effects of federal transit subsidy policy on investment decisions: The case of San Francisco’s Geary Corridor. Transportation 2004, 31, 43–67. [Google Scholar]
- Buchari, E.; Putranto DD, A.; Saleh, E. The analysis of land use weights on road traces selection. MATEC Web Conf. EDP Sci. 2018, 195, 04018. [Google Scholar]
- Cevero, R. Mixed Land Use and Commuting: Evidence from the American Housing Survey. Transp. Res. 1996, 30, 361–377. [Google Scholar]
- Hanssen, J.U. Transportation Impacts of Office Relocation: A Case Study from Oslo. J. Transp. Geogr. 1995, 3, 247–256. [Google Scholar] [CrossRef]
- Badoe, D.A.; Miller, E.J. Transportation-land-use Interaction: Empirical Findings in North America, and Their Implications for Modeling. Transp. Res. Part D 2000, 5, 235–263. [Google Scholar] [CrossRef]
- Hunt, J.D.; Abraham, J.E. Design and Implementation of PECAS: A Generalized System for the Allocation of Economic Production, Exchange and Consumption Quantities; Oxford Elsevier Science Publishers: Kidlington/Oxford, UK, 2005. [Google Scholar]
- Hunt, J.D.; Kriger, D.S.; Millere, E. Current Operational Land-use Transport Modelling Frameworks: A Review. Transp. Rev. 2005, 25, 329–376. [Google Scholar] [CrossRef]
- Waddeli, P. A Behavioral Simulation Model for Metropolitan Policy Analysis and Planning: Residential Location and Housing Market Components of UrbanSim. Environ. Plan. B Plan. Des. 2000, 27, 247–263. [Google Scholar]
- Taaffe, E.J.; Krakover, S.; Gauthier, H.L. Interactions between spread-and-backwash, population turnaround and corridor effects in the inter-metropolitan periphery: A case study. Urban Geogr. 1992, 13, 503–533. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L. Principles and Applications of Landscape Ecology; Science Press: Beijing, China, 2001; Volume 7, pp. 58–59. (In Chinese) [Google Scholar]
- Liu, D. Modelling the effects of spatial and temporal correlation of population densities in a railway transportation corridor. Eur. J. Transp. Infrastruct. Res. 2015, 3, 243-U123. [Google Scholar]
- Niu, F.; Wang, F.; Chen, M. Urban Land Use-Construction and Application of Integrated Transportation Model. J. Geogr. Sci. 2019, 29, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Yan, X. Study on corridor effect of urban traffic trunk roads on land use: Taking Guangzhou Avenue as an example. Geogr. Geo-Inf. Sci. 2004, 5, 58–61. (In Chinese) [Google Scholar]
- Cervero, R. Rail transit and development. J. Am. Plan. Assoc. 1994, 60, 1. [Google Scholar]
- Jiang, Y. Mechanism of the Effect of Transportation Development on Land Use Change. Master’s Thesis, Sichuan Normal University, Chengdu, China, 2015. (In Chinese). [Google Scholar]
- Zhou, J.; Xi, J. Corridor Effect of Railways and the Analysis of Urban Land Using: Taking Rail Pearl Line in Shanghai (Phase 1) as an Example. Urban Rail Transit Res. 2002, 1, 77–81. (In Chinese) [Google Scholar]
- Patsy, H. The Reorganisation of State and Market in Planning. Urban Stud. 1992, 29, 411–434. [Google Scholar]
- Wang, F.; Yuan, Q.; Shi, N.; Zhao, Y.; Lin, J. Spatial Planning—Government and Market. Urban Plan. 2016, 40, 102–106. (In Chinese) [Google Scholar]
- Li, X. Plane scale and economic indicators of standard floors of high-rise office buildings. South Archit. 2006, 10, 17–19. (In Chinese) [Google Scholar]
- Wang, J.; Xu, C. Geographic detectors: Principles and prospects. Acta Geogr. 2017, 72, 116–134. (In Chinese) [Google Scholar]
Road Classification in China | Designed Speed (km/h) | Road Spacing (km) | Road Width (m) | Motor Vehicle Lanes |
---|---|---|---|---|
Expressway | 60–100 | 1.6–2.4 | 40–45 | 6–8 |
Trunk road | 40–60 | 0.8–1.5 | 45–55 | 6–8 |
Secondary trunk road | 30–50 | 0.3–0.5 | 40–50 | 4–6 |
Branch road | 20–40 | below 0.3 | 15–30 | 2–3 |
Distance (Meter) | Architectural Agglomeration | Land Agglomeration | ||
---|---|---|---|---|
Number of Buildings | Percentage (%) | Land Area (Hectares) | Percentage (%) | |
200 | 22 | 2.15 | 71.97 | 5.36 |
400 | 12 | 1.17 | 41.09 | 3.06 |
600 | 11 | 1.08 | 46.26 | 3.45 |
800 | 8 | 0.78 | 51.36 | 3.83 |
1000 | 9 | 0.88 | 66.80 | 4.98 |
1200 | 16 | 1.56 | 71.28 | 5.31 |
1400 | 15 | 1.47 | 82.79 | 6.17 |
1600 | 23 | 2.25 | 93.48 | 6.97 |
1800 | 26 | 2.54 | 80.45 | 6.00 |
2000 | 31 | 3.03 | 62.11 | 4.63 |
Total | 173 | 16.91 | 667.59 | 49.76 |
Distance (Meter) | Architectural Agglomeration | Land Agglomeration | ||
---|---|---|---|---|
Quantity of Buildings | Percentage (%) | CBF Land Area (Hectares) | Percentage (%) | |
200 | 128 | 12.51 | 68.73 | 5.12 |
400 | 110 | 10.75 | 56.25 | 4.19 |
600 | 104 | 10.17 | 49.77 | 3.71 |
800 | 102 | 9.97 | 74.52 | 5.55 |
1000 | 94 | 9.19 | 71.90 | 5.35 |
Total | 538 | 52.59 | 321.17 | 23.92 |
Distance (Meter) | Architectural Agglomeration | Land Agglomeration | ||
---|---|---|---|---|
Number of Buildings | Percentage (%) | Land Area (Hectares) | Percentage (%) | |
100 | 171 | 16.73 | 148.32 | 11.05 |
200 | 154 | 15.04 | 143.23 | 10.67 |
300 | 119 | 11.65 | 123.43 | 9.19 |
400 | 90 | 8.77 | 109.32 | 8.14 |
500 | 81 | 7.89 | 102.62 | 7.64 |
Total | 615 | 60.08 | 626.92 | 46.69 |
Road Name | Number of Office Buildings around the Road in 500 m | Bus Network Density (Road/Hectare) | Traffic Flow (Standard Vehicle/Hour) |
---|---|---|---|
Dongfeng Road | 97 | 35 | 3620 |
Zhongshan Road | 93 | 23 | 2480 |
Tianhe Road | 116 | 28 | 3600 |
Huan Shi Dong | 72 | 17 | 3150 |
Siyouxin Road | 28 | 26 | 1960 |
Xingang Road | 69 | 12 | 2750 |
Zhongshan Avenue | 112 | 33 | 3480 |
Flower City Avenue | 32 | 29 | 1980 |
Industrial Avenue | 32 | 19 | 1750 |
Jiefang Avenue | 62 | 30 | 2600 |
Jiangnan Avenue | 42 | 18 | 3620 |
Correlation Analysis | Number of Office Buildings | Bus Network Density | Traffic Flow |
---|---|---|---|
Number of office buildings | 1 | ||
Bus network density | 0.37 | 1 | |
Traffic flow | 0.81 | 0.193 | 1 |
Correlation Analysis | Bus Network Density | Traffic Flow |
---|---|---|
q statistic | 0.2294 | 0.7448 |
p value | 0.6049 | 0.042 |
Correlation Analysis | Bus Network Density | Traffic Flow |
---|---|---|
Bus network density | 0.2294 | |
Motor vehicle flow | 0.2273 | 0.7448 |
Road Grade | Location | Road Characteristic or Direction | Corridor Effect | Radius of Action (m) |
---|---|---|---|---|
Expressways | Outside the inner fringe | Radial formation | No corridor effect | 0–1000 |
Reverse corridor effect | 1000–2000 | |||
In the inner fringe | Annular formation | Obvious | 800 | |
Trunk road | In the inner fringe | Horizontal (east–west) direction | Obvious | 500 |
Vertical (north–south) direction | None | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Jia, L.; Luo, Y.; Chen, Y.; Peng, M. The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China. Land 2022, 11, 1087. https://doi.org/10.3390/land11071087
Qi L, Jia L, Luo Y, Chen Y, Peng M. The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China. Land. 2022; 11(7):1087. https://doi.org/10.3390/land11071087
Chicago/Turabian StyleQi, Luhui, Liqi Jia, Yubin Luo, Yuanyi Chen, and Minggang Peng. 2022. "The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China" Land 11, no. 7: 1087. https://doi.org/10.3390/land11071087
APA StyleQi, L., Jia, L., Luo, Y., Chen, Y., & Peng, M. (2022). The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China. Land, 11(7), 1087. https://doi.org/10.3390/land11071087