Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources and Pre-Processing
2.2.1. MODIS Data
2.2.2. Nighttime Light Data
2.3. Methods
2.3.1. Classification of LST
2.3.2. Spatiotemporal Variation of LST
2.3.3. Correlation Analysis
3. Results and Discussion
3.1. Temporal Variation of LST
3.2. Spatial Variation of Average LST
3.3. Trend Variation Characteristics of LST
3.4. Effect of Different Land Types on LST Variation
3.5. Effect of Socio-Economic Factors on LST Variation
3.6. Effect of NDMI on LST Variation
4. Conclusions
- (1)
- The LST experienced the steady and rapid decreasing for 2004–2010 and 2018–2020, respectively, whereas an obvious increase and slight increase occurred for 2010–2013 and 2014–2018, respectively.
- (2)
- The spatial pattern presented a high temperature in the central part, while presenting a low temperature in the western part of the province at the annual and daytime scales. In the nighttime, the spatial distribution of the LST exhibited decreased from the southern part to the northern part of the province. At the seasonal scales, the spatial pattern of LST in spring and summer was similar to that in the daytime, while the pattern in fall and winter was basically consistent with that of the nighttime. The largest Standard Deviation (STD) was observed in summer, which indicated the highest spatial variation of the province in summer.
- (3)
- The LST exhibited a warming trend; the interannual variation rate of LST was 0.08 °C/Y. An increasing trend mainly occurred in the urban and built-up areas. At the seasonal scales, the rate decreased sequentially in the order of fall, winter, spring, and summer. In addition, the LST difference between the daytime and the nighttime gradually increased, especially in fall, due to the rising rate in the daytime being higher than that in the nighttime.
- (4)
- The LST increase along the expansion of the urban and built-up lands and socio-economic development on the whole. The correlation between LST and NDMI showed a significant difference at the spatiotemporal scale. At the annual scale, NDMI in the western part with high elevation presented a significantly positive correlation with LST, and a significantly negative correlation in urban and built-up areas, whereas a significantly negative correlation mainly occurred in the cropland located in the eastern part during crop growth in spring, summer, and fall. The cooling effect of NDMI on LST in the daytime was greater than that in the nighttime.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. AR6 Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 10 August 2021).
- Qi, M.; Yao, X.; Li, X.; Duan, H.; Gao, Y.; Liu, J. Spatiotemporal Characteristics of Qinghai Lake Ice Phenology Between 2000 and 2016. J. Geogr. Sci. 2019, 29, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Ullah, S.; Chen, L. Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China. Land 2021, 10, 1018. [Google Scholar] [CrossRef]
- Carneiro, E.; Lopes, W.; Espindola, G. Linking Urban Sprawl and Surface Urban Heat Island in the Teresina-Timon Conurbation Area in Brazil. Land 2021, 10, 516. [Google Scholar] [CrossRef]
- Qiao, Z.; Huang, N.; Xinliang, X.; Zongyao, S.; Chen, W.; Jun, Y. Spatio-Temporal Pattern an Evolution of Urban Thermal Landscape in Metropolitan Beijing Between 2003 and 2017. Acta Geogr. Sin. 2019, 74, 475–489. [Google Scholar]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing Spatiotemporal Characteristics of Urban Heat Islands from the Perspective of an Urban Expansion and Green Infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Sun, Y.; Wu, M.; Zhao, B. Urbanization-Driven Changes in Land-Climate Dynamics: A Case Study of Haihe River Basin, China. Remote Sens. 2020, 12, 2701. [Google Scholar] [CrossRef]
- Marysa, M.L.; Gordon, B.B.; Abigail, L.S.S. Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land-Atmosphere System. J. Clim. 2019, 32, 5725–5744. [Google Scholar]
- Meshram, S.G.; Kahya, E.; Meshram, C.; Ghorbani, M.A.; Ambade, B.; Mirabbasi, R. Long-Term Temperature Trend Analysis Associated with Agriculture Crops. Theor. Appl. Climatol. 2020, 140, 1139–1159. [Google Scholar] [CrossRef]
- Kagawa Viviani, A.K.; Giambelluca, T.W. Spatial Patterns and Trends in Surface Air Temperatures and Implied Changes in Atmospheric Moisture Across the Hawaiian Islands, 1905–2017. J. Geophys. Res. Atmos. 2020, 125, e2019JD031571. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Ma, Y.; Husi, L.; Comyn Platt, E.; Ji, D.; Zhao, T.; Xiong, C. Recovering Land Surface Temperature Under Cloudy Skies Considering the Solar-Cloud-Satellite Geometry: Application to MODIS and Landsat-8 Data. JGR Atmos. 2019, 124, 3401–3416. [Google Scholar] [CrossRef]
- Wang, H.; Mao, K.; Mu, F.; Shi, J.; Yang, J.; Li, Z.; Qin, Z. A Split Window Algorithm for Retrieving Land Surface Temperature from FY-3D MERSI-2 Data. Remote Sens. 2019, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Bao, Y.; Yu, S.; Yin, S.; Zhang, Y. Analysis of Land Surface Temperature Variation Based on MODIS Data a Case Study of the Agricultural Pastural Ecotone of Northern China. Int. J. Appl. Earth Obs. 2021, 100, 102342. [Google Scholar] [CrossRef]
- Yu, Y.; Duan, S.; Li, Z.; Chang, S.; Xing, Z.; Leng, P.; Gao, M. Interannual Spatiotemporal Variations of Land Surface Temperature in China From 2003 to 2018. IEEE J.-Stars. 2021, 14, 1783–1795. [Google Scholar] [CrossRef]
- Mao, K.B.; Ma, Y.; Tan, X.L.; Shen, X.Y.; Liu, G.; Li, Z.L.; Chen, J.M.; Xia, L. Global Surface Temperature Change Analysis Based on MODIS Data in Recent Twelve Years. Adv. Space Res. 2017, 59, 503–512. [Google Scholar] [CrossRef] [Green Version]
- NourEldeen, N.; Mao, K.; Yuan, Z.; Shen, X.; Xu, T.; Qin, Z. Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017). Remote Sens. 2020, 12, 488. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Yu, Y.; Duan, S.; Li, Z.; Gao, M.; Leng, P.; Zhang, X.; Shang, G. Modeling Year-to-Year Variations of Clear-Sky Land Surface Temperature Using Aqua/MODIS Data. IEEE Access 2020, 8, 114541–114553. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Rajasekar, U.; Xuefei, H. Modeling Urban Heat Islands and Their Relationship with Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE T. Geosci. Remote. 2011, 49, 4080–4089. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial–Temporal Dynamics of Land Surface Temperature in Relation to Fractional Vegetation Cover and Land Use/Cover in the Tabriz Urban Area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Karnieli, A.; Ohana-Levi, N.; Silver, M.; Paz-Kagan, T.; Panov, N.; Varghese, D.; Chrysoulakis, N.; Provenzale, A. Spatial and Seasonal Patterns in Vegetation Growth-Limiting Factors over Europe. Remote Sens. 2019, 11, 2406. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Cui, H. Relationship Between Normalized Difference Moisture Index and Land Surface Temperature. Geogr. Res. 2008, 6, 1358–1366. [Google Scholar]
- Peng, W.; Zhou, J.; Wen, L.; Xue, S.; Dong, L. Land Surface Temperature and Its Impact Factors in Western Sichuan Plateau, China. Geocarto Int. 2017, 32, 919–934. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J.-Stars. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Yu, B.; Lian, T.; Huang, Y.; Yao, S.; Ye, X.; Chen, Z.; Yang, C.; Wu, J. Integration of Nighttime Light Remote Sensing Images and Taxi GPS Tracking Data for Population Surface Enhancement. Int. J. Geogr. Inf. Sci. 2019, 33, 687–706. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Yao, S.; Wu, Q.; Chen, Z.; Wu, J. A Surface Network Based Method for Studying Urban Hierarchies by Night Time Light Remote Sensing Data. Int. J. Geogr. Inf. Sci. 2019, 33, 1377–1398. [Google Scholar] [CrossRef]
- Henan Province Bureau of Statistics. Henan Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Shi, B.; Zhu, X.; Hu, Y.; Yang, Y. Drought characteristics of Henan province in 1961-2013 based on Standardized Precipitation Evapotranspiration Index. J. Geogr. Sci. 2017, 27, 311–325. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y.F.; Guo, Y.L.; Sun, X.M.; Yan, J.Y.; Zhao, Y.N. GIS-Based Evaluation of Their Mitigation Potential of Fertilizer Application and Greenhouse Gas Emission at Different Wheat Plantation Regions in Henan, China. Chin. J. Agric. Resour. Reg. Plan. 2021, 11, 1–9. [Google Scholar]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wang, L.; Duan, S.; Zhang, X.; Yu, Y. Spatio-Temporal Distribution and Variation Characteristics of Annual Maximum Land Surface Temperature in China During 2003–2018. Arid Land Geogr. 2021, 44, 1299–1308. [Google Scholar]
- Liu, L.; Zhang, X. Effects of Temperature Variability and Extremes on Spring Phenology Across the Contiguous United States from 1982 to 2016. Sci. Rep. 2020, 10, 17952. [Google Scholar] [CrossRef] [PubMed]
- Mildrexler, D.J.; Zhao, M.; Cohen, W.B.; Running, S.W.; Song, X.P.; Jones, M.O. Thermal Anomalies Detect Critical Global Land Surface Changes. J. Appl. Meteorol. Clim. 2018, 57, 391–411. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS Land Surface Temperature Data to Estimate Air Temperature in Different Ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Y.; Yu, Y.; Sun, W. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens. 2011, 32, 9415–9440. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, W.; Yang, J. Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sens. 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Sarif, M.O.; Rimal, B.; Stork, N.E. Assessment of Changes in Land Use/Land Cover and Land Surface Temperatures and Their Impact on Surface Urban Heat Island Phenomena in the Kathmandu Valley (1988–2018). ISPRS Int. J. Geo-Inf. 2020, 9, 726. [Google Scholar] [CrossRef]
- Firoozy Nejad, M.; Zoratipour, A. Assessment of LST and NDMI Indices Using MODIS and Landsat Images in Karun Riparian Forest. J. For. Sci. 2019, 65, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.X.; Chen, S.L.; Yan, G.J. Estimation of Land Surface Parameters and Spatio-temporal Characteristics of Urban Heat Island. Sci. Geogr. Sin. 2009, 5, 697–702. [Google Scholar]
- Zhang, Z.Q.; Liu, H.; Zuo, Q.T.; Yu, J.T.; Li, Y. Spatiotemproal Change of Fraction Vegetation Cover in the Yellow River Basin During 2000–2019. Resour. Sci. 2021, 43, 849–858. [Google Scholar]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Phan, T.; Kappas, M.; Tran, T. Land Surface Temperature Variation Due to Changes in Elevation in Northwest Vietnam. Climate 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Van De Kerchove, R.; Lhermitte, S.; Veraverbeke, S.; Goossens, R. Spatio-temporal Variability in Remotely Sensed Land Surface Temperature, and Its Relationship with Physiographic Variables in the Russian Altay Mountains. Int. J. Appl. Earth Obs. 2013, 20, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; Theeuwes, N.E. Refreshing the Role of Open Water Surfaces on Mitigating the Maximum Urban Heat Island Effect. Landsc. Urban. Plan 2014, 121, 92–96. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Q. The Trends in Land Surface Heat Fluxes over Global Monsoon Domains and Their Responses to Monsoon and Precipitation. Sci. Rep. 2020, 10, 5762. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Ren, G.Y.; Shi, G.Y.; Gong, P.; Hua, Z.X.; Zhai, P.M.; Zhang, D.E.; Ci, Z.Z.; Wang, S.W.; Wang, H.J.; et al. National Assessment Report of Climate Change (i): Climate Change in China and Its Future Trend. Adv. Clim. Change Res. 2006, 2, 3–8. [Google Scholar]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China′s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, T.; Tao, F.; Zang, F. Correlation Analysis Between UBD and LST in Hefei, China, Using Luojia1-01 Night-Time Light Imagery. Appl. Sci. 2019, 9, 5224. [Google Scholar] [CrossRef] [Green Version]
- Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship Between Satellite-Derived Land Surface Temperatures, Arctic Vegetation Types, and NDVI. Remote Sens. Environ. 2008, 112, 1884–1894. [Google Scholar] [CrossRef]
Grades of LST | Value Range |
---|---|
High temperature | |
Sub-high temperature | |
Medium temperature | |
Sub-low temperature | |
Low temperature |
Range (°C/Y) | Mean (°C/Y) | |||
---|---|---|---|---|
Daytime | Nighttime | Daytime | Nighttime | |
Spring | −0.70−0.71 | −0.12−0.45 | 0.08 | 0.03 |
Summer | −0.42−0.48 | −0.08−0.39 | 0.05 | 0.05 |
Autumn | −0.20−0.58 | −0.18−0.53 | 0.15 | 0.05 |
Winter | −0.16−0.45 | −0.16−0.59 | 0.14 | 0.05 |
Annual | Spring | Summer | Fall | Winter | |
---|---|---|---|---|---|
Forestland | 14.23 | 15.65 | 23.26 | 14.14 | 4.32 |
Woodland | 16.21 | 17.46 | 25.83 | 16.20 | 5.45 |
Grassland | 15.99 | 17.40 | 26.29 | 16.01 | 4.41 |
Wetland | 16.16 | 16.31 | 26.43 | 17.85 | 5.91 |
Cropland | 16.89 | 17.63 | 26.95 | 17.14 | 5.21 |
Urban and built-up land | 17.72 | 18.53 | 28.89 | 17.90 | 4.78 |
Barren | 15.77 | 16.40 | 26.96 | 17.16 | 4.19 |
Range | Mean | |||
---|---|---|---|---|
Daytime | Nighttime | Daytime | Nighttime | |
Spring | −0.98−0.82 | −0.88−0.86 | −0.39 | 0.04 |
Summer | −0.97−0.83 | −0.91−0.88 | −0.46 | 0.19 |
Autumn | −0.94−0.83 | −0.82−0.90 | −0.16 | 0.04 |
Winter | −0.91−0.71 | −0.90−0.86 | −0.24 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Qin, Z.; Zhao, S.; Gao, M.; Li, S.; Liao, Q.; Du, W. Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021. Land 2022, 11, 1104. https://doi.org/10.3390/land11071104
Li S, Qin Z, Zhao S, Gao M, Li S, Liao Q, Du W. Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021. Land. 2022; 11(7):1104. https://doi.org/10.3390/land11071104
Chicago/Turabian StyleLi, Shifeng, Zhihao Qin, Shuhe Zhao, Maofang Gao, Shilei Li, Qianyu Liao, and Wenhui Du. 2022. "Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021" Land 11, no. 7: 1104. https://doi.org/10.3390/land11071104
APA StyleLi, S., Qin, Z., Zhao, S., Gao, M., Li, S., Liao, Q., & Du, W. (2022). Spatiotemporal Variation of Land Surface Temperature in Henan Province of China from 2003 to 2021. Land, 11(7), 1104. https://doi.org/10.3390/land11071104