Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Landscape Pattern Index
2.3.2. Equivalence Factor Method
Value of a Standard Unit of ESV Equivalent Factor
Value Coefficient of Ecosystem Services Function per Unit Area
2.3.3. Moving Window Approach
2.3.4. Spatial Autocorrelation
Univariate Spatial Autocorrelation
Bivariate Spatial Autocorrelation
2.3.5. Spatial Autoregression
2.4. Research Framework
3. Results
3.1. Evolution of Land Use Patterns
3.2. Spatial–Temporal Change of ESV
3.2.1. Coefficient of ESV per Unit Area in Nanjing
3.2.2. Changes in ESV
3.3. Spatial Relationship between Land Use Pattern and ESV
3.3.1. Spatial Correlation between the Landscape Pattern Index and ESV
Univariate Spatial Autocorrelation Test
Bivariate Spatial Autocorrelation
3.3.2. Effects of Land Use Pattern Change on ESV
Collinearity Diagnosis of Independent Variables
Degree of Influence Analysis
4. Discussion
4.1. ESV Response Induced by Land Spatial Structure Change
4.2. Urban Spatial Regulation in the Context of Ecosystem Services Trade-Offs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, W.B.; Turner, B.L., II. Changes in Land Use and Land Cover: A Global Perspective; Cambridge University Press: Cambridge, UK, 1994; p. 107. [Google Scholar]
- Daily, G.C. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.M.; Shen, R.F. Dictionary of Soil Science; Science Press: Beijing, China, 2013; p. 52. [Google Scholar]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Yuan, K.Y.; Li, F.; Yang, H.J.; Wang, Y.M. The influence of land use change on ecosystem service value in Shangzhou district. Int. J. Environ. Res. Public Health 2019, 16, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Q.; Ma, J.M. Effects of land use change on ecosystem services value in Guangxi section of the Pearl River-West River Economic Belt at the county scale. Acta Ecol. Sin. 2020, 40, 7826–7839. [Google Scholar]
- Howarth, R.B.; Farber, S. Accounting for the value of ecosystem services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessment: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Wainger, L.A.; King, D.M.; Mack, R.N.; Price, E.W.; Maslin, T. Can the concept of ecosystem services be practically applied to improve natural resource management decisions? Ecol. Econ. 2010, 69, 978–987. [Google Scholar] [CrossRef]
- Wang, X.L.; Bao, Y.H. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 1, 83–89. [Google Scholar]
- Zhang, H.; Zhang, B. Review on land use and land cover change models. J. Nat. Resour. 2005, 3, 422–431. [Google Scholar]
- Bai, W.Q.; Zhao, S.D. A comprehensive description of the models of land use and land cover change study. J. Nat. Resour. 1997, 2, 74–80. [Google Scholar]
- Future Earth. In Future Earth Initial Design: Report of the Transition Team; International Council for Science (ICSU): Paris, France, 2013.
- He, C.Y.; Zhang, J.X.; Liu, Z.F.; Huang, Q.X. Characteristics and progress of land use/cover change research during 1990–2018. Acta Geogr. Sin. 2021, 76, 2730–2748. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.J. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.L.; Qi, X.K.; Li, H.B. Landscape pattern changes and evaluation of ecological service value of the Xiangjiang River watershed. Econ. Geogr. 2016, 36, 175–181. [Google Scholar]
- Liu, H.C.; Cui, M.H.; Li, Y.Y.; Li, M. The effect of land use change on ecosystem service value in the middle reaches of Fenhe River basin. J. Anhui Agric. Univ. 2021, 48, 635–640. [Google Scholar]
- Lei, H.; Wu, F.Q.; Xie, X.L. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar]
- Hu, J.L.; Zheng, W.J.; Wang, Y.X. Impact of landscape pattern evolution on ecosystem services value in Lijiang River basin. Landsc. Archit. 2020, 27, 64–70. [Google Scholar]
- Zheng, B.F.; Huang, Q.Y.; Tao, L.; Xie, Z.Y.; Ai, B.; Zhu, Y.H.; Zhu, J.Q. Landscape pattern change and its impacts on the ecosystem services value in southern Jiangxi Province. Acta Ecol. Sin. 2021, 41, 5940–5949. [Google Scholar]
- Gu, Z.Y.; Zhao, X.Q.; Gao, H.Y.; Xie, P.F. Change of landscape pattern and it’s evaluation of ecosystem services values in Lancang County. Ecol. Sci. 2016, 35, 143–153. [Google Scholar]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; Wiley: Hoboken, NJ, USA, 2011; p. 382. [Google Scholar]
- Gong, P.; Chen, B.; Li, X.; Liu, H. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.Y.; Chen, X.D.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhang, X.; Gao, Y.; Chen, X.D.; Xie, S.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.L.; Zhang, Y.; Ye, M.T.; Wu, J.S. Research on the influence of land use classification on landscape metrics. Acta Geogr. Sin. 2006, 2, 157–168. [Google Scholar]
- Fu, B.J.; Chen, L.D.; Ma, K.M.; Wang, Y.L. Theory and Application of Landscape Ecology; Science Press: Beijing, China, 2001; p. 87. [Google Scholar]
- Wu, J.G. Landscape Ecology: Patten, Process, Scale and Hierarchy; Higher Education Press: Beijing, China, 2000; pp. 102–103. [Google Scholar]
- Zhao, R.F.; Zhou, H.R.; Xiao, D.N.; Qian, Y.B.; Zhou, K.F. Changes of wetland landscape pattern in the middle and lower reaches of the Tarim River. Acta Ecol. Sin. 2006, 10, 3470–3478. [Google Scholar]
- Hu, Y.X.; Pan, J.H. The stability of landscape pattern in Lanzhou, Gansu, China. J. Desert Res. 2016, 36, 556–563. [Google Scholar]
- Xiao, D.N.; Li, X.Z.; Gao, J.; Chang, Y.; Zhang, N.; Li, T.S. Landscape Ecology; Science Press: Beijing, China, 2010; p. 70. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Costanza, R.; Groot, R.; Sutton, P.; van der Ploeg, S.; Sharolyn, J.A.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wang, W.J.; Guo, H.C.; Chuai, X.W.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Li, Y.; Wang, Z.L.; Luo, J.M.; Liu, F.G.; Wang, X.H.; Li, Z.H. Reevaluation of ecosystem services value in the Nenjiang River Basin based on equivalent value factors. J. Sci. Teacher’s Coll. Univ. 2020, 40, 56–62. [Google Scholar]
- Chen, X.Y.; Lin, P. Spatial autocorrelation analysis on the distribution of Mangrove in China. J. East China Norm. Univ. 2000, 3, 104–109. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Pulishers: Dordrecht, The Netherlands, 1988; p. 284. [Google Scholar]
- Yao, X.W.; Zeng, J.; Li, W.J. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan Urban Agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256. [Google Scholar]
- Shen, Z.J.; Zeng, J.; Liang, C. Spatial relationship of greenspace landscape pattern with land surface temperature in three cities of southern Fujian. Chinese J. Ecol. 2020, 39, 1309–1317. [Google Scholar]
- Johnston, J.; Dinardo, J. Econometric Methods; McGraw-Hill: Singapore, 1984; p. 1. [Google Scholar]
- Ouyang, X.; Tang, L.S.; Wei, X.; Li, Y.H. Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations. Land Use Policy 2021, 109, 105587. [Google Scholar] [CrossRef]
- Long, H.; Kong, X.; Hu, S.; Li, Y. Land use transitions under rapid urbanization: A perspective from developing China. Land 2021, 10, 935. [Google Scholar] [CrossRef]
- Lu, Y.Y. The Economic Analysis on Urban Developing; SDX Joint Publishing Company: Shanghai, China, 2000; p. 63. [Google Scholar]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Wang, Y.C.; Shen, J.K.; Peng, Z.W.; Xiang, W.N. The optimization of green infrastructure ecosystem services adapted to urban growth. Chin. Landsc. Archit. 2018, 34, 45–49. [Google Scholar]
- Xu, G.; Pan, W.H.; Zhao, Y.; Han, X.M. Study on the expansion efficiency of urban construction land in Nanjing based on night light data. Henan Sci. Technol. 2019, 26, 90–95. [Google Scholar]
- Sun, W.; Liu, C.G.; Wang, S.N. Simulation research of urban development boundary based on ecological constraints: A case study of Nanjing. J. Nat. Resour. 2021, 36, 2913–2925. [Google Scholar] [CrossRef]
Landscape Pattern Indices | Ecological Implications |
---|---|
Patch Density (PD) | Reflects the number of all types of landscape patches within a unit area of landscape. Higher PD values indicate a more fragmented landscape. |
Largest Patch Index (LPI) | Reflects the dominant type in a landscape area and characterizes the proportion of the largest patches of a given type to the area of the entire landscape region. Its value entangles the landscape of the dominant species, the rich inner species, and other ecological characteristics. |
Contagion Index (CONTAG) | Reflects the degree of aggregation or extension trend of different patch types in the landscape. Smaller CONTAG values indicate the presence of many small patches in the landscape: a dense pattern with multiple elements. When the value is closer to 100, it indicates the presence of dominant patchwork types with very high connectivity in the landscape and a good degree of connectedness. |
Splitting Index (SPLIT) | Reflects the fragmentation of the landscape area. The complexity of landscape spatial structure reflects the degree of human disturbance to landscape to a certain extent. In general, the greater the degree of separation, the greater the human impact on the ecosystem. |
Shannon Diversity Index (SHDI) | Reflects the diversity of regional landscape types. An SHDI value of 0 indicates that the entire regional landscape consists of only one patch. The higher the SHDI value, the higher the level of landscape heterogeneity, and the more patch types or the fragmentation of the patches in the landscape. |
Shannon Evenness Index (SHEI) | Reflects the evenness of patch type distribution in the landscape area. The SHEI upper bound is 1, which indicates that there are no dominant types in the landscape and all kinds of patches are evenly distributed in the landscape and can reflect the maximum diversity of the given landscape richness. |
Model | Forming Conditions | Significance |
---|---|---|
Ordinary Linear Regression (OLS) | , | The model generally assumes that observations are independent of each other and not influenced by other factors and does not consider spatial variability between regions. |
Spatial Lag Model (SLM) | , | The model considers the spatial correlation of the dependent variable, i.e., the dependent variable in a given spatial region is not only related to the independent variable in the same region but also to the dependent variable in neighboring regions. |
Spatial Error Model (SEM) | , | The model does not consider the spatial correlation of the dependent variable but only the spatial autocorrelation of the independent variable, i.e., the dependent variable in a given spatial region is related to the independent variable in the same region, the independent variable in neighboring regions, and the dependent variable. |
Classification of Ecosystems | Provision | Regulation | Support | Culture | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade 1 Classification | Grade 2 Classification | Food Production | Raw Materials | Water Supply | Gas Regulation | Climate Regulation | Environmental Purification | Hydrological Regulation | Soil Conservation | Nutrient Cycling | Biodiversity | Aesthetic Landscape |
Cropland | Dry land | 1.11 | 0.52 | 0.05 | 0.88 | 0.47 | 0.13 | 0.63 | 0.63 | 0.16 | 0.17 | 0.08 |
Paddy field | 1.78 | 0.12 | −6.12 | 1.45 | 0.75 | 0.22 | 6.33 | 0.01 | 0.25 | 0.27 | 0.12 | |
Forest | Needle-leaved forest | 0.29 | 0.68 | 0.63 | 2.23 | 6.64 | 1.95 | 7.77 | 1.27 | 0.21 | 2.46 | 1.07 |
Mixed leaf forest | 0.41 | 0.93 | 0.86 | 3.08 | 9.20 | 2.60 | 8.17 | 1.76 | 0.29 | 3.40 | 1.49 | |
Broad-leaved forest | 0.38 | 0.86 | 0.79 | 2.84 | 8.51 | 2.53 | 11.03 | 1.63 | 0.26 | 3.15 | 1.39 | |
Shrubland | 0.25 | 0.56 | 0.51 | 1.85 | 5.54 | 1.68 | 7.80 | 1.06 | 0.17 | 2.06 | 0.90 | |
Grassland | Grassland | 0.13 | 0.18 | 0.19 | 0.67 | 1.75 | 0.58 | 2.28 | 0.38 | 0.07 | 0.73 | 0.33 |
Scrub | 0.50 | 0.73 | 0.72 | 2.58 | 6.82 | 2.25 | 8.89 | 1.48 | 0.24 | 2.85 | 1.26 | |
Meadow | 0.29 | 0.43 | 0.42 | 1.49 | 3.95 | 1.31 | 5.14 | 0.85 | 0.14 | 1.66 | 0.73 | |
Wetland | Wetland | 0.67 | 0.65 | 6.03 | 2.49 | 4.71 | 4.71 | 56.38 | 1.42 | 0.24 | 10.30 | 6.19 |
Desert | Desert | 0.01 | 0.04 | 0.05 | 0.14 | 0.13 | 0.41 | 0.49 | 0.08 | 0.01 | 0.16 | 0.07 |
Bare land | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.13 | 0.07 | 0.01 | 0.00 | 0.03 | 0.01 | |
Water | Waterways | 1.05 | 0.30 | 19.29 | 1.01 | 3.00 | 7.26 | 237.91 | 0.57 | 0.09 | 3.34 | 2.47 |
Glacial snow | 0.00 | 0.00 | 5.03 | 0.24 | 0.71 | 0.21 | 16.59 | 0.00 | 0.00 | 0.01 | 0.12 |
Classification of Ecosystems | Provision | Regulation | Support | Culture | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grade 1 Classification | Grade 2 Classification | Food Production | Raw Materials | Water Supply | Gas Regulation | Climate Regulation | Environmental Purification | Hydrological Regulation | Soil Conservation | Nutrient Cycling | Biodiversity | Aesthetic Landscape |
Cropland | Dry land | 332.70 | 156.56 | 13.91 | 262.24 | 140.91 | 39.14 | 187.87 | 189.41 | 46.97 | 50.88 | 23.49 |
Paddy field | 532.32 | 35.23 | −1829.96 | 434.47 | 223.10 | 66.54 | 1892.59 | 1.84 | 74.37 | 82.20 | 35.23 | |
Forest | Needle-leaved forest | 86.11 | 203.53 | 187.87 | 665.40 | 1984.45 | 583.20 | 2323.99 | 378.82 | 62.63 | 735.85 | 320.96 |
Mixed leaf forest | 121.34 | 277.90 | 257.45 | 919.81 | 2751.61 | 778.91 | 2442.28 | 525.94 | 86.11 | 1017.66 | 446.21 | |
Broad-leaved forest | 113.51 | 258.33 | 236.57 | 849.36 | 2544.16 | 755.42 | 3298.12 | 487.32 | 78.28 | 943.30 | 414.89 | |
Shrubland | 74.37 | 168.31 | 153.08 | 551.89 | 1655.66 | 501.00 | 2330.95 | 316.30 | 50.88 | 614.51 | 270.07 | |
Grassland | Grassland | 39.14 | 54.80 | 55.67 | 199.62 | 524.49 | 172.22 | 681.89 | 114.01 | 19.57 | 219.19 | 97.85 |
Scrub | 148.74 | 219.19 | 215.70 | 771.08 | 2039.24 | 673.22 | 2657.98 | 441.35 | 70.45 | 853.27 | 375.75 | |
Meadow | 86.11 | 129.17 | 125.24 | 446.21 | 1182.06 | 391.41 | 1537.73 | 255.61 | 43.06 | 497.09 | 219.19 | |
Wetland | Wetland | 199.62 | 195.70 | 1802.14 | 743.68 | 1409.07 | 1409.07 | 16859.38 | 424.79 | 70.45 | 3080.39 | 1851.37 |
Desert | Desert | 3.91 | 11.74 | 13.92 | 43.06 | 39.14 | 121.34 | 146.12 | 23.91 | 3.91 | 46.97 | 19.57 |
Bare land | 0.00 | 0.00 | 0.00 | 7.83 | 0.00 | 39.14 | 20.87 | 3.68 | 0.00 | 7.83 | 3.91 | |
Water | Waterways | 313.13 | 90.02 | 5768.23 | 301.38 | 896.33 | 2172.32 | 71139.20 | 171.02 | 27.40 | 998.09 | 739.76 |
Glacial snow | 0.00 | 0.00 | 1502.94 | 70.45 | 211.36 | 62.63 | 4961.10 | 0.00 | 0.00 | 3.91 | 35.23 |
Variable | Moran’s I | |||
---|---|---|---|---|
2010 | 2015 | 2020 | ||
Landscape Pattern Index | PD | 0.509 (82.5941) *** | 0.513 (81.7584) *** | 0.531 (85.553) *** |
CONTAG | −0.264 (−60.0069) *** | 0.523 (85.1399) *** | 0.452 (75.8241) *** | |
SHDI | 0.517 (81.9847) *** | 0.514 (82.0632) *** | 0.544 (87.5505) *** | |
SPLIT | 0.491 (79.6394) *** | 0.461 (74.5429) *** | 0.489 (78.4835) *** | |
LPI | −0.388 (−80.2644) *** | 0.425 (67.8931) *** | 0.397 (62.8753) *** | |
SHEI | 0.456 (73.3209) *** | 0.522 (83.1548) *** | 0.522 (84.6176) *** | |
ESV | ESV_sum | 0.712 (119.5558) *** | 0.754 (125.7984) *** | 0.714 (121.2497) *** |
Landscape Pattern Index | VIF | ||
---|---|---|---|
2010 | 2015 | 2020 | |
PD | 6.100 | 5.544 | 7.227 |
CONTAG | 3.030 | 2.065 | 2.163 |
SPLIT | 7.557 | 6.745 | 8.373 |
LPI | 3.463 | 2.596 | 2.369 |
SHEI | 3.149 | 5.777 | 4.158 |
Parameters | 2010 | 2015 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | ||
R2 | 0.308 | 0.744 | 0.747 | 0.404 | 0.791 | 0.802 | 0.619 | 0.792 | 0.799 | |
LIK | 2332.190 | 5322.370 | 5250.765 | 1979.080 | 5182.170 | 5225.839 | 5022.140 | 6864.820 | 6759.669 | |
AIC | −4652.380 | −10,630.700 | −10,489.500 | −3946.150 | −10,350.300 | −10,439.700 | −10,032.300 | −13,715.600 | −13,507.300 | |
SC | −4611.280 | −10,582.800 | −10,448.400 | −3905.060 | −10,302.400 | −10,398.600 | −9991.190 | −13,667.700 | −13,466.200 | |
Moran’s I (error) | 0.553 | 0.014 | −0.006 | 0.616 | 0.034 | −0.019 | 0.403 | 0.056 | −0.015 | |
ρ | — | 0.825 (109.637) *** | — | — | 0.809 (110.531) *** | — | — | 0.667 (75.303) *** | — | |
λ | — | — | 0.883 (127.352) *** | — | — | 0.884 (128.003) *** | — | — | 0.835 (98.108) *** | |
β | PD | 0.076 (2.324) * | 0.037 (1.843) ’ | 0.021 (0.832) | 0.186 (4.624) *** | 0.022 (0.924) | −0.096 (−2.866) ** | 0.125 (5.220) *** | 0.079 (4.469) *** | 0.024 (1.177) |
CONTAG | −1.130 (−45.492) *** | −0.385 (−23.257) *** | −0.463 (−22.215) *** | −0.944 (−52.008) *** | −0.338 (−26.522) *** | −0.514 (−31.444) *** | −1.007 (−74.942) *** | −0.478 (−39.147) *** | −0.578 (−41.721) *** | |
SPLIT | 1.042 (19.373) *** | 0.340 (10.229) *** | 0.390 (9.956) *** | 1.025 (11.962) *** | 0.348 (6.832) *** | 0.442 (7.500) *** | 0.565 (16.725) *** | 0.295 (11.630) *** | 0.415 (14.719) *** | |
LPI | 1.012 (42.499) *** | 0.396 (25.514) *** | 0.448 (24.141) *** | 0.801 (40.789) *** | 0.366 (28.453) *** | 0.511 (35.281) *** | 0.832 (63.516) *** | 0.428 (38.179) *** | 0.518 (42.804) *** | |
SHEI | −0.454 (−21.968) *** | −0.119 (−9.360) *** | −0.124 (−7.572) *** | −0.326 (−12.549) *** | −0.035 (−2.278) * | −0.003 (−0.186) | −0.352 (−23.630) *** | −0.171 (−15.061) *** | −0.224 (−17.048) *** | |
Constant | 0.005 (0.312) | −0.077 (−8.299) *** | 0.017 (1.244) | 0.062 (3.867) *** | −0.086 (−9.066) *** | 0.016 (1.162) | 0.040 (3.839) *** | −0.033 (−4.212) *** | 0.031 (3.249) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Zhang, Y.; Liang, F.; Wu, Y. Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing. Land 2022, 11, 1168. https://doi.org/10.3390/land11081168
Lu M, Zhang Y, Liang F, Wu Y. Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing. Land. 2022; 11(8):1168. https://doi.org/10.3390/land11081168
Chicago/Turabian StyleLu, Ming, Yan Zhang, Fan Liang, and Yuanxiang Wu. 2022. "Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing" Land 11, no. 8: 1168. https://doi.org/10.3390/land11081168
APA StyleLu, M., Zhang, Y., Liang, F., & Wu, Y. (2022). Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing. Land, 11(8), 1168. https://doi.org/10.3390/land11081168