Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Extraction of Topographic Factors
2.4. Extraction of Ridge Orientation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Slope Gradient, Slope Aspect and Ridge Orientation
3.2. Slope-Gradient Effects on Ridge Orientation
3.3. Slope Aspect and Ridge Orientation
3.4. Ridge Orientation under the Combined Action of Slope Gradient and Slope Aspect
4. Discussion
4.1. Spatial Distribution of Ridge Orientation
4.2. Slope-Gradient Effects on Ridge Orientation
4.3. Effects of Slope Aspect on Ridge Orientation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burwell, R.E.; Allmaras, R.R.; Sloneker, L.L. Structural alteration of soil surfaces by tillage and rainfall. J. Soil Water Conserv. 1966, 21, 61–63. [Google Scholar]
- Shi, X.H.; Yang, X.M.; Drury, C.F.; Reynolds, W.D. Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario. Soil Tillage Res. 2012, 120, 1–7. [Google Scholar] [CrossRef]
- Ren, B.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Ridge tillage improves plant growth and grain yield of waterlogged summer maize. Agric. Water Manag. 2016, 177, 392–399. [Google Scholar] [CrossRef]
- Liu, M.X.; Wang, J.A.; Yan, P.; Liu, L.Y.; Ge, Y.Q.; Li, X.Y.; Hu, X.; Song, Y.; Wang, L. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil Tillage Res. 2006, 90, 242–249. [Google Scholar] [CrossRef]
- Jiang, R.; Li, X.; Zhu, W.; Wang, K.; Guo, S.; Misselbrook, T.; Hatano, R. Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China. Agric. Water Manag. 2018, 203, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhai, L.; Liu, J.; Liu, H.; Chen, A.; Wang, H.; Wu, S.; Lei, Q. Cross-ridge tillage decreases nitrogen and phosphorus losses from sloping farmlands in southern hilly regions of China. Soil Tillage Res. 2019, 191, 48–56. [Google Scholar] [CrossRef]
- Wei, Z.; Duan, S.B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature using random forest regression. Remote Sens. Environ. 2019, 221, 635–649. [Google Scholar] [CrossRef]
- Patton, N.R.; Lohse, K.A.; Seyfried, M.S.; Godsey, S.E.; Parsons, S.B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 2019, 9, 6390. [Google Scholar] [CrossRef]
- Prévost, M.; Raymond, P. Effect of gap size, aspect and slope on available light and soil temperature after patch-selection cutting in yellow birch–conifer stands, Quebec, Canada. For. Ecol. Manag. 2012, 274, 210–221. [Google Scholar] [CrossRef]
- Chen, T.; Shu, J.; Han, L.; Tian, G.; Yang, G.Y.; Lv, J.X. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. Catena 2022, 212, 106060. [Google Scholar] [CrossRef]
- Bennie, J.; Huntley, B.; Wiltshire, A.; Hill, M.O.; Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 2008, 216, 47–59. [Google Scholar] [CrossRef]
- Agren, G.I.; Andersson, F.O. Terrestrial Ecosystem Ecology; NRC Research Press: Ottawa, ON, Canada, 2012. [Google Scholar] [CrossRef]
- Han, D.; Deng, J.; Gu, C.; Mu, X.; Gao, P.; Gao, J. Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall. Int. J. Sediment Res. 2021, 36, 34–42. [Google Scholar] [CrossRef]
- Jaleta, D.; Mbilinyi, B.P.; Mahoo, H.F.; Lemenih, M. Effect of Eucalyptus expansion on surface runoff in the central highlands of Ethiopia. Ecol. Process 2017, 6, 8. [Google Scholar] [CrossRef]
- Wu, S.; Chen, L.; Wang, N.; Zhang, J.; Ferro, V. Variable scale effects on hillslope soil erosion during rainfall-runoff processes. Catena 2021, 207, 105606. [Google Scholar] [CrossRef]
- Jaki, S.; Ninkov, J.; Mili, S.; Vasin, J.; Ivanov, M.; Jaki, D.; Komlen, V. Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Ni, Serbia. Sustainability 2021, 13, 8332. [Google Scholar] [CrossRef]
- Lan, A.; Lin, Z.; Fan, X.; Yao, M. Effects of aspects on soil environment and plant growth on the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2022, 44, 1–12. [Google Scholar] [CrossRef]
- Goyal, A.; Vashisth, A.; Sehgal, V.K.; Pradhan, S.; Jitendra, S. Effect of row direction and cultivar on micrometeorological and biophysical parameters of oil seed Brassica. J. Agrometeorol. 2018, 20, 85–91. [Google Scholar]
- Wang, J.; Shi, X.; Li, Z.; Zhang, Y.; Liu, Y.; Peng, Y. Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China. Agric. Water Manag. 2021, 253, 106935. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.; Wang, H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Zhang, Z.; You, L.; Xu, L.; Huang, H.; Wang, X.; Gao, Y.; Cui, X. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Sci. Total Environ. 2021, 797, 149190. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Li, J.; Ding, X. Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. J. Glaciol. 2019, 65, 309–320. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Ebdon, D. Statistics in Geography, 2nd ed.; Blackwell: London, UK, 1991. [Google Scholar]
- Wang, L.; Wei, S.; Horton, R. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. Catena 2011, 87, 90–100. [Google Scholar] [CrossRef]
- National Agricultural Regional Planning Commission. Technical Regulation of Land Use Survey; Surveying and Mapping Press: Beijing, China, 1984.
- Zhao, Y.M.; Jiang, H.T.; Wang, S.J. Study on relative soil and water conservation benefits of ridge tillage in different terrain conditions in the black soil area of northeast China. Agric. Sci. Technol. 2015, 16, 2354–2360. [Google Scholar] [CrossRef]
- Yu, K.; Liu, L.; Li, J.; Ding, W.; Le, T. Multi-Source Causal Feature Selection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2240–2256. [Google Scholar] [CrossRef]
- Salkauskas, P.L. Surfaces generated by moving least squares methods. Math. Compt. 1981, 37, 141–158. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.; Wilson, G.V.; He, C.; Lu, J.; Bian, F. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China. Soil Tillage Res. 2018, 177, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G. Human disturbance changes based on spatiotemporal heterogeneity of regional ecological vulnerability: A case study of Qiqihaer city, northwestern Songnen Plain, China. J. Clean. Prod. 2020, 291, 125262. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Liu, Y.; Liu, Y. Effects of farmland vegetation row direction on overland flow hydraulic characteristics. Hydrol. Res. 2018, 49, nh2018020. [Google Scholar] [CrossRef]
- Rong, L.; Duan, X.; Zhang, G.; Gu, Z.; Feng, D. Impacts of tillage practices on ephemeral gully erosion in a dry-hot valley region in southwestern China. Soil Tillage Res. 2019, 187, 72–84. [Google Scholar] [CrossRef]
- Liu, Q.J.; An, J.; Wang, L.Z.; Wu, Y.Z.; Zhang, H.Y. Influence of ridge height, row grade, and field slope on soil erosion in contour ridging systems under seepage conditions. Soil Tillage Res. 2015, 147, 50–59. [Google Scholar] [CrossRef]
- Li, T.; Zhao, L.; Duan, H.; Yang, Y.; Wang, Y.; Wu, F. Exploring the interaction of surface roughness and slope gradient in controlling rates of soil loss from sloping farmland on the Loess Plateau of China. Hydrol. Processes 2020, 34, 339–354. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, Y.M.; Han, Y.F.; Zhang, X.C. Sediment transport and soil detachment on steep slopes: I. Transport capacity estimation. Soil Sci. Soc. Am. J. 2009, 73, 1291–1297. [Google Scholar] [CrossRef]
- Liu, Q.J.; Shi, Z.H.; Yu, X.X.; Zhang, H.Y. Influence of microtopography, ridge geometry and rainfall intensity on soil erosion induced by contouring failure. Soil Tillage Res. 2014, 136, 1–8. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Livingston, S.J. USDA-Water Erosion Prediction Project; Report no. 11; NSERL: Richardson, TX, USA, 1995. [Google Scholar]
- USDA-ARS. Science Documentation: Revised Universal Soil Loss Equation, 2nd ed.; USDA-Agricultural Research Service: Washington, WA, USA, 2013.
- Wang, L.; He, C.; Zheng, F.L.; Bian, F.; Xu, X. Soil-bin experiment on effects of contour ridge tillage for controlling hillslope soil erosion in black soil region. Trans. Chin. Soc. Agric. Eng. 2018, 34, 141–148. [Google Scholar] [CrossRef]
- Casabella-González, M.J.; Borselli, L.; García-Meza, J.V. Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion. J. South Am. Earth Sci. 2021, 111, 103497. [Google Scholar] [CrossRef]
- Sternberg, M.; Shoshany, M. Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel. Ecol. Res. 2010, 16, 335–345. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A.L. Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 1994, 58, 185–193. [Google Scholar] [CrossRef]
- Seyfried, M.; Flerchinger, G.; Bryden, S.; Link, T.; Marks, D.; McNamara, J. Slope and aspect controls on soil climate: Field documentation and implications for large-scale simulation of critical zone processes. Vadose Zone 2021, 20, e20158. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Schwarzer, M.J.; Campbell, G.S.; Papendick, R.I. Radiation Balance of Ridge-Tillage with Modeling Strategies for Slope and Aspect in the Subarctic. Soil Sci. Soc. Am. J. 1992, 56, 1379–1384. [Google Scholar] [CrossRef]
- Li, Q.; He, G.; Liu, Z.; Guan, W.; Qiao, H.; Zhang, D.; Han, T.; Sun, B.; Pan, D.; Liu, X. Response of vegetation characteristics and biodiversity of alpine meadow in east Qilian Mountains to habitat. Acta Agrestia Sin. 2022, 30, 169–177. [Google Scholar] [CrossRef]
Organic Matter (g/kg) | Bulk Density (g/cm3) | Total Nitrogen (g/kg) | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) | pH |
---|---|---|---|---|---|---|
30.5 | 1.24 | 2.01 | 8 | 16 | 208 | 6.98 |
Parameter | Residual Ridge Angle | |||||
---|---|---|---|---|---|---|
All Slopes | Shady Slopes | Semi-Shady Slopes | Sunny Slopes | Semi-Sunny Slopes | ||
Slope gradient | Pearson correlation | 0.061 ** | 0.240 ** | –0.037 ** | 0.254 ** | –0.152 ** |
Significance (two-sided) | 0 | 0 | 0 | 0 | 0 | |
Number of parcels | 472,380 | 76,321 | 143,615 | 124,434 | 128,010 |
Parameter | Residual Ridge Angle | |||||
---|---|---|---|---|---|---|
All Aspects | 0°–2° | 2°–6° | 6°–15° | 15°–22° | ||
Azimuth angle | Pearson correlation | −0.005 ** | −0.020 ** | −0.111 ** | −0.274 ** | −0.308 |
Significance (two-sided) | 0.002 | 0 | 0 | 0 | 0.056 | |
Number of parcels | 472,380 | 242,537 | 214,599 | 15,205 | 39 |
Model | Reduced chi-Squared | R-Squared (COD) | Adj. R-Squared | Sum of Square of Residual Error | Fitting State |
---|---|---|---|---|---|
Cosine | 739.1709 | 6.19237 × 10−4 | 6.19237 × 10−4 | 2.84824 × 108 | Success |
Lorentz2D | 719.61655 | −1.51695 × 10−8 | −1.264 × 10−5 | 2.85001 × 108 | Fail |
Poly2D | 593.7877 | 0.17486 | 0.17486 | 2.35167 × 108 | Success |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, G.; Guo, T.; Ma, C. Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain. Land 2022, 11, 1489. https://doi.org/10.3390/land11091489
Du G, Guo T, Ma C. Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain. Land. 2022; 11(9):1489. https://doi.org/10.3390/land11091489
Chicago/Turabian StyleDu, Guoming, Tongbing Guo, and Chen Ma. 2022. "Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain" Land 11, no. 9: 1489. https://doi.org/10.3390/land11091489
APA StyleDu, G., Guo, T., & Ma, C. (2022). Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain. Land, 11(9), 1489. https://doi.org/10.3390/land11091489