Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Data Sources
2.2. Methods
3. Results of Bibliography Analysis
3.1. Number of Annual Publications
3.2. Published Journals and High-Cited Literature
3.2.1. Published Journals and Subject Fields
3.2.2. Highly Cited Literature
3.3. Analysis of Major Countries/Regions
3.4. Main Research Institutions, Authors and Cooperative Relationships
3.4.1. Main Research Institutions
3.4.2. Main Authors
3.4.3. Cooperative Relationship
3.5. Keywords
3.5.1. High-Frequency Keywords
3.5.2. Cluster Analysis of High-Frequency Keywords
3.6. Theme Evolution
4. Review of Impact of Land Use Change on Soil Carbon Sequestration
4.1. Impact of Land-Use Type Change on Soil Carbon Sequestration
4.2. Impact of Changes in Land Management Patterns on Soil Carbon Sequestration
4.2.1. Agriculture Land
4.2.2. Woodland
4.2.3. Grassland
4.3. Causes of Land Use Change
4.4. Soil Carbon Fixation Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.P.; Wang, W.T.; Xu, W.T.; Wang, Y.; Wan, H.W.; Chen, D.M.; Tang, Z.Y.; Tang, X.L.; Zhou, G.Y.; Xie, Z.Q.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agr. Ecosyst. Environ 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Cao, Z.; Liu, C.; Zhang, Z.; Lin, L.; Wang, Y.; Haghipour, N.; Wacker, L.; Bao, H.; Dittmar, T.; et al. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Change Biol. 2019, 25, 4383–4393. [Google Scholar] [CrossRef]
- Houghton, R.A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.D.; Gong, J.; Fu, B.J.; Huang, Z.L.; Huang, Y.L.; Gui, L.D. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecol. Res. 2007, 22, 641–648. [Google Scholar] [CrossRef]
- Xie, H.L.; Zhang, Y.W.; Zeng, X.J.; He, Y.F. Sustainable land use and management research: A scientometric review. Landsc. Ecol. 2020, 35, 2381–2411. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, P.N. A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions. Sustainability 2022, 14, 3079. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Angelsen, A.; Brown, S.; Loisel, C. Reducing Emissions from Deforestation and Forest Degradation (REDD): An Options Assessment Report; Meridian Institute: Washington, DC, USA, 2009. [Google Scholar]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quere, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.B.; Zhang, J.J.; Cui, Y.P.; Zhu, L.Q. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China. J. Geogr. Sci. 2020, 30, 1507–1522. [Google Scholar] [CrossRef]
- Datta, A.; Basak, N.; Chaudhari, S.K.; Sharma, D.K. Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of North-West India. Geoderma Reg. 2015, 4, 134–146. [Google Scholar] [CrossRef]
- Xia, F.; Yang, Y.X.; Zhang, S.Q.; Yang, Y.X.; Li, D.H.; Sun, W.; Xie, Y.J. Influencing factors of the supply-demand relationships of carbon sequestration and grain provision in China: Does land use matter the most? Sci. Total Environ. 2022, 832, 154979. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, M.T.; Dorca-Preda, T.; Djomo, S.N.; Pena, N.; Padel, S.; Smith, L.G.; Zollitsch, W.; Hortenhuber, S.; Hermansen, J.E. The importance of including soil carbon changes, ecotoxicity and biodiversity impacts in environmental life cycle assessments of organic and conventional milk in Western Europe. J. Clean Prod. 2019, 215, 433–443. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Zhang, H.Y.; Dong, X.L. Quantifying changes in multiple ecosystem services during 2000-2012 on the Loess Plateau, China, as a result of climate variability and ecological restoration. Ecol. Eng. 2016, 97, 258–271. [Google Scholar] [CrossRef]
- Pan, X.Y.; Lv, J.L.; Dyck, M.; He, H.L. Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020. Agriculture 2021, 11, 223. [Google Scholar] [CrossRef]
- Goncalves, A.F.A.; dos Santos, J.A.; Franca, L.C.D.; Campoe, O.C.; Altoe, T.F.; Scolforo, J.R.S. Use of the process-based models in forest research: A bibliometric review. Cerne 2021, 27, e102769. [Google Scholar] [CrossRef]
- Xu, S.Q.; Sheng, C.L.; Tian, C.J. Changing soil carbon: Influencing factors, sequestration strategy and research direction. Carbon Balance Manag. 2020, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Sun, L.W.; Wu, L.F.; Qi, P.X. Global characteristics and trends of research on industrial structure and carbon emissions: A bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 44892–44905. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Clarivate. 2021 Journal Impact Factor, Journal Citation Reports. Available online: https://jcr.clarivate.com/jcr/browse-journals (accessed on 25 October 2022).
- Su, H.N.; Lee, P.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Hwang, G.J.; Chen, P.Y. Interweaving gaming and educational technologies: Clustering and forecasting the trends of game-based learning research by bibliometric and visual analysis. Entertain. Comput. 2022, 40, 100459. [Google Scholar] [CrossRef]
- Ardö, J.; Olsson, L. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. J. Arid. Environ. 2003, 54, 633–651. [Google Scholar] [CrossRef]
- Brovkin, V.; Claussen, M.; Driesschaert, E.; Fichefet, T.; Kicklighter, D.; Loutre, M.F.; Matthews, H.D.; Ramankutty, N.; Schaeffer, M.; Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dyn. 2006, 26, 587–600. [Google Scholar] [CrossRef]
- Houghton, R.A.; Goodale, C.L. Effects of Land-Use Change on the Carbon Balance of Terrestrial Ecosystems. In Ecosystems and Land Use Change; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2004; Volume 153, pp. 85–98. [Google Scholar]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosystems 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Huang, Y.; Li, F.; Xie, H. A Scientometrics Review on Farmland Abandonment Research. Land 2020, 9, 263. [Google Scholar] [CrossRef]
- Su, N.; Wang, Z. Visual Analysis of Global Carbon Mitigation Research Based on Scientific Knowledge Graphs. International J. Environ. Res. Public Health 2022, 19, 5766. [Google Scholar] [CrossRef]
- Li, X. Explanation of Land Use Changes. Prog. Geogr. 2002, 21, 195–203. [Google Scholar]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Song, X.L.; Lu, X.G.; Xue, Z.S. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. J. Soils Sediment 2013, 13, 1043–1051. [Google Scholar] [CrossRef]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978-2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.; Noble, I.; Bolin, B.; Ravindranath, N.; Verardo, D.; Dokken, D. Land Use, Land-Use Change and Forestry. A Special Report of the International Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jenkinson, D.S.; Hart, P.; Rayner, J.H.; Parry, L.C. Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin 1987, 15, 1–8. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Murty, D.; Kirschbaum, M.U.F.; McMurtrie, R.E.; McGilvray, A. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Change Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Dawson, J.J.C.; Smith, P. Carbon losses from soil and its consequences for land-use management. Sci. Total Environ. 2007, 382, 165–190. [Google Scholar] [CrossRef]
- Soussana, J.F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Davis, M.; Nordmeyer, A.; Henley, D.; Watt, M. Ecosystem carbon accretion 10 years after afforestation of depleted subhumid grassland planted with three densities of Pinus nigra. Glob. Change Biol. 2007, 13, 1414–1422. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfaye, M.A.; Bravo, F.; Ruiz-Peinado, R.; Pando, V.; Bravo-Oviedo, A. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 2016, 261, 70–79. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.R.; Mitiku, H.; Borresen, T.; Lal, R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degrad. Dev. 2008, 19, 351–367. [Google Scholar] [CrossRef]
- Berhongaray, G.; Alvarez, R.; De Paepe, J.; Caride, C.; Cantet, R. Land use effects on soil carbon in the Argentine Pampas. Geoderma 2013, 192, 97–110. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocka, J.; Harper, R.; Pan, G.X.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Change Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Kazlauskaite-Jadzevice, A.; Tripolskaja, L.; Volungevicius, J.; Baksiene, E. Impact of land use change on organic carbon sequestration in Arenosol. Agric. Food Sci. 2019, 28, 9–17. [Google Scholar] [CrossRef]
- Desyatkin, A.R.; Iwasaki, S.; Desyatkin, R.V.; Hatano, R. Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost AreaCentral Yakutia. Atmosphere 2018, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Detwiler, R.P. Land use change and the global carbon cycle: The role of tropical soils. Biogeochemistry 1986, 2, 67–93. [Google Scholar] [CrossRef]
- Oktan, E.; Kezik, U.; Hacisalihoglu, S.; Yucesan, Z. Effects of Deforestation on Soil Erosion and Carbon Sequestration in the Soil. Fresenius Environ. Bull. 2022, 31, 2239–2249. [Google Scholar]
- Moraes, J.L.; Cerri, C.C.; Melillo, J.M.; Kicklighter, D.; Neill, C.; Skole, D.L.; Steudler, P.A. Soil Carbon Stocks of the Brazilian Amazon Basin. Soil Sci. Soc. Am. J. 1995, 59, 244–247. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Post, W.M.; Izaurralde, R.C.; Jastrow, J.D.; McCarl, B.A.; Amonette, J.E.; Bailey, V.L.; Jardine, P.M.; West, T.O.; Zhou, J.Z. Enhancement of carbon sequestration in US soils. Bioscience 2004, 54, 895–908. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wu, W.; Meng, F. Impact of Land Use and Fertilization Measures on Soil C Stock in Farminggrazing Interlacing Zone of Inner Mongolia, China. Acta Pedol. Sin. 2016, 53, 930–941. [Google Scholar]
- Herbert, D.A.; Williams, M.; Rastetter, E.B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 2003, 65, 121–150. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Johnson, D.W. Effects of forest management on soil carbon storage. Water Air Soil Pollut. 1992, 64, 83–120. [Google Scholar] [CrossRef]
- Laiho, R.; Sanchez, F.; Tiarks, A.; Dougherty, P.M.; Trettin, C.C. Impacts of intensive forestry on early rotation trends in site carbon pools in the southeastern US. For. Ecol. Manag. 2003, 174, 177–189. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.B.; Myo, S.T.Z.; Li, Y.; Xu, C.; Lin, Z.Y.; Qian, Z.Z.; Tang, L.Z. Deforestation for Agriculture Temporarily Improved Soil Quality and Soil Organic Carbon Stocks. Forests 2022, 13, 228. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, L.; Hou, X.Y.; Schellenberg, M.P. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management. PLoS ONE 2016, 11, e0147987. [Google Scholar] [CrossRef] [Green Version]
- Derner, J.D.; Schuman, G.E. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. J. Soil Water Conserv. 2007, 62, 77–85. [Google Scholar]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Change Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Wang, X.; McConkey, B.G.; VandenBygaart, A.J.; Fan, J.; Iwaasa, A.; Schellenberg, M. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Sci. Rep. 2016, 6, 33190. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, G.H.; Zheng, X.X. Spatial pattern changes of biomass, litterfall and coverage with environmental factors across temperate grassland subjected to various management practices. Landsc. Ecol. 2015, 30, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An agent-based approach to model land-use change at a regional scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Defourny, P.; Shrestha, S. Land cover characterization and mapping of continental Southeast Asia using multi-resolution satellite sensor data. Int. J. Remote Sens. 2003, 24, 4181–4196. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, F.E. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wu, L.; Xi, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.; Houghton, R.A.; Lu, C.; Tian, H.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef]
- Lozano-Garcia, B.; Parras-Alcantara, L.; Brevik, E.C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 2016, 544, 963–970. [Google Scholar] [CrossRef]
Journal Name | Category | IF | Quartile | Articles |
---|---|---|---|---|
Global Change Biology | Biodiversity Conservation | 13.111 | Q1 | 431 |
Science of The Total Environment | Environmental Sciences | 10.237 | Q1 | 379 |
Agriculture Ecosystems & Environment | Agriculture, Multidisciplinary | 7.088 | Q1 | 370 |
Geoderma | Soil Science | 7.444 | Q1 | 344 |
Forest Ecology and Management | Forestry | 4.584 | Q1 | 317 |
Biogeosciences | Ecology | 5.157 | Q1 | 256 |
Catena | Geosciences, Multidisciplinary | 6.497 | Q1 | 228 |
Land Degradation & Development | Environmental Sciences | 5.205 | Q2 | 196 |
Soil & Tillage Research | Soil Science | 7.829 | Q1 | 191 |
Environmental Research Letters | Environmental Sciences | 8.414 | Q1 | 188 |
Journal of Environmental Management | Environmental Sciences | 8.549 | Q1 | 179 |
Sustainability | Environmental Sciences | 4.089 | Q2 | 150 |
Forests | Forestry | 3.292 | Q1 | 148 |
Global Biogeochemical Cycles | Environmental Sciences | 7.067 | Q1 | 145 |
PLoS ONE | Multidisciplinary Sciences | 4.069 | Q2 | 140 |
Soil Science Society of America Journal | Soil Science | 3.564 | Q3 | 138 |
Climatic Change | Environmental Sciences | 6.058 | Q2 | 136 |
Soil Biology & Biochemistry | Soil Science | 9.956 | Q1 | 135 |
Ecological Indicators | Environmental Sciences | 6.643 | Q1 | 133 |
Global Change Biology Bioenergy | Agronomy | 6.293 | Q1 | 129 |
Journal of Cleaner Production | Engineering, Environmental | 11.016 | Q1 | 129 |
Agricultural and Forest Meteorology | Agronomy | 7.021 | Q1 | 124 |
Land Use Policy | Environmental Studies | 6.158 | Q1 | 124 |
Plant and Soil | Agronomy | 5.44 | Q1 | 123 |
Scientific Reports | Multidisciplinary Sciences | 5.516 | Q2 | 120 |
Paper | DOI | TC | TCperYear |
---|---|---|---|
LAL R, 2004, Science | 10.1126/science.1097396 | 3925 | 206.58 |
PAN Y, 2011, Science | 10.1126/science.1201609 | 3849 | 320.75 |
BONAN GB, 2008, Science | 10.1126/science.1155121 | 3303 | 220.20 |
JOBBAGY EG, 2000, Ecological Applications | 10.2307/2641104 | 3057 | 132.91 |
BRENNAN L, 2010, Renewable and Sustainable Energy Reviews | 10.1016/j.rser.2009.10.009 | 2783 | 214.08 |
COX PM, 2000, Nature | 10.1038/35041539 | 2652 | 115.30 |
SIX J, 2002, Plant Soil | 10.1023/A:1016125726789 | 2507 | 119.38 |
GUO LB, 2002, Global Change Biology | 10.1046/j.1354-1013.2002.00486.x | 2413 | 114.90 |
COLE JJ, 2007, Ecosystems | 10.1007/s10021-006-9013-8 | 2382 | 148.88 |
REICHSTEIN M, 2005, Global Change Biology | 10.1111/j.1365-2486.2005.001002.x | 2256 | 125.33 |
BRONICK CJ, 2005, Geoderma | 10.1016/j.geoderma.2004.03.005 | 2245 | 124.72 |
DIXON RK, 1994, Science | 10.1126/science.263.5144.185 | 2207 | 76.10 |
ENTEKHABI D, 2010, Proceedings of the IEEE | 10.1109/JPROC.2010.2043918 | 2001 | 153.92 |
Affiliations | Articles |
---|---|
Chinese Academy of Sciences | 540 |
Colorado State University | 477 |
Ohio State University | 469 |
University of Chinese Academy of Sciences | 439 |
Northwest A&F University | 430 |
Institute of Geographic Sciences and Natural Resources Research | 378 |
Beijing Normal University | 347 |
University of Florida | 345 |
University Of Illinois | 300 |
Peking University | 286 |
Land-Use Type Change | Net C Rate (t C ha−2 yr−1) | References |
---|---|---|
Cultivated land to grassland (50 yr) | 0.3–0.8 | [38] |
Cultivated land to grassland (35 yr) | 0.63 | [39] |
Cultivated land to woodland (25 yr) | 0.3–0.6 | [40,41] |
Grassland to cultivated land (20 yr) | −0.95 | [42,43] |
Grassland to cultivated land | −1.0 to −1.7 | [40,41] |
Grassland to afforestation (90 yr) | 0.1 | [43] |
Grassland to afforestation (10 yr) | 0.5–0.7 | [44] |
Cultivated land or grassland at forest margins to agroforestry (25 yr) | 1–5 | [38] |
Woodland to cultivated land | −0.6 | [40,41] |
Woodland to grassland (8–25 yr) | −0.9 to 0.91 | [45] |
Woodland to grassland | −0.1 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Song, W. Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration. Land 2023, 12, 213. https://doi.org/10.3390/land12010213
Yu H, Song W. Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration. Land. 2023; 12(1):213. https://doi.org/10.3390/land12010213
Chicago/Turabian StyleYu, Hao, and Wei Song. 2023. "Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration" Land 12, no. 1: 213. https://doi.org/10.3390/land12010213
APA StyleYu, H., & Song, W. (2023). Research Progress on the Impact of Land Use Change on Soil Carbon Sequestration. Land, 12(1), 213. https://doi.org/10.3390/land12010213