A Machine Learning Framework for Assessing Urban Growth of Cities and Suitability Analysis
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Phases of Urban Expansion
3.2. Suitability Analysis
3.3. Juxtaposing the Suitability Analysis and the TDNN Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shenghe, L.; Sylvia, P. Spatial Patterns and Dynamic Mechanisms of Urban Land Use Growth in China: Case Study in Beijing and Shanghai; IIASA Interim Report; IIASA: Laxenburg, Austria, 2002. [Google Scholar]
- United Nations. Department of Economic and Social Affairs. Population Division Population Distribution, Urbanization, Internal Migration and Development: An International Perspective; United Nations: New York, NY, USA, 2011. [Google Scholar]
- United Nations. World Urbanization Prospects, United Nations, 2014 revision, Department of Economic and Social Affairs; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Han, A.T.; Go, M.H. Explaining the national variation of land use: A cross-national analysis of greenbelt policy in five countries. Land Use Policy 2019, 81, 644–656. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, G.; Wang, H.; Cheng, Y.; Lu, Z.; Liu, H.; Zhu, X.; Wang, M.; Yi, L. Study on the Delimitation of the Urban Development Boundary in a Special Economic Zone: A Case Study of the Central Urban Area of Doumen in Zhuhai, China. Sustainability 2018, 10, 756. [Google Scholar] [CrossRef] [Green Version]
- Tayyebi, A.; Pijanowski, B.; Tayyebi, A. An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model. Land 2021, 10, 286. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, D.; Li, Y. Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data. Land 2022, 11, 1074. [Google Scholar] [CrossRef]
- Cağlıyan, A.; Dağlı, D. Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey. Sustainability 2022, 14, 9180. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Karuppannan, S. Land use and land cover (LULC) change analysis using TM, ETM+ and OLI Landsat images in district of Okara, Punjab, Pakistan. Phys. Chem. Earth Parts A/B/C 2022, 126, 103117. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Ahmad, A.; Majeed, H.; Qaisrani, S.A.; Hammad, H.M.; Amjad, M.; Ahmad, I.; Fahad, S.; Ahmad, N.; et al. Assessment of land use/land cover changes and its effect on land surface temperature using remote sensing techniques in Southern Punjab, Pakistan. Environ. Sci. Pollut. Res. 2022, pp. 1–17. [CrossRef]
- Triantakonstantis, D.; Mountrakis, G. Urban Growth Prediction: A Review of Computational Models and Human Perceptions. J. Geogr. Inf. Syst. 2012, 4, 26323. [Google Scholar] [CrossRef] [Green Version]
- Razavi, B.S. Predicting the Trend of Land Use Changes Using Artificial Neural Network and Markov Chain Model (Case Study: Kermanshah City). Res. J. Environ. Earth Sci. 2014, 6, 215–226. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, Y.; Li, Q. A New Perspective for Urban Development Boundary Delineation Based on the MCR Model and CA-Markov Model. Land 2022, 11, 401. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef] [PubMed]
- Maithani, S.; Arora, M.K.; Jain, R.K. An artificial neural network based approach for urban growth zonation in Dehradun city, India. Geocarto Int. 2010, 25, 663–681. [Google Scholar] [CrossRef]
- Al-Kheder, S.; Wang, J.; Shan, J. Fuzzy inference guided cellular automata urban-growth modelling using multi-temporal satellite images. Int. J. Geogr. Inf. Sci. 2008, 22, 1271–1293. [Google Scholar] [CrossRef]
- Gharaibeh, A.A.; Ali, M.H.; Abo-Hammour, Z.S.; Al Saaideh, M. Improving Genetic Algorithms for Optimal Land-Use Allocation. J. Urban Plan. Dev. 2021, 147, 04021049. [Google Scholar] [CrossRef]
- Jiao, S.; Gao, Q.; Wei, C.-Y.; Liu, B.; Li, X.-D.; Zeng, G.-M.; Yuan, Z.-X.; Liang, J. Ecological suitability evaluation for urban growth boundary in red soil hilly areas based on fuzzy theory. J. Cent. South Univ. 2012, 19, 1364–1369. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Elhadary, Y.A.E.; Samat, N. Identifying Potential Areas for Future Urban Development Using Gis-Based Multi Criteria Evaluation Technique. In SHS Web of Conferences; EDP Sciences: Les Ulis, France, 2016; p. 03001. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Zaredar, N. Land Suitability Analysis using Multi Attribute Decision Making Approach. Int. J. Environ. Sci. Dev. 2010, 1, 441–445. [Google Scholar] [CrossRef]
- Omar, N.Q.; Raheem, A.M. Determining the suitability trends for settlement based on multi criteria in Kirkuk, Iraq. Open Geospat. Data Softw. Stand. 2016, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Sulaiman, W.N.A.; Vaghefi, N. Application of geographic information system technique and analytical hierarchy process model for land-use suitability analysis on coastal area. J. Coast. Conserv. 2013, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Shaikh, V.R. Site suitability analysis for urban development using GIS based multicriteria evaluation technique. J. Indian Soc. Remote Sens. 2013, 41, 417–424. [Google Scholar] [CrossRef]
- Berry, M.; BenDor, T.K. Integrating sea level rise into development suitability analysis. Comput. Environ. Urban Syst. 2015, 51, 13–24. [Google Scholar] [CrossRef]
- Raddad, S. Integrated GIS and multi criteria evaluation approach for suitability analysis of urban expansion in south eastern Jerusalem region–Palestine. Geogr. Inf. Syst. 2016, 5, 24–31. [Google Scholar]
- Macrotrends. Jordan Refugee Statistics 1960–2022. 2022. Available online: https://www.macrotrends.net/countries/JOR/jordan/refugee-statistics (accessed on 1 December 2022).
- UN-Habitat’s Urban Practices Branch, Planning, Finance and Economy Section. Urban Planning & Infrastructure in Migration Contexts, Irbid Spatial Profile, Jordan. A report in Collaboration of UN-Habitat, Greater Irbid Municipality, and Swiss State Secretariat for Economic Affairs (SECO). 2022. Available online: https://unhabitat.org/sites/default/files/2022/04/220411-final_irbid_profile.pdf (accessed on 1 December 2022).
- Jensen, R.R.; Binford, M.W. Measurement and comparison of Leaf Area Index estimators derived from satellite remote sensing techniques. Int. J. Remote Sens. 2004, 25, 4251–4265. [Google Scholar] [CrossRef]
- Zhou, L. Integrating Artificial Neural Networks, Image Analysis and GIS for Urban Spatial Growth Characterization. Ph.D Thesis, College of Social Sciences and Public Policy, Florida State University, Tallahassee, FL, USA, 2012; pp. 1–154. [Google Scholar]
- Hagan, M.; Demuth, H. Neural Network Design; PWS Publishing: Boston, MA, USA, 1996. [Google Scholar]
- Winograd, T. Shifting viewpoints: Artificial intelligence and human–computer interaction. Artif. Intell. 2006, 170, 1256–1258. [Google Scholar] [CrossRef] [Green Version]
- Al-Kofahi, S.D.; Gharaibeh, A.A.; Bsoul, E.Y.; Othman, Y.A.; Hilaire, R.S. Investigating domestic gardens’ densities, spatial distribution and types among city districts. Urban Ecosyst. 2019, 22, 567–581. [Google Scholar] [CrossRef]
- Saadeddin, K.; Abdel-Hafez, M.F.; Jaradat, M.A.; Jarrah, M.A. Optimization of Intelligent Approach for Low-Cost INS/GPS Navigation System. J. Intell. Robot. Syst. 2014, 73, 325–348. [Google Scholar] [CrossRef]
- Negnevitsky, M. Artificial Intelligence, 1st ed.; Harlow Addison-Wesley: Boston, MA, USA, 2011. [Google Scholar]
- Jaradat, M.A.K.; Abdel-Hafez, M.F. Non-Linear Autoregressive Delay-Dependent INS/GPS Navigation System Using Neural Networks. IEEE Sens. J. 2016, 17, 1105–1115. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Long, S.; Liu, L.; Liu, X. Analysis of the Effectiveness of Urban Land-Use-Change Models Based on the Measurement of Spatio-Temporal, Dynamic Urban Growth: A Cellular Automata Case Study. Sustainability 2017, 9, 796. [Google Scholar] [CrossRef]
- Alanbari, M.A.; Al-Ansari, N.; Jasim, H.K. GIS and Multicriteria Decision Analysis for Landfill Site Selection in Al-Hashimyah Qadaa. Nat. Sci. 2014, 6, 282–304. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics (DOS). Main Results of the General Census of Population and Housing 2015. Published in 2016. 2016. Available online: http://dosweb.dos.gov.jo/products/census_mainresults2015/ (accessed on 1 December 2022).
- Aliani, H.; Ghanbari Motlagh, M.; Danesh, G.; Aliani, H. Land suitability analysis for urban development using TOPSIS, WLC and ANP techniques (Eastern cities of Gilan-Iran). Arab. J. Geosci. 2021, 14, 1276. [Google Scholar] [CrossRef]
- Satir, O. Mapping the Land-Use Suitability for Urban Sprawl Using Remote Sensing and GIS Under Different Scenarios. Master’s Thesis, Department of Landscape Architecture, Faculty of Agriculture, Yuzuncu Yil University, Van, Turkey, 2016. [Google Scholar]
- Ahmad, F.; Goparaju, L.; Qayum, A. Agroforestry suitability analysis based upon nutrient availability mapping: A GIS based suitability mapping. AIMS Agric. Food 2017, 2, 201–220. [Google Scholar] [CrossRef]
- Kaoje, I.U.; Dankani, I.M.; Ishiaku, I. Site Suitability Analysis for Municipal Solid Waste Disposal in Birnin Kebbi, Nigeria. IOSR J. Humanit. Soc. Sci. 2016, 21, 1–10. [Google Scholar] [CrossRef]
- Growth Stages of Greater Irbid Municipality; Greater Irbid Municipality (GIM): Irbid, Jordan, 2005.
- Beale, M.; Martin, T.H.; Howard, B.D. MATLAB Neural Network Toolbox User’s Guide (version R2017b); The MathWorks, Inc.: Natick, MA, USA, 2017; p. 158. [Google Scholar]
- Gharaibeh, A.A.; Shaamala, A.H.; Ali, M.H. Multi-Criteria Evaluation for Sustainable Urban Growth in An-Nuayyimah, Jordan; Post War Study. Procedia Manuf. 2020, 44, 156–163. [Google Scholar] [CrossRef]
- Gharaibeh, A.A.; Jaradat, R.A.; Okour, Y.F.; Al-Rawabdeh, A.M. Landscape Perception and Landscape Change for the City of Irbid, Jordan. J. Archit. Plan. 2017, 29, 89–104. [Google Scholar]
- UN General Assembly, Transforming Our World: The 2030 Agenda for Sustainable Development, 21 October 2015. A/RES/70/1. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 1 January 2023).
- Gharaibeh, A.A.; Alhamad, M.N.; Al-Hassan, D.A.; Abumustafa, N.I. The impact of the spatial configuration of socioeconomic services on rural–urban dependencies in Northern Jordan. GeoJournal 2022, 87, 4475–4490. [Google Scholar] [CrossRef] [PubMed]
Towns | Population Numbers | Towns | Population Numbers |
---|---|---|---|
Alhusun | 37,141 | Beit ras | 18,019 |
Alsareeh | 19,227 | Hawara | 12,801 |
Iydun | 18,592 | Bushra | 11,377 |
Criteria | Classes | References | Weight | Weight Range | Note |
---|---|---|---|---|---|
Slope (degree) | 0–10% 10.1–20% 20.1–30% >30% | [24] [44] [43] [28] | 0.22 0.3 0.22 0.04 | 0.195 | The slope factor in this research was given a weight based on the rate of the weight for the same factor in similar research. So, the weight = 0.19 |
Distance from the main urban center and town agglomeration | Main urban center 0–2000 m 2000–3000 3000–4000 Town center 0–500 m 500–1000 m 1000–1500 m | [39] [40] | 0.22 0.26 | 0.24 | Due to the population density of many towns in the study area, the urban center of the towns with a population of more than 11,000 was taken into consideration, including Huwwara, Al-Sareeh, Bushra, Idun, Beit-ras, and Al-Huson. To keep the towns and cities compact and prevent urban sprawl, the weight = 0.25 |
Streams (m) Buffering the water course with 40 m on either side of the center line. | 0–40 m >40 | [28] [45] | 0.04 0.11 | 0.07 | The study area is interspersed with many streams that have negative effects, especially flooding in the winter, so the weight = 0.11 based on [45]. |
Soil fertility | Fertile Moderate Low | [40] [22] | 0.09 0.21 | 0.15 | This factor was given the highest weight since the study area is rich in fertile soil and agricultural land and is being engulfed by urban growth. This is one of the most important factors that should control the future growth process so the weight = 0.3 |
Built-up area | Built-up Vacant land | [24] [45] [43] | 0.13 0.15 0.12 | 0.133 | The built-up area factor gained a weight of 0.15 based on [45]. The aim was to move away from the built-up area as it constituted an obstacle to growth |
Criteria | Classes | Reclassified | Weight |
---|---|---|---|
Slope (degree) | 0–10% 10.1–20% 20.1–30% More than 30% | 4 (the best slope for growth) 3 2 0 (building restricted and challenging) | 0.19 |
Distance from the main urban center and town agglomeration | Main urban center 0–2000 m 2000–3000 3000–4000 >4000 Town center 0–500 m 500–1000 1000–1500 >1500 | 4 (the best for growth) 3 1 0 4 3 1 0 | 0.25 |
Streams (m) Buffering the water course with 40 m on either side of the center line. | 0–40 m More than 40 | 0 4 | 0.11 |
Soil fertility | Fertile Moderate Low | 0 2 4 | 0.30 |
Built-up area | Built up Vacant land | 0 4 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharaibeh, A.A.; Jaradat, M.A.; Kanaan, L.M. A Machine Learning Framework for Assessing Urban Growth of Cities and Suitability Analysis. Land 2023, 12, 214. https://doi.org/10.3390/land12010214
Gharaibeh AA, Jaradat MA, Kanaan LM. A Machine Learning Framework for Assessing Urban Growth of Cities and Suitability Analysis. Land. 2023; 12(1):214. https://doi.org/10.3390/land12010214
Chicago/Turabian StyleGharaibeh, Anne A., Mohammad A. Jaradat, and Lamees M. Kanaan. 2023. "A Machine Learning Framework for Assessing Urban Growth of Cities and Suitability Analysis" Land 12, no. 1: 214. https://doi.org/10.3390/land12010214
APA StyleGharaibeh, A. A., Jaradat, M. A., & Kanaan, L. M. (2023). A Machine Learning Framework for Assessing Urban Growth of Cities and Suitability Analysis. Land, 12(1), 214. https://doi.org/10.3390/land12010214